This report shows that Sarasota County consistently meets or exceeds all Federal and State standards for drinking water. The following is a summary of the quality of water provided to customers during 2004. It is a record reflecting our dedication to bring you high-quality, reliable drinking water. Included are details about where your water comes from, what it contains and how it compares to standards set by regulatory agencies.

Richard E. Howell
General Manager
Sarasota County Utilities
Sarasota County utilizes several water sources for its drinking water. Sarasota County's drinking water sources

<table>
<thead>
<tr>
<th>% of supply</th>
<th>Location</th>
<th>Water source</th>
<th>Treatment method</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>University Parkway</td>
<td>Wellfield with 7 wells</td>
<td>Aeration / disinfection</td>
</tr>
<tr>
<td></td>
<td>Jacaranda Water Treatment Facility</td>
<td>Wellfield with 7 wells</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>30%</td>
<td>T. Mabby Carlton, Jr. Water Treatment Facility</td>
<td>Wellfield with 14 wells, 400 – 700 ft deep, draw water from the Intermediate and Floridan Aquifers</td>
<td>Electrodialysis Reversal, a state-of-the-art process that uses electricity to remove minerals from water. A disinfection and filtration process provides additional treatment</td>
</tr>
<tr>
<td>25%</td>
<td>Water purchased from Peace River/Manasota Regional Water Supply Authority</td>
<td>Peace River</td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td>Water purchased from Manatee County</td>
<td>Manatee River and 1200-ft wells drawing from the Floridan Aquifer</td>
<td>Fully treated by various physical and chemical processes including filtration and disinfection</td>
</tr>
</tbody>
</table>

All our water sources are permitted by the Southwest Florida Water Management District.

Drinking water standards

The raw water obtained from our sources contains various substances or contaminants, some of which must be removed by a treatment process to produce water that meets Federal safe drinking water standards. Naturally occurring drinking water sources are never 100 percent “pure.” Even rainwater contains dissolved minerals or other chemicals.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA's) Safe Drinking Water Hotline at 1.800.426.4791.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff and septic systems.

(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Ensuring quality

- Daily water samplings throughout the distribution system, including more than 120 samples, are analyzed monthly for bacteria content.
- Specialized samples from the treatment facilities and the distribution system are analyzed daily for treatment process control, surpassing even regulatory requirements.
### Microbiological

<table>
<thead>
<tr>
<th>Contaminant and unit of measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest single measurement</th>
<th>Lowest monthly %age of samples meeting regulatory limits</th>
<th>Likely source of contamination</th>
<th>Sampling date</th>
<th>MCL violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU) (Manatee County)</td>
<td>NA</td>
<td>TT</td>
<td>3.1</td>
<td>98.9%</td>
<td>Soil runoff and treatment processes</td>
<td>Daily 2004</td>
<td>No</td>
</tr>
<tr>
<td>Turbidity (NTU) (Peace River)</td>
<td>NA</td>
<td>TT</td>
<td>5.47</td>
<td>89.25%</td>
<td>Soil runoff and treatment processes</td>
<td>Daily 2004</td>
<td>No</td>
</tr>
</tbody>
</table>

Please note: Following Hurricane Charley in August 2004, the Peace River Facility recorded turbidity levels above the required treatment levels. During that time, Sarasota County received no water from the Peace River Facility.

### Radiological

<table>
<thead>
<tr>
<th>Contaminant and unit of measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level detected</th>
<th>Range of results</th>
<th>Likely source of contamination</th>
<th>Sampling date</th>
<th>MCL violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha emitters (pCi/L)</td>
<td>0</td>
<td>15</td>
<td>3.1</td>
<td>13.3-31</td>
<td>Erosion of natural deposits</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Combined Radium (pCi/L)</td>
<td>0</td>
<td>5</td>
<td>1.5</td>
<td>0.6-1.5</td>
<td>Erosion of natural deposits</td>
<td>Jan 04</td>
<td>No</td>
</tr>
</tbody>
</table>

### Inorganic

<table>
<thead>
<tr>
<th>Contaminant and unit of measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level detected</th>
<th>Range of results</th>
<th>Likely source of contamination</th>
<th>Sampling date</th>
<th>MCL violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>N/A</td>
<td>15</td>
<td>0.011</td>
<td>N/D</td>
<td>Discharge of drilling water; recharge of metal refineries; erosion of natural deposits</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Cyanide (ppb)</td>
<td>200</td>
<td>200</td>
<td>6.0</td>
<td>3.0-6.0</td>
<td>Discharge from steel sheet metal factories; discharge from plastic and fertilizer factories</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>4</td>
<td>4</td>
<td>1.1</td>
<td>0.002-1.1</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Lead (point of entry) (ppb)</td>
<td>NA</td>
<td>15</td>
<td>1</td>
<td>ND-1.0</td>
<td>Residue from manmade pollution such as auto emissions and paint; lead pipe, casing and solder</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Nickel (ppb)</td>
<td>N/A</td>
<td>100</td>
<td>2.6</td>
<td>ND-2.6</td>
<td>Pollution from mining and refining operations; naturally occurring in soil</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>10</td>
<td>7.43</td>
<td>0.743</td>
<td>ND-0.743</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Nitrite (ppm)</td>
<td>1</td>
<td>0.062</td>
<td>ND-0.062</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
<td>Jan 04</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>N/A</td>
<td>150</td>
<td>12.57</td>
<td>ND-12.57</td>
<td>Salt water intrusion, leaching from soil</td>
<td>Jan 04</td>
<td>No</td>
</tr>
<tr>
<td>Thallium (ppb)</td>
<td>0.5</td>
<td>2</td>
<td>0.5</td>
<td>ND-0.5</td>
<td>Leaching from ore processing sites; discharge from electronics, glass and drug factories</td>
<td>Jan 04</td>
<td>No</td>
</tr>
</tbody>
</table>

### Lead and Copper (Tap Water)

<table>
<thead>
<tr>
<th>Contaminant and unit of measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL (action level)</th>
<th>%90 percentile result</th>
<th>No. of sampling sites exceeding the AL</th>
<th>Likely source of contamination</th>
<th>Sampling date</th>
<th>AL violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>1.3</td>
<td>1.3</td>
<td>0.36</td>
<td>0</td>
<td>0</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
<td>Sep 04</td>
<td>No</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>0</td>
<td>15</td>
<td>3.4</td>
<td>2</td>
<td>2</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
<td>Sep 04</td>
<td>No</td>
</tr>
</tbody>
</table>

### THMs and Stage 1 Disinfectant/Disinfection By-Product (DIBP)

<table>
<thead>
<tr>
<th>Contaminant and unit of measurement</th>
<th>MCLG or MRDLG</th>
<th>MCLG or MRDL</th>
<th>Level detected</th>
<th>Annual average monthly removal ratio</th>
<th>Range of results</th>
<th>Range of monthly removal ratios</th>
<th>Likely source of contamination</th>
<th>Sampling date</th>
<th>MCL violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines (mg/L)</td>
<td>4</td>
<td>4</td>
<td>3.04</td>
<td>N/A</td>
<td>N/A</td>
<td>0.20-5.04</td>
<td>Water additive used to control microbes</td>
<td>Monthly 2004</td>
<td>No</td>
</tr>
<tr>
<td>Haloacetic Acids (Fives) (HAAS) (ppb)</td>
<td>N/A</td>
<td>60</td>
<td>15.2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.25</td>
<td>By-product of drinking water disinfection</td>
<td>Quarterly 2004</td>
<td>No</td>
</tr>
<tr>
<td>TTHM (Total Trihalomethanes) (ppb)</td>
<td>0</td>
<td>80</td>
<td>24.4</td>
<td>N/A</td>
<td>N/A</td>
<td>14.7-35.7</td>
<td>By-product of drinking water disinfection</td>
<td>Quarterly 2004</td>
<td>No</td>
</tr>
<tr>
<td>Total Organic Carbon (ratio)</td>
<td>N/A</td>
<td>TT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1.28-1.73</td>
<td>Naturally present in the environment</td>
<td>Monthly 2004</td>
<td>No</td>
</tr>
</tbody>
</table>

### Definitions

- AL – Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- MCL – Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MRDL – Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MRDLG – Maximum Residual Disinfectant Level Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs allow for a margin of safety.
- NTU – Nephelometric Turbidity Unit: A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- ppb – Parts per billion or micrograms per liter: One part by weight of analyte to one billion parts by weight of the water sample.
- ppm or mg/l – Parts per million or milligrams per liter (mg/l): One part by weight of analyte to one million parts by weight of the water sample.
- pCi/l – Picocuries per liter: A measure of the radioactivity in water.
- THMs – Trihalomethanes: A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- NTU – Nephelometric Turbidity Unit: A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- ETM – Erosion of Total Organic Carbon: A measure of the radioactivity in water.
- N/A – Not Applicable
- ND – Not Detected

Our drinking water meets or exceeds all established standards. We are providing information on substances which, though detected, were far below the Maximum Contaminant Level (MCL). Samples were taken in 2004.
Questions?
If you have any questions about this report or your water, please contact us at 941.861.6790 or visit our web site at www.scgov.net or e-mail us at waterquality@scgov.net.

Do we have enough water for the future?
Communities throughout Florida are struggling to provide drinking water to their growing populations. In Sarasota County, however, we have invested in ample drinking water supplies to accommodate the next ten years of growth. Meanwhile, we have identified sources to provide for our community through 2030 and we are preparing to make those investments on behalf of our utility customers.

Because of the substantial cost of providing water, developing future supplies and investing the money required must be carefully timed to precede, but not vastly outpace, future needs. Improvements in technology, better understanding of natural systems and changing population patterns require constant vigilance and adjustments to forecast demands and planned supplies.

The Water Planning Alliance, a four-county volunteer planning group of thirteen entities including Sarasota, Manatee, Charlotte and DeSoto counties, all of the municipalities within those counties, and the Englewood Water District, meets regularly to plan future water supplies. We also work closely with the Southwest Florida Water Management District (SWFWMD), which has oversight responsibility for a 16-county area. It is essential that we understand and respect each other’s needs. It is no less essential that we plan together to address those needs effectively.

Conservation counts
Our customers deserve praise for conserving drinking water, using 89 gallons per person per day, compared to the average U.S. residential use of 170 gallons per day. Over the past decade, county residents have reduced their consumption by about 40 percent, by using less water both inside and outside the house. Outdoors, we are irrigating landscapes with irrigation wells and reclaimed water, instead of using drinking water. Indoors, we are making a difference with low-flow toilets and water-conserving showerheads.

Why conserve?
• It’s the right thing to do
• It protects our natural resources
• It saves you money
No matter the weather, using water wisely is a habit we all can practice year round.

Ways to conserve outdoors
• Without rain, once-a-week irrigation during warm months is usually adequate for most established trees and shrubs. Once every two weeks would suffice December through February.
• Make sure there is a functioning rain shut-off device on all automatic lawn irrigation systems.
• Calibrate your automatic system to irrigate by amount (3/4 inch per watering) instead of minutes.
• Install drought-tolerant plants such as oaks, palms, lantana and crape myrtle.

Ways to conserve indoors
• Repair dripping faucets with new washers.
• Install faucet aerators. They can cut faucet water use by 60 percent.
• Test your toilet to see if the flapper is leaking and needs to be replaced. Put a few drops of food coloring in the tank, wait 20 minutes. If color appears in the bowl, the flapper needs to be replaced. Put a few drops of food coloring in the tank, wait 20 minutes. If color appears in the bowl, the flapper needs to be replaced.
• Install water-efficient showerheads and low-flow toilets.

This report is available in English and Spanish. Este informe está disponible en inglés y español.

This document meets standards of the Florida Department of Environmental Protection, which requires community water systems to deliver annual water quality reports to their customers.