PASS

3 out of 3 indicators were rated as PASS. Learn more about how this report is created.

Summary:
The overall health of Blackburn Bay has remained in good condition. All three water quality indicators were rated as pass. However, the biotic indicator, seagrass, has continued to decrease.

Water quality: All three water quality indicators (chlorophyll a, nitrogen, and phosphorus) were rated as pass (below the threshold) and remained in excellent condition. Although there has been a slight increase in chlorophyll a levels, the mean level is still slightly below the threshold value of 8.2 ug/l. Nitrogen levels have remained constant and below the threshold (430.0 ug/l) and hovering very closely to the target level of 360.0 ug/l. Phosphorus levels have decreased with the average greatly below the target level of 170.0 ug/l.

Biotic Indicator: The total acreage of seagrass has remained relatively constant since 1988 but in 2010 the average level of seagrass (323 acres) was still below the target of 447 acres.

Water Chemistry Ratings
Total nitrogen, total phosphorus, and chlorophyll a levels are monitored carefully by water resource managers and used by regulatory authorities to determine whether a bay meets the water quality standards mandated by the Clean Water Act. The trend graphs for these indicators are shown below, along with their target and threshold values. A target value is a desirable goal to be attained, while a threshold is an undesirable level which is to be avoided. Learn More about these ratings and how they are calculated.
Other Measures of Bay Health

In addition to nutrient levels and chlorophyll concentration, dissolved oxygen levels, and water clarity are also objective indicators of bay health. These have complex interactive cycles which are affected by rainfall, temperature, and tidal action, as well as other factors. High nutrient levels (nitrogen and phosphorus) can stimulate excessive growth of marine algae (indicated by chlorophyll a level), resulting in reduced water clarity (and increased light attenuation) and depleted oxygen levels. Both plants and animals in a bay need oxygen to survive, and the seagrasses which provide food and cover for bay creatures need light for photosynthesis.

Dissolved Oxygen

<table>
<thead>
<tr>
<th>Year 2010</th>
<th>Historical period of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>9.2</td>
</tr>
<tr>
<td>Mean</td>
<td>6.9</td>
</tr>
<tr>
<td>Low</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Samples: 48

Data Sources: Sarasota County

Method Detection Limit: 0.2 mg/l

Light Attenuation

<table>
<thead>
<tr>
<th>Year 2010</th>
<th>Historical period of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1.8</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9</td>
</tr>
<tr>
<td>Low</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Samples: 48

Data Sources: Sarasota County

Method Detection Limit: 0.1 K(1/m)

Rainfall

<table>
<thead>
<tr>
<th>Year 2010</th>
<th>Historical period of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>41.4</td>
</tr>
<tr>
<td>Mean</td>
<td>28.4</td>
</tr>
<tr>
<td>Low</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Samples: 365

Data Sources: Sarasota County

Salinity

<table>
<thead>
<tr>
<th>Year 2010</th>
<th>Historical period of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>35.7</td>
</tr>
<tr>
<td>Mean</td>
<td>32.6</td>
</tr>
<tr>
<td>Low</td>
<td>25.8</td>
</tr>
</tbody>
</table>

Samples: 48

Data Sources: Sarasota County

Method Detection Limit: 0.1 PSS

Turbidity

<table>
<thead>
<tr>
<th>Year 2010</th>
<th>Historical period of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>13.0</td>
</tr>
<tr>
<td>Mean</td>
<td>5.1</td>
</tr>
<tr>
<td>Low</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Samples: 299

Data Sources: Sarasota County

Method Detection Limit: 0.2 NTU
Bay Contour Maps
Contour mapping is one of the best ways to visualize spatial differences in coastal water quality. The interactive map shown below presents monthly data for one selected water quality indicator atop an aerial view of the bay. Choose a different water quality parameter from the list at the top to change the map. Learn More about Water Quality Contour Mapping »

Visit the Water Quality Contour Mapping Tool to view and compare monthly water quality contour maps for ten different water quality indicators. In addition, you can generate your own custom maps.

Contour Legend:
- Less than 1 mg/l
- 1.0 - 5.9 mg/l
- 6.0 - 10.9 mg/l
- 11.0 - 17.9 mg/l
- Greater than 18 mg/l

Seagrasses
Among the most important habitats in Florida’s estuarine environments, seagrass beds are indispensable for the role they play in cycling nutrients, supplying food for wildlife, stabilizing sediments, and providing habitat for juvenile and adult finfish and shellfish. Use the interactive map below to observe the size, density and location of seagrass beds from year to year. The graph shows how the total amount of seagrass in the bay has changed over time. Learn More about Seagrasses »

Seagrass Acreage Variation within Blackburn Bay

Legend:
- Continuous Seagrass
- Patchy Seagrass

--- Target
447 acres
Land Use / Land Cover
Blackburn Bay is located within the Little Sarasota Bay Watershed. View details about the Little Sarasota Bay Watershed »

Land use within a bay’s watershed has a major effect on its water quality. In general, less development means better water quality. Land Cover/Land Use classifications categorize land in terms of its observed physical surface characteristics (upland or wetland, e.g.), and also reflect the types of activity that are taking place on it (agriculture, urban/built-up, utilities, etc.). Florida uses as its standard a set of statewide classifications which were developed by the Florida Department of Transportation. Learn More about Land Use and Land Cover »

2010 Land Use / Land Cover Categories
as a Percentage of Land Area for Little Sarasota Bay Watershed

- Urban & Built-up: 31.2%
- Agriculture: 25.2%
- Wetlands: 17.7%
- Water: 5%
- Upland Forests: 14%
- Rangeland: 2.9%
- Transportation and Utilities: 3.9%
- Barren Land: 0.1%