Pollution Control Division

AMBIENT WATER QUALITY

SARASOTA COUNTY, FLORIDA

ENVIRONMENTAL SERVICES LABORATORY

1984
This Annual Report was prepared under the direction of Jose M. Guira, Ph.D. assisted by Laura McAdam, Bonnie Passalacqua, Zdzislaw Kolasinski and Ruth Trembath.
ENVIRONMENTAL SERVICES LABORATORY

STAFF

1984

DIRECTOR Jose M. Guira, Ph.D

WATER
SAMPLING Bruce Maloney,
 Robert F. Ellison

CHEMISTRY Zdislaw Kolasinski
 Bonnie Passalacqua

MICROBIOLOGY Laura Lyn McAdam
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Classification of County Waters</td>
<td>2</td>
</tr>
<tr>
<td>Map of Classifications</td>
<td>3</td>
</tr>
<tr>
<td>Water Quality Standards</td>
<td></td>
</tr>
<tr>
<td>Bacteriological Quality Standards</td>
<td></td>
</tr>
<tr>
<td>(Total & Fecal Coliform)</td>
<td>4</td>
</tr>
<tr>
<td>Dissolved Oxygen Standards</td>
<td>5</td>
</tr>
<tr>
<td>pH Standards</td>
<td>6</td>
</tr>
<tr>
<td>Bay Monitoring</td>
<td></td>
</tr>
<tr>
<td>Bay Run I (Sarasota Bay)</td>
<td>7 - 8</td>
</tr>
<tr>
<td>Bay Run II (Robert's Bay & Little Sarasota Bay)</td>
<td>9 - 15</td>
</tr>
<tr>
<td>Bay Run III (Little Sarasota Bay, Blackburn Bay, Robert's Bay & Dona Bay)</td>
<td>16 - 22</td>
</tr>
<tr>
<td>Bay Run IV (Lemon Bay)</td>
<td>23 - 29</td>
</tr>
<tr>
<td>Stream Monitoring</td>
<td>30 - 36</td>
</tr>
<tr>
<td>North County</td>
<td>37 - 38</td>
</tr>
<tr>
<td>Central County</td>
<td>39 - 47</td>
</tr>
<tr>
<td>South-Southeast County</td>
<td>48 - 56</td>
</tr>
<tr>
<td>Nutrients</td>
<td>57 - 65</td>
</tr>
<tr>
<td>Introduction</td>
<td>66 - 69</td>
</tr>
<tr>
<td>Bay Runs</td>
<td>70 - 91</td>
</tr>
<tr>
<td>Stream Runs</td>
<td>92 - 108</td>
</tr>
</tbody>
</table>
AMBIENT WATER QUALITY MONITORING PROGRAM

The purpose of our program is to monitor the water quality of Sarasota County and to locate sites of environmental stress, which may indicate potential or present problems. This object is accomplished through a monthly surveillance of our waterways and drainage basins. Once a station is established, the site is sampled approximately once a month providing documentation of water quality trends. This report will summarize the results of our monitoring program.

The 41 Bay Run Stations are sampled for Water Temperature, pH, Conductivity, Dissolved Oxygen, Turbidity, Color, Transparency and Total and Fecal Coliform. The 39 Stream Run Stations are sampled for Temperature, pH, Conductivity, Dissolved Oxygen, Turbidity, Color, Total and Fecal Coliform and Fecal Streptococcus. Quarterly, these Bay and Stream Run Stations are sampled for Nitrates, Nitrites, Ammonia, TKN, Orthophosphates and Total Phosphorous.

In addition to our regular monitoring program, the Laboratory strongly supports an active enforcement program regulated by the Pollution Control Division.

The Laboratory also provides assistance to the Solid Waste Management Division in its surveillance of Monitoring Wells and of problems associated with water quality found in Landfills.

LABORATORY QUALITY CONTROL

Physical, chemical and bacteriological quality is maintained through the U.S. Environmental Protection Agency and the State of Florida Department of Environmental Regulation approved procedures. Continuous calibration of instruments, duplicate samples analysis, spike sample analysis and accurate record keeping of all procedures are an integral part of our Internal Quality Assurance Program. On a yearly basis, we also participate in the EPA/FDER Inter-Laboratory Performance Evaluation Program.

During 1984, the Laboratory maintained their certification for Drinking Water Microbiology, Nitrate and Turbidity testing by participating in the State of Florida Department of Health and Rehabilitative Services Certification Program.
CLASSIFICATION OF WATERS

According to Sarasota County Ordinance #72-37, the surface waters in Sarasota County fall into three classes of surface water. These classes are as follows:

CLASS I Potable Water Supplies
CLASS II Shellfish Propagation or Harvesting
CLASS III Recreation, Propagation and Maintenance of a Healthy, Well-balanced Population of Fish and Wildlife

These water classifications are mapped out on the following page.

WATER QUALITY STANDARDS

The water quality standards for Dissolved Oxygen, Bacteriological Quality (Total and Fecal Coliform), and pH, as set forth by Sarasota County Ordinance #72-37 and the State of Florida #17-3 are presented in Tables A, B, and C (see pages 4, 5 and 6). This report will compare our results with these standards.
CLASSIFICATION OF SURFACE WATERS IN
SARASOTA, FLORIDA

Class I - Potable Water Supplies
Class II - Shellfish Propagation or Harvesting
Class III - Recreation, Propagation & Maintenance of a Healthy, well-balanced population of fish & wildlife
Bacteriological Quality Standards
(Total Coliform and Fecal Coliform)

<table>
<thead>
<tr>
<th>CLASS I</th>
<th>CLASS II</th>
<th>CLASS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Water Supply</td>
<td>Shellfish Propagation or Harvesting</td>
<td>Recreation, Propagation & Maintenance of a healthy, well-balanced population of Fish and Wildlife</td>
</tr>
</tbody>
</table>

State of Florida Dept. of Environmental Regulation #72-37

"Coliform group shall not exceed 1,000 per 100 milliliters as a monthly average, using either most probable number (MPN) or membrane filter (MF) counts; nor exceed 1,000 per 100 milliliters in more than 20% of the samples examined during any month; nor exceed 2,400 per 100 ml (MPN or MF) count on any day."

"-areas classified for shellfish harvesting, the median coliform MPN (most probable number) of water cannot exceed seventy (70) per hundred (100) ml, and not more than ten (10) per cent of the samples ordinarily exceed an MPN of two hundred thirty (230) per one hundred (100) ml, in those portions of areas most probably exposed to fecal contamination during most unfavorable hydrographic and pollutional conditions."

"-the median coliform MPN (most probable number) of water shall not exceed seventy (70) per hundred (100) milliliters, and not more than ten percent (10%) of the samples shall exceed a MPN of two hundred thirty (230) per one hundred (100) milliliters. The fecal coliform bacterial level shall not exceed a median value of 14 MPN per 100 milliliters with not more than ten percent (10%) of the samples exceeding 43 MPN per 100 milliliters."

"-fecal coliform bacteria shall not exceed a monthly average of 200 per 100 ml of sample, nor exceed 400 per 100 ml of sample in 10% of the samples, nor exceed 800 per 100 ml on any one day, nor exceed a total coliform bacteria count of 1,000 per 100 ml as a monthly average, nor exceed 1,000 per 100 ml in more than 20% of the samples examined during any month, nor exceed 2,400 per 100 ml at any time. Monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30 day period. Either MPN or MF counts may be utilized."
DISSOLVED OXYGEN STANDARDS

<table>
<thead>
<tr>
<th>CLASS I</th>
<th>CLASS II</th>
<th>CLASS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Water Supply</td>
<td>Shellfish Propagation or Harvesting</td>
<td>Recreation, Propagation & Maintenance of a healthy, well-balanced population of Fish and Wildlife</td>
</tr>
</tbody>
</table>

Sarasota County Ordinance #72-37

"Dissolved oxygen shall not be artificially depressed below the value of four PPM (4.0) (unless background information available to the Pollution Control Officer indicates prior existence under unpolluted conditions of lower values). In such cases, lower limits may be utilized after approval by the Pollution Control Officer."

State of Florida Dept. of Environmental Regulation #17-3

"shall not be less than 5 milligrams per liter. Normal daily and seasonal fluctuations above this level shall be maintained."

"the concentration in all waters shall not average less than 5 milligrams per liter in a 24 hour period and shall never be less than 4 milligrams per liter. Normal daily and seasonal fluctuations above these levels shall be maintained."

"in predominantly fresh waters, the concentration shall not be less than 5 milligrams per liter. In predominantly marine waters, the concentration shall not average less than 5 milligrams per liter in a 24 hour period and shall never be less than 4 milligrams per liter. Normal daily and seasonal fluctuations above these levels shall be maintained in both predominantly fresh waters and predominantly marine waters."
<table>
<thead>
<tr>
<th>CLASS I</th>
<th>CLASS II</th>
<th>CLASS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Water Supply</td>
<td>Shellfish Propagation or Harvesting</td>
<td>Recreation, Propagation & Maintenance of a healthy, well-balanced population of Fish and Wildlife</td>
</tr>
</tbody>
</table>

Sarasota County Ordinance 72-37

"-pH of receiving waters shall not be caused to vary more than one (1.0) unit above or below normal pH of the waters; and lower value shall not be less than six (6.0), and the upper value not more than eight and one-half (8.5). In cases where pH may be, due to natural background or causes, outside limits stated above, approval of the Pollution Control Officer shall be secured prior to introducing such material in waters of the State."

State of Florida Dept. of Environmental Regulation 17-3

"-shall not vary more than one unit above or below natural background of coastal waters as defined in 17-3.05(1)(c), F.A.C., or more than two tenths unit above or below natural background of open waters as defined in 17-3.05(1)(c), F.A.C., provided that the pH is not lowered to less than 6.5 units or raised above 8.5 units."

"-shall not vary more than one unit above or below natural background of predominantly fresh waters and coastal waters as defined in 17-3.05(1)(c), F.A.C., or more than two tenths unit above or below natural background of open waters as defined in 17-3.05(1)(c) F.A.C., provided that the pH is not lowered to less than 6 units in predominately fresh waters, or less than 6.5 units in predominately marine waters, or raised above 8.5 units."
BAY RUNS
BAY MONITORING

The bay waters in Sarasota County are classified Class II (Shellfish Propagation or Harvesting) and Class III (Recreation, Propagation and Maintenance of a Healthy, Well-balanced Population of Fish and Wildlife).

Bay stations are grouped as four runs: Bay Run I is Sarasota Bay; Bay Run II includes Roberts Bay and Little Sarasota Bay; Bay Run III is Blackburn Bay, Dona Bay and Roberts Bay and Bay Run IV is Lemon Bay. These Bay Runs are depicted on maps accompanying each Bay Run data summary.
BAY RUN 1
Sarasota Bay

There are ten sampling stations located in this area (See map). Seven of these stations are classified as Class II while three are Class III. The water quality violations recorded in this area are listed below. Tabulated results of Total and Fecal coliform, Temperature, Dissolved Oxygen, Conductivity, pH, Turbidity, Color and Transparency are also listed. The maximum and second highest Total and Fecal Coliform, the lowest and second lowest Dissolved Oxygen values and the maximum and minimum pH values are highlighted.

VIOLATIONS

<table>
<thead>
<tr>
<th>Station/Class</th>
<th>Location</th>
<th>Date</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>508/II</td>
<td>Sarasota Bay, off Indian Beach Drive</td>
<td>7/30/84</td>
<td>Dissolved Oxygen</td>
<td>3.7</td>
</tr>
<tr>
<td>521/II</td>
<td>Sarasota Bay, Buttonwood Harbor Marker #6</td>
<td>7/30/84</td>
<td>Dissolved Oxygen</td>
<td>3.9</td>
</tr>
<tr>
<td>523/II</td>
<td>South of Gulf to Bay Mobile Home Park Seawall</td>
<td>7/3/84</td>
<td>Dissolved Oxygen</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Total Coliform - The maximum recorded value was 1300* colonies/100 ml occurring at the entrance to Payne Terminal in Sarasota Bay (Station #510). The second highest value was 200* colonies/100 ml South of Gulf to Bay Mobile Home Park Seawall (Station #523).

Fecal Coliform - The maximum recorded value was 620 colonies/100 ml in Sarasota Bay at Payne Terminal (Station #510). The second highest value was 30* colonies/100 ml, at Station #508, Sarasota Bay off Indian Beach Drive.

Dissolved Oxygen - The lowest recorded value was 3.4 mg/l South of Gulf to Bay Mobile Home Park Seawall (Station #523). The second lowest reading was 3.7 mg/l in (Station #508).

pH - The maximum value of 8.5 units was recorded in Stations 519, 521 and 523. The minimum value recorded was 7.7 units in Sarasota Bay off Ringling Home (Station #507).

*Estimated Count
BAY RUN I

#507 - Sarasota Bay - off Ringling Home
#508 - Sarasota Bay - off Indian Beach Dr.
#510 - Sarasota Bay - Payne Terminal
#514 - Sarasota Bay - Northwest end of Ringling Causeway
#516 - Sarasota Bay - Quick Point
#517 - Sarasota Bay - Halyard Lane
#519 - Sarasota Bay - 0.5 mi. off shore at Bishops Pt.
#520 - Sarasota Bay - Marker #15
#521 - Sarasota Bay - Buttonwood Harbor - Marker #6
#523 - South of Gulf-to-Bay Mobile Home Park seawall
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>1300*</td>
<td>< 100*</td>
<td>126</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>200</td>
<td>< 100*</td>
<td>107</td>
</tr>
</tbody>
</table>

*Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>30*</td>
<td>< 10*</td>
<td>11</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>620*</td>
<td>< 10*</td>
<td>17</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>20*</td>
<td>< 10*</td>
<td>11</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>< 10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>< 10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>< 10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
</tbody>
</table>

*Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>28.0</td>
<td>17.5</td>
<td>24.6</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>27.5</td>
<td>17.5</td>
<td>24.5</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>28.5</td>
<td>18.0</td>
<td>24.2</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>28.0</td>
<td>18.0</td>
<td>24.8</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>28.0</td>
<td>17.5</td>
<td>24.6</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>28.5</td>
<td>18.0</td>
<td>24.8</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>27.5</td>
<td>17.5</td>
<td>24.4</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>28.0</td>
<td>16.5</td>
<td>24.3</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>28.0</td>
<td>18.0</td>
<td>24.6</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>28.0</td>
<td>18.0</td>
<td>24.7</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>8.7</td>
<td>4.3</td>
<td>6.4</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>8.0</td>
<td>3.7</td>
<td>5.6</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>8.6</td>
<td>4.4</td>
<td>6.1</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>8.1</td>
<td>6.0</td>
<td>7.1</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>8.7</td>
<td>4.5</td>
<td>6.9</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>7.7</td>
<td>6.2</td>
<td>6.8</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>8.2</td>
<td>5.4</td>
<td>6.7</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>8.0</td>
<td>3.9</td>
<td>6.0</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>7.6</td>
<td>3.4</td>
<td>5.9</td>
</tr>
</tbody>
</table>
CONDUCTIVITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum umhos/cm at 25°C</th>
<th>Minimum umhos/cm at 25°C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>52572</td>
<td>48226</td>
<td>50051</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>52883</td>
<td>45634</td>
<td>49572</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>51219</td>
<td>46020</td>
<td>48885</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>51931</td>
<td>42102</td>
<td>49746</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>52679</td>
<td>46807</td>
<td>50465</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>52987</td>
<td>43054</td>
<td>50031</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>55406</td>
<td>43773</td>
<td>49713</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>52991</td>
<td>47498</td>
<td>50324</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>55201</td>
<td>47650</td>
<td>50402</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>52998</td>
<td>46413</td>
<td>49974</td>
</tr>
</tbody>
</table>

PH

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Electrometric Units</th>
<th>Minimum Electrometric Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>8.4</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>8.3</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>8.2</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>8.3</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>8.3</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>8.4</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>8.5</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>8.4</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>8.5</td>
<td>8.2</td>
<td>8.4</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>8.5</td>
<td>8.2</td>
<td>8.3</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum NTU</th>
<th>Minimum NTU</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>5.4</td>
<td>3.3</td>
<td>4.4</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>8.7</td>
<td>2.3</td>
<td>4.9</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>7.3</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>6.5</td>
<td>2.2</td>
<td>3.7</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>3.1</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>5.8</td>
<td>1.8</td>
<td>3.0</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>4.2</td>
<td>1.4</td>
<td>2.5</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>5.1</td>
<td>1.8</td>
<td>3.7</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>3.9</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>4.3</td>
<td>1.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>25</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>20</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>25</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>20</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>20</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Station</td>
<td>Class</td>
<td>Number of times sampled</td>
<td>Maximum Meters</td>
<td>Minimum Meters</td>
<td>Arithmetic Mean</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>507</td>
<td>III</td>
<td>11</td>
<td>1.3</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>508</td>
<td>III</td>
<td>11</td>
<td>1.1</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>510</td>
<td>III</td>
<td>11</td>
<td>1.3</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>514</td>
<td>II</td>
<td>11</td>
<td>1.8</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>516</td>
<td>II</td>
<td>11</td>
<td>3.3</td>
<td>1.1</td>
<td>2.1</td>
</tr>
<tr>
<td>517</td>
<td>II</td>
<td>11</td>
<td>1.8</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>519</td>
<td>II</td>
<td>10</td>
<td>2.2</td>
<td>0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>520</td>
<td>II</td>
<td>10</td>
<td>1.9</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>521</td>
<td>II</td>
<td>11</td>
<td>2.1</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>523</td>
<td>II</td>
<td>11</td>
<td>2.9</td>
<td>0.3</td>
<td>1.4</td>
</tr>
</tbody>
</table>
BAY RUN II

Robert's Bay and Little Sarasota Bay

There are eleven sampling stations located in this area and all are classified as Class III (See map). The water quality violations are listed below. Tabulated results of Total and Fecal Coliform, Temperature, Dissolved Oxygen, Conductivity, pH, Turbidity, Color and Transparency are also listed. The maximum and second highest Total and Fecal Coliform, the lowest and second lowest Dissolved Oxygen values and the maximum and minimum pH values are highlighted.

<table>
<thead>
<tr>
<th>Station/Class</th>
<th>Location</th>
<th>Date</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>535/III</td>
<td>Roberts Bay, Entrance to Phillippi Creek</td>
<td>8/13/84</td>
<td>Dissolved Oxygen</td>
<td>3.7</td>
</tr>
<tr>
<td>537/III</td>
<td>Little Sarasota Bay</td>
<td>4/24/84</td>
<td>Dissolved Oxygen</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Total Coliform - The maximum value of 2100* colonies/100 ml was recorded at Little Sarasota Bay - Matheny Creek (Station #537). The second highest value was <1000* colonies/100 ml recorded in Stations 533, 535, 536, 537 and 596.

Fecal Coliform - The maximum recorded value was 1800* colonies/100 ml in Matheny Creek (Station #537). The second highest value was 1100* colonies/100 ml also seen in Station #537.

Dissolved Oxygen - The lowest recorded minimum value was 2.7 mg/l in Little Sarasota Bay, entrance to Matheny Creek (Station #537). The second lowest was 3.7 mg/l recorded at Robert's Bay, entrance to Phillippi Creek (Station #535).

pH - The maximum recorded value was 8.4 units at Station #609. The minimum value was 7.5 units at Station #535.

*Estimated Count
SARASOTA COUNTY, FLORIDA

1" = 1 mile

BAY RUN II

#529 - City Pier (Marina Jack)
#531 - Sarasota Bay - Marker #5
#533 - Roberts Bay - San Remo Cove
#534 - Roberts Bay - Grand Canal
#535 - Roberts Bay - Phillippi Creek
#536 - Little Sarasota Bay - Marker #57
#537 - Matheny Creek
#539 - Little Sarasota Bay - Marker #48
#596 - Roberts Bay - Marker #79
#606 - Big Pass - Marker #15
#609 - Little Sarasota Bay - Marker #38
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>126</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>400*</td>
<td>< 100*</td>
<td>115</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>200</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>126</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>7</td>
<td>2100*</td>
<td>< 100*</td>
<td>800</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>126</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
</tbody>
</table>

* Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>80*</td>
<td>< 10*</td>
<td>17</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>90*</td>
<td>< 10*</td>
<td>13</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>160*</td>
<td>< 10*</td>
<td>13</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>20*</td>
<td>< 10*</td>
<td>13</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>600*</td>
<td>< 10*</td>
<td>34</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>260</td>
<td>< 10*</td>
<td>17</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>1800*</td>
<td>10*</td>
<td>313</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>60*</td>
<td>< 10*</td>
<td>15</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>400*</td>
<td>< 10*</td>
<td>14</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>< 10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>40*</td>
<td>< 10*</td>
<td>11</td>
</tr>
</tbody>
</table>

*Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>30.0</td>
<td>18.0</td>
<td>24.2</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>29.5</td>
<td>16.5</td>
<td>23.6</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>29.5</td>
<td>18.0</td>
<td>24.0</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>18.0</td>
<td>24.0</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>29.5</td>
<td>18.0</td>
<td>24.0</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>18.5</td>
<td>24.0</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>31.0</td>
<td>19.0</td>
<td>25.0</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>17.0</td>
<td>24.0</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>18.5</td>
<td>24.0</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>29.5</td>
<td>16.0</td>
<td>23.5</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>18.0</td>
<td>24.0</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>8.0</td>
<td>5.7</td>
<td>6.9</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>5.7</td>
<td>7.1</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>7.5</td>
<td>4.9</td>
<td>6.5</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>7.1</td>
<td>4.6</td>
<td>5.9</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>3.7</td>
<td>6.0</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>8.7</td>
<td>4.5</td>
<td>6.4</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>8.5</td>
<td>2.7</td>
<td>5.4</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>9.5</td>
<td>5.7</td>
<td>7.2</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>5.0</td>
<td>6.4</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>8.2</td>
<td>6.1</td>
<td>7.0</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>8.8</td>
<td>4.8</td>
<td>6.5</td>
</tr>
</tbody>
</table>
CONDUCTIVITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum umhos/cm at 25°C</th>
<th>Minimum umhos/cm at 25°C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>52496</td>
<td>46755</td>
<td>49985</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>53471</td>
<td>43570</td>
<td>49985</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>50525</td>
<td>38453</td>
<td>45758</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>50019</td>
<td>26866</td>
<td>42911</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>50226</td>
<td>747</td>
<td>30838</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>49100</td>
<td>32271</td>
<td>41845</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>42780</td>
<td>5233</td>
<td>22243</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>49320</td>
<td>35199</td>
<td>42658</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>49425</td>
<td>24644</td>
<td>43078</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>54003</td>
<td>43766</td>
<td>50631</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>50450</td>
<td>40977</td>
<td>45815</td>
</tr>
</tbody>
</table>

pH

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Electrometric Units</th>
<th>Minimum Electrometric Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>8.5</td>
<td>7.9</td>
<td>8.2</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>8.2</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>8.2</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>8.2</td>
<td>7.5</td>
<td>7.9</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>8.3</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>8.2</td>
<td>7.6</td>
<td>7.8</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>8.3</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>8.3</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>8.4</td>
<td>8.1</td>
<td>8.2</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum NTU</th>
<th>Minimum NTU</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>5.5</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>10.4</td>
<td>1.8</td>
<td>4.9</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>5.7</td>
<td>2.1</td>
<td>3.4</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>7.1</td>
<td>1.5</td>
<td>3.1</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>17.5</td>
<td>1.5</td>
<td>4.6</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>1.7</td>
<td>3.4</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>29.9</td>
<td>2.1</td>
<td>5.5</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>5.9</td>
<td>2.0</td>
<td>3.9</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>1.8</td>
<td>3.9</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>9.0</td>
<td>1.4</td>
<td>3.8</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>2.3</td>
<td>3.6</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>20</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>30</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>90</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>90</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>35</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>55</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>55</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Station</td>
<td>Class</td>
<td>Number of times sampled</td>
<td>Maximum Meters</td>
<td>Minimum Meters</td>
<td>Arithmetic Mean</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>529</td>
<td>III</td>
<td>9</td>
<td>1.5</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>531</td>
<td>III</td>
<td>9</td>
<td>2.0</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>533</td>
<td>III</td>
<td>10</td>
<td>1.8</td>
<td>0.8</td>
<td>1.3</td>
</tr>
<tr>
<td>534</td>
<td>III</td>
<td>10</td>
<td>2.1</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>535</td>
<td>III</td>
<td>10</td>
<td>1.5</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>536</td>
<td>III</td>
<td>10</td>
<td>2.3</td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>537</td>
<td>III</td>
<td>10</td>
<td>1.2</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>539</td>
<td>III</td>
<td>10</td>
<td>1.8</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>596</td>
<td>III</td>
<td>10</td>
<td>1.5</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>606</td>
<td>III</td>
<td>9</td>
<td>2.4</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td>609</td>
<td>III</td>
<td>10</td>
<td>1.9</td>
<td>0.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>
BAY RUN III
Little Sarasota Bay, Blackburn Bay, Robert's Bay & Dona Bay

There are ten sampling stations located in this area and all are Class III (See map). Only one violation was found in this area. Tabulated results of Total and Fecal Coliform, Temperature, Dissolved Oxygen, Conductivity, pH, Turbidity, Color and Transparency are also listed. The maximum and second highest Total and Fecal Coliform, the lowest and second lowest Dissolved Oxygen values and the maximum and minimum pH values are highlighted.

VIOLATION

<table>
<thead>
<tr>
<th>Station/Class</th>
<th>Location</th>
<th>Date</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>590/III</td>
<td>Roberts Bay at U.S. 41 Bridge</td>
<td>9/6/84</td>
<td>Dissolved Oxygen</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Total Coliform - The maximum recorded value was <1000* colonies/100 ml recorded in Dryman Bay, entrance of South Creek (Station #541). The second highest value was <100* colonies/100 ml found throughout.

Fecal Coliform - The maximum recorded value was 120* colonies/100 ml at the entrance of South Creek in Little Sarasota Bay (Station #541). The second highest value was 60* colonies/100 ml in Dona Bay and U.S. 41 (Station #589).

pH - The maximum recorded value was 8.4 units at Station #540. The minimum recorded value was 7.3 units, also in Station #540.

Dissolved Oxygen - The minimum value was 3.7 mg/l in Station #590. The second lowest value was 4.5 mg/l (Station #590).

*Estimated Count
SARASOTA COUNTY, FLORIDA

BAY RUN III

#540 - Dryman Bay - Marker #30
#541 - South Creek
#543 - Lyons Bay - Marker #9
#545 - Lyons Bay - Marker #15
#547 - Roberts Bay - Marker #10
#548 - Roberts Bay - Marker #6
#559 - Venice Ave Bridge
#589 - Dona Bay & U.S. 41
#590 - Roberts Bay & U.S. 41
#610 - Blackburn Bay - Marker #19
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>129</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
</tbody>
</table>

* Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>< 10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>120*</td>
<td>< 10*</td>
<td>17</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>30*</td>
<td>< 10*</td>
<td>11</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>20*</td>
<td>< 10*</td>
<td>12</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>50*</td>
<td>< 10*</td>
<td>11</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>40*</td>
<td>< 10*</td>
<td>17</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>60*</td>
<td>< 10*</td>
<td>14</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>30*</td>
<td>< 10*</td>
<td>12</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
</tbody>
</table>

* Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>29.5</td>
<td>13.0</td>
<td>21.6</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>30.0</td>
<td>13.0</td>
<td>21.7</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>29.0</td>
<td>14.0</td>
<td>21.9</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>29.5</td>
<td>13.5</td>
<td>21.7</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>28.0</td>
<td>14.0</td>
<td>21.8</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>30.0</td>
<td>14.5</td>
<td>21.9</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>30.0</td>
<td>15.0</td>
<td>22.2</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>29.0</td>
<td>15.0</td>
<td>22.0</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>30.0</td>
<td>14.5</td>
<td>22.2</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>28.0</td>
<td>13.0</td>
<td>21.4</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>10.2</td>
<td>5.8</td>
<td>7.7</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>9.0</td>
<td>5.2</td>
<td>7.1</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>9.3</td>
<td>6.2</td>
<td>7.4</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>8.4</td>
<td>6.1</td>
<td>7.1</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>8.0</td>
<td>5.8</td>
<td>6.8</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>7.9</td>
<td>5.4</td>
<td>6.7</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>8.0</td>
<td>5.3</td>
<td>6.4</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>8.2</td>
<td>5.3</td>
<td>6.7</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>7.9</td>
<td>3.7</td>
<td>6.1</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>9.6</td>
<td>5.7</td>
<td>7.4</td>
</tr>
</tbody>
</table>
CONDUCTIVITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Umhos/cm at 25°C</th>
<th>Minimum Umhos/cm at 25°C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>52844</td>
<td>36336</td>
<td>45813</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>53137</td>
<td>13065</td>
<td>38458</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>54643</td>
<td>43204</td>
<td>49834</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>54533</td>
<td>38224</td>
<td>48606</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>51354</td>
<td>40211</td>
<td>47167</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>51550</td>
<td>35144</td>
<td>46712</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>50945</td>
<td>38582</td>
<td>46723</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>50597</td>
<td>19859</td>
<td>41638</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>53280</td>
<td>33245</td>
<td>45277</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>53562</td>
<td>41909</td>
<td>48043</td>
</tr>
</tbody>
</table>

PH

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Electrometric Units</th>
<th>Minimum Electrometric Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>8.4</td>
<td>7.3</td>
<td>8.1</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>7.7</td>
<td>8.0</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>7.9</td>
<td>8.2</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>8.2</td>
<td>7.9</td>
<td>8.1</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>8.2</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>8.3</td>
<td>8.2</td>
<td>8.3</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum NTU</th>
<th>Minimum NTU</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>3.9</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>3.0</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>22.2</td>
<td>1.4</td>
<td>4.9</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>26.6</td>
<td>0.9</td>
<td>5.4</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>6.2</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>5.0</td>
<td>2.3</td>
<td>3.1</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>6.5</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>3.6</td>
<td>1.4</td>
<td>2.4</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>4.7</td>
<td>2.3</td>
<td>3.6</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>6.0</td>
<td>1.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>III</td>
<td>8</td>
<td>50</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>8</td>
<td>80</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>8</td>
<td>30</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>8</td>
<td>40</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>8</td>
<td>35</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>8</td>
<td>40</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>8</td>
<td>35</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>8</td>
<td>80</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>8</td>
<td>50</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Station</td>
<td>Class</td>
<td>Number of times sampled</td>
<td>Maximum Meters</td>
<td>Minimum Meters</td>
<td>Arithmetic Mean</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>540</td>
<td>III</td>
<td>9</td>
<td>2.4</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>541</td>
<td>III</td>
<td>9</td>
<td>1.5</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>543</td>
<td>III</td>
<td>9</td>
<td>3.5</td>
<td>0.4</td>
<td>1.9</td>
</tr>
<tr>
<td>545</td>
<td>III</td>
<td>9</td>
<td>3.0</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>547</td>
<td>III</td>
<td>9</td>
<td>1.7</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>548</td>
<td>III</td>
<td>9</td>
<td>2.2</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>559</td>
<td>III</td>
<td>9</td>
<td>1.9</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>589</td>
<td>III</td>
<td>9</td>
<td>1.7</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>590</td>
<td>III</td>
<td>9</td>
<td>1.2</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>610</td>
<td>III</td>
<td>9</td>
<td>2.8</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
BAY RUN IV
Lemon Bay

There are ten sampling stations in this area. Five are Class III while five are Class II (See map). The violations recorded in this area are presented. Tabulated results of Total and Fecal Coliform, Temperature, Dissolved Oxygen, Conductivity, pH, Turbidity, Color and Transparency are also listed. The maximum and second highest Total and Fecal Coliform, the lowest and second lowest Dissolved Oxygen and the maximum and minimum pH values are highlighted.

VIOLATIONS

<table>
<thead>
<tr>
<th>Station/Class</th>
<th>Location</th>
<th>Date</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>563/111</td>
<td>Entrance of Alligator Creek & Intracoastal Waterway</td>
<td>7/2/84</td>
<td>Dissolved Oxygen</td>
<td>3.8</td>
</tr>
<tr>
<td>564/111</td>
<td>Manasota Beach Road Bridge</td>
<td>7/2/84</td>
<td>Dissolved Oxygen</td>
<td>3.6</td>
</tr>
<tr>
<td>570/11</td>
<td>Lemon Bay, 3/4 Mile Due East of Marker #26</td>
<td>8/8/84</td>
<td>Dissolved Oxygen</td>
<td>3.9</td>
</tr>
<tr>
<td>571/11</td>
<td>Lemon Bay, Marker #24</td>
<td>8/8/84</td>
<td>Dissolved Oxygen</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Total Coliform - The maximum recorded value was \(<1000\times\) colonies/100 ml in the following Stations: 562, 563, 564, 566 and 567. The second highest value was \(<100\times\) colonies/100 ml found throughout.

Fecal Coliform - The maximum recorded value was 570 colonies/100 ml at Station #567. The second highest value was 470 colonies/100 ml found at Station #563. See map for location description.

Dissolved Oxygen - The minimum recorded value was 3.6 mg/l at Manasota Beach Road Bridge (Station #564). The second lowest value was 3.7 mg/l found in Lemon Bay, Marker #24 (Station #571).

pH - The maximum recorded value was 8.6 units seen at Station #571. The minimum recorded value was 7.2 units at Station #562. See map for location description.

*Estimated Count
SARASOTA COUNTY,
FLORIDA

BAY RUN IV

#562 - South Entrance of Red Lake
#563 - Alligator Creek
#564 - Manasota Beach Rd. Bridge
#566 - Forked Creek - Marker #38
#567 - 3/4 mi. east on Forked Creek
#569 - 1/2 mi. south of Marker #20A
#570 - 3/4 mi. east of Marker #26
#571 - Lemon Bay - Marker #24
#572 - Lemon Bay - Marker #33
#573 - Lemon Bay - 1 mi. southwest of Marker #26
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>188</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>180</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>167</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>167</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>167</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
</tbody>
</table>

*Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>9</td>
<td>270</td>
<td>< 10*</td>
<td>19</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>470</td>
<td>< 10*</td>
<td>38</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>270</td>
<td>< 10*</td>
<td>23</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>210</td>
<td>< 10*</td>
<td>21</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>570</td>
<td>< 10*</td>
<td>27</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>60*</td>
<td>< 10*</td>
<td>13</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>60*</td>
<td>< 10*</td>
<td>13</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>< 10*</td>
<td>< 10*</td>
<td>10</td>
</tr>
</tbody>
</table>

*Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>9</td>
<td>30.0</td>
<td>20.0</td>
<td>24.7</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>29.5</td>
<td>20.5</td>
<td>24.8</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>29.0</td>
<td>21.0</td>
<td>24.6</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>29.0</td>
<td>21.0</td>
<td>24.6</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>31.0</td>
<td>21.0</td>
<td>25.1</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>29.5</td>
<td>21.0</td>
<td>25.1</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>30.0</td>
<td>21.0</td>
<td>25.3</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>29.0</td>
<td>20.5</td>
<td>25.2</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>29.0</td>
<td>21.0</td>
<td>25.1</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>29.0</td>
<td>20.5</td>
<td>24.9</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>9</td>
<td>7.6</td>
<td>4.2</td>
<td>5.6</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>7.7</td>
<td>3.8</td>
<td>5.7</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>7.9</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>7.1</td>
<td>4.5</td>
<td>6.0</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>7.9</td>
<td>4.3</td>
<td>5.7</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>9.6</td>
<td>4.9</td>
<td>6.6</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>9.1</td>
<td>3.9</td>
<td>6.1</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>9.8</td>
<td>3.7</td>
<td>6.1</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>8.3</td>
<td>4.1</td>
<td>6.1</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>7.2</td>
<td>4.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Conductivity

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum umhos/cm at 25°C</th>
<th>Minimum umhos/cm at 25°C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>9</td>
<td>47071</td>
<td>26147</td>
<td>41392</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>46947</td>
<td>9048</td>
<td>36024</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>47059</td>
<td>21495</td>
<td>39460</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>47179</td>
<td>28972</td>
<td>41358</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>46025</td>
<td>5295</td>
<td>36053</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>51650</td>
<td>39509</td>
<td>46930</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>51749</td>
<td>41845</td>
<td>47323</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>52755</td>
<td>44470</td>
<td>49331</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>49216</td>
<td>32601</td>
<td>44614</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>51445</td>
<td>40334</td>
<td>47006</td>
</tr>
</tbody>
</table>

pH

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Electrometric Units</th>
<th>Minimum Electrometric Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>9</td>
<td>8.1</td>
<td>7.2</td>
<td>7.8</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>8.0</td>
<td>7.6</td>
<td>7.8</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>8.2</td>
<td>7.5</td>
<td>7.9</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>8.1</td>
<td>7.6</td>
<td>8.0</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>8.1</td>
<td>7.5</td>
<td>7.9</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>8.5</td>
<td>7.9</td>
<td>8.2</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>8.5</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>8.6</td>
<td>8.1</td>
<td>8.3</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>8.4</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>8.4</td>
<td>8.0</td>
<td>8.2</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum NTU</th>
<th>Minimum NTU</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>10</td>
<td>5.7</td>
<td>2.3</td>
<td>3.6</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>5.0</td>
<td>2.0</td>
<td>3.4</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>6.3</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>4.1</td>
<td>1.9</td>
<td>3.2</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>3.2</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>5.1</td>
<td>1.2</td>
<td>2.7</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>7.5</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>7.6</td>
<td>1.0</td>
<td>3.2</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>3.6</td>
<td>1.3</td>
<td>2.6</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>5.0</td>
<td>1.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>III</td>
<td>10</td>
<td>50</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>110</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>90</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>80</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>80</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>40</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>30</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>35</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>30</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Station</td>
<td>Class</td>
<td>Number of times Sampled</td>
<td>Maximum Meters</td>
<td>Minimum Meters</td>
<td>Geometric Mean</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>562</td>
<td>III</td>
<td>10</td>
<td>1.8</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>563</td>
<td>III</td>
<td>9</td>
<td>1.6</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>564</td>
<td>III</td>
<td>9</td>
<td>1.5</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>566</td>
<td>II</td>
<td>9</td>
<td>1.6</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>567</td>
<td>II</td>
<td>9</td>
<td>1.3</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>569</td>
<td>II</td>
<td>8</td>
<td>1.9</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>570</td>
<td>II</td>
<td>8</td>
<td>1.8</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>571</td>
<td>II</td>
<td>8</td>
<td>2.4</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>572</td>
<td>II</td>
<td>8</td>
<td>2.1</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>573</td>
<td>II</td>
<td>8</td>
<td>1.5</td>
<td>0.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
STREAM RUNS
STREAM MONITORING

The stream run sampling stations are divided into three groups based on locations within Sarasota County.

The first group includes the basins located from the North County Line down to the mouth of Phillippi Creek. The second group includes several small basins discharging roughly between Stickney Point and the City of Venice. The third group includes those stations located in streams discharging into the coastal region from the City of Venice through the Englewood area down to the South County boundary. This group also includes stations within the Myakka River Basin in the east and southeast portions of the County.

The surface waters within these groups are classified Class I and Class III according to the State of Florida Water Quality Standards. The violations indicated on the following pages are those values which are in violation of the standards as set forth in Sarasota County Ordinance #72-37 and State of Florida Department of Environmental Regulation Chapter 17-3.

For each stream, the violations are listed and are followed by location description, date and parameter value. A map indicating sampling site locations accompanies each group of data, along with overall tabulated results of Total Coliform, Fecal Coliform, Fecal Streptococcus, Temperature, Dissolved Oxygen, Conductivity, pH, Turbidity and Color.
GROUP I

NORTH COUNTY STREAM RUN STATIONS

The first group of stations are located from the North County Line down to the mouth of Phillippi Creek and U.S. 41. This area includes Whitaker Bayou, Hudson Bayou and the Phillippi Creek drainage basins (including Main "A" Canal). All the surface waters in this area are classified as Class III; therefore, all the violations indicated are based on those standards. (See Tables A, B and C for Water Quality Standards). See map for exact locations.
NORTH COUNTY STREAM RUN STATIONS

549 - Entrance of Whitaker Bayou & Sarasota Bay
553 - Whitaker Bayou, on 27th St. Bridge
558 - Tri-Par Dr. Bridge & Brook Dr. in Tri-Par Estates
583 - Hudson Bayou at Orange Ave. Bridge
584 - Phillippi Creek at U.S.41 Bridge
625 - Phillippi Creek at Bahia Vista St. Bridge
626 - Phillippi Creek at Fruitville Rd. Bridge
627 - Phillippi Creek at 17th St. Bridge
628 - Main "A" Canal at Bahia Vista St. Bridge
629 - Main "A" Canal at Cattlemen Rd. Bridge
630 - Main "A" Canal at Palmer Blvd. Bridge
642 - Clark Lakes drainage canal at Wilkinson Road Bridge
670 - Phillippi Creek at 17th Street Bridge West Branch
VIOLATIONS

Whitaker Bayou
Station: #549 - Entrance of Whitaker Bayou and Sarasota Bay

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>8/1/84</td>
<td>5500</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>4/2/84</td>
<td>3000</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>5/2/84</td>
<td>3.7</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/9/84</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/24/84</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Station: #553 - Whitaker Bayou and 27th Street

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>11/26/84</td>
<td>5400</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>1/23/84</td>
<td>3800</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>9/19/84</td>
<td>5900</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>4/2/84</td>
<td>3.1</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/9/84</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/24/84</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Station: #558 - Tri-Par Drive Bridge and Brook Drive in Tri-Par Estates

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/2/84</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/9/84</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Hudson Bayou
Station: #583 - Hudson Bayou at Orange Avenue Bridge

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>10/24/84</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Phillippi Creek
Station: #625 - Phillippi Creek at Bahia Vista Street Bridge

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>9/26/84</td>
<td>9000</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>9/26/84</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Station: #626 - Phillippi Creek at Fruitville Road Bridge

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/16/84</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Station: #628 - Main "A" Canal at Bahia Vista Street Bridge

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>9/26/84</td>
<td>9500</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/18/84</td>
<td>3.9</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/15/84</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Station: #629 - Main "A" Canal at Cattlemen Road Bridge

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>7/18/84</td>
<td>2.0</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>8/27/84</td>
<td>3.3</td>
</tr>
</tbody>
</table>
VIOLATIONS

Station: #630 - Main "A" Canal at Palmer Boulevard Bridge

<table>
<thead>
<tr>
<th>Dissolved Oxygen</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5/16/84</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>7/18/84</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>8/27/84</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Station: #670 - Phillippi Creek at 17th Street Bridge - West Branch

<table>
<thead>
<tr>
<th>Dissolved Oxygen</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/9/84</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>10/15/84</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>5/16/84</td>
<td>1.9</td>
</tr>
</tbody>
</table>
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>9</td>
<td>5500*</td>
<td>< 100*</td>
<td>319</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>7</td>
<td>5400*</td>
<td>< 1000*</td>
<td>1290</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>316</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>468</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>464</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>8</td>
<td>9000*</td>
<td>< 100*</td>
<td>987</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>359</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>794</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>9</td>
<td>9500</td>
<td>< 100*</td>
<td>462</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>200</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>10</td>
<td>1100*</td>
<td>< 100*</td>
<td>281</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>316</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>774</td>
</tr>
</tbody>
</table>

*Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>3000</td>
<td>< 10*</td>
<td>134</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>5900</td>
<td>190*</td>
<td>887</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>300*</td>
<td>20*</td>
<td>95</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>800*</td>
<td>< 10*</td>
<td>154</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>10</td>
<td>1600*</td>
<td>20*</td>
<td>205</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>10</td>
<td>1900*</td>
<td>40*</td>
<td>368</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>10</td>
<td>390</td>
<td>50*</td>
<td>138</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>10</td>
<td>230</td>
<td>60*</td>
<td>125</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>10</td>
<td>> 600*</td>
<td>40*</td>
<td>109</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>10</td>
<td>200</td>
<td>30*</td>
<td>76</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>10</td>
<td>280</td>
<td>20*</td>
<td>83</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>10</td>
<td>440</td>
<td>20*</td>
<td>101</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>10</td>
<td>810*</td>
<td>90*</td>
<td>210</td>
</tr>
</tbody>
</table>

*Estimated Count
FECAL STREPTOCOCCUS

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>9600</td>
<td>< 100*</td>
<td>1369</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>21000</td>
<td>2500</td>
<td>7198</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>12000*</td>
<td>900*</td>
<td>2473</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>8500</td>
<td>900*</td>
<td>3798</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>10</td>
<td>15000*</td>
<td>600*</td>
<td>1601</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>10</td>
<td>6900</td>
<td>800*</td>
<td>2138</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>10</td>
<td>13000*</td>
<td>800*</td>
<td>2575</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>10</td>
<td>1400*</td>
<td>200*</td>
<td>641</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>10</td>
<td>1800*</td>
<td>100*</td>
<td>630</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>10</td>
<td>2700</td>
<td>500*</td>
<td>1019</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>10</td>
<td>> 10000*</td>
<td>200*</td>
<td>1383</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>10</td>
<td>3100</td>
<td>400*</td>
<td>1027</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>10</td>
<td>46000</td>
<td>800*</td>
<td>3434</td>
</tr>
</tbody>
</table>

*Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>29.0</td>
<td>16.0</td>
<td>23.0</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>28.5</td>
<td>16.0</td>
<td>22.5</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>26.5</td>
<td>15.0</td>
<td>21.4</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>31.0</td>
<td>15.0</td>
<td>23.2</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>10</td>
<td>29.0</td>
<td>14.0</td>
<td>23.5</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>13.5</td>
<td>22.1</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>10</td>
<td>27.5</td>
<td>13.0</td>
<td>21.2</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>10</td>
<td>27.0</td>
<td>13.0</td>
<td>21.1</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>10</td>
<td>29.5</td>
<td>12.5</td>
<td>21.8</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>10</td>
<td>28.0</td>
<td>10.0</td>
<td>21.4</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>10</td>
<td>29.0</td>
<td>11.0</td>
<td>21.9</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>10</td>
<td>28.5</td>
<td>13.5</td>
<td>21.5</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>10</td>
<td>28.0</td>
<td>13.5</td>
<td>21.8</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>3.0</td>
<td>4.7</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>6.1</td>
<td>1.7</td>
<td>4.2</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>8.4</td>
<td>2.5</td>
<td>5.4</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>8.6</td>
<td>3.6</td>
<td>5.4</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>7</td>
<td>8.5</td>
<td>4.6</td>
<td>6.4</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>9</td>
<td>8.6</td>
<td>2.9</td>
<td>5.4</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>9</td>
<td>6.8</td>
<td>1.4</td>
<td>4.8</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>9</td>
<td>8.8</td>
<td>4.5</td>
<td>6.6</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>9</td>
<td>9.5</td>
<td>3.4</td>
<td>5.8</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>9</td>
<td>9.8</td>
<td>2.0</td>
<td>5.8</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>9</td>
<td>7.3</td>
<td>1.7</td>
<td>4.4</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>8</td>
<td>8.6</td>
<td>4.9</td>
<td>6.6</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>9</td>
<td>6.5</td>
<td>1.9</td>
<td>4.6</td>
</tr>
<tr>
<td>Station</td>
<td>Class</td>
<td>Number of times sampled</td>
<td>Maximum pH Units</td>
<td>Minimum pH Units</td>
<td>Arithmetic Mean</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.2</td>
<td>7.6</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>7.9</td>
<td>7.3</td>
<td>7.5</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>7.4</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>8.3</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>7.2</td>
<td>7.4</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>10</td>
<td>7.4</td>
<td>7.0</td>
<td>7.2</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>10</td>
<td>7.4</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>7.2</td>
<td>7.4</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>10</td>
<td>7.5</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>10</td>
<td>7.2</td>
<td>7.0</td>
<td>7.1</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>9.6</td>
<td>3.0</td>
<td>4.9</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>2.3</td>
<td>4.1</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>8.7</td>
<td>3.8</td>
<td>6.1</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>5.5</td>
<td>1.9</td>
<td>3.8</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>10</td>
<td>5.5</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>10</td>
<td>9.0</td>
<td>2.2</td>
<td>4.7</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>10</td>
<td>6.9</td>
<td>2.5</td>
<td>5.1</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>10</td>
<td>9.5</td>
<td>5.3</td>
<td>6.6</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>10</td>
<td>5.5</td>
<td>2.1</td>
<td>3.7</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>10</td>
<td>4.5</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>10</td>
<td>4.9</td>
<td>1.6</td>
<td>3.0</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>10</td>
<td>6.1</td>
<td>2.0</td>
<td>4.3</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>10</td>
<td>8.7</td>
<td>2.1</td>
<td>5.2</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
<td>III</td>
<td>10</td>
<td>55</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>553</td>
<td>III</td>
<td>10</td>
<td>80</td>
<td>45</td>
<td>58</td>
</tr>
<tr>
<td>558</td>
<td>III</td>
<td>10</td>
<td>90</td>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>583</td>
<td>III</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>584</td>
<td>III</td>
<td>9</td>
<td>100</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>625</td>
<td>III</td>
<td>9</td>
<td>110</td>
<td>50</td>
<td>76</td>
</tr>
<tr>
<td>626</td>
<td>III</td>
<td>9</td>
<td>100</td>
<td>30</td>
<td>65</td>
</tr>
<tr>
<td>627</td>
<td>III</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>74</td>
</tr>
<tr>
<td>628</td>
<td>III</td>
<td>9</td>
<td>110</td>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>629</td>
<td>III</td>
<td>9</td>
<td>100</td>
<td>30</td>
<td>76</td>
</tr>
<tr>
<td>630</td>
<td>III</td>
<td>9</td>
<td>130</td>
<td>30</td>
<td>84</td>
</tr>
<tr>
<td>642</td>
<td>III</td>
<td>9</td>
<td>100</td>
<td>20</td>
<td>73</td>
</tr>
<tr>
<td>670</td>
<td>III</td>
<td>9</td>
<td>90</td>
<td>30</td>
<td>66</td>
</tr>
</tbody>
</table>
GROUP II

CENTRAL COUNTY STREAM RUN STATIONS

The second group of stream run stations are located from Matheny Creek in Gulf Gate, south along the western boundary of Sarasota County, to Hatchett Creek in the City of Venice. All the stations in this area are Class III. (See Tables A, B and C for Water Quality Standards). See map for exact locations.
CENTRAL COUNTY STREAM RUN STATIONS

#501 - Cow Pen Slough at southside of S.R. 72 Bridge (can be located on S. county stream run map)
#587 - North Creek at U.S. 41 Bridge
#588 - South Creek at U.S. 41 Bridge
#612 - Shakett Creek at Laurel Rd. Bridge
#615 - South Creek above dam at Oscar Scherer State Park
#617 - Curry Creek at Albee Farm Road Bridge
#618 - Hatchett Creek at Railroad Bridge
#619 - Hatchett Creek at Venice Farm Road Bridge
#632 - Matheny Creek at U.S. 41 Bridge
#639 - Catfish Creek at Vamo Way Bridge
#644 - Elligraw Bayou at U.S. 41 Bridge
#671 - Cow Pen Slough, southside of southbound lane I-75 Bridge
#672 - Clowers Creek & Brook House Circle - Pelican Cove
Violations

Shackett Creek

<table>
<thead>
<tr>
<th>Station: #501 - Cow Pen Slough at Southside of S.R, 72 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/7/84</td>
<td>2.5</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/10/84</td>
<td>2.1</td>
</tr>
</tbody>
</table>

North Creek

<table>
<thead>
<tr>
<th>Station: #671 - Cow Pen Slough, Southside of Southbound Lane 1-75 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/7/84</td>
<td>2.7</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>8/20/84</td>
<td>2.8</td>
</tr>
</tbody>
</table>

South Creek

<table>
<thead>
<tr>
<th>Station: #587 - North Creek at U.S. 41 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/2/84</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/9/84</td>
<td>3.3</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>9/19/84</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Hatchett Creek

<table>
<thead>
<tr>
<th>Station: #588 - South Creek at U.S. 41 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>2/13/84</td>
<td>10000</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>2/13/84</td>
<td>3800</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>6/20/84</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Hatchett Creek

<table>
<thead>
<tr>
<th>Station: #615 - South Creek Above Dam at Oscar Scherer State Park</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/29/84</td>
<td>3.9</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/23/84</td>
<td>2.1</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/29/84</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Hatchett Creek

<table>
<thead>
<tr>
<th>Station: #618 - Hatchett Creek at Railroad Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>2/21/84</td>
<td>3.5</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>3/21/84</td>
<td>3.5</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>6/20/84</td>
<td>3.2</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>8/20/84</td>
<td>3.2</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/10/84</td>
<td>2.7</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>11/7/84</td>
<td>3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station: #619 - Hatchett Creek at Venice Farm Road Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>2/21/84</td>
<td>3.5</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>3/21/84</td>
<td>3.5</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>6/20/84</td>
<td>3.2</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>8/20/84</td>
<td>3.2</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/10/84</td>
<td>2.7</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>11/7/84</td>
<td>3.4</td>
</tr>
</tbody>
</table>
VIOLATIONS

Matheny Creek
Station: #632 - Matheny Creek at U.S. 41 Bridge

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/27/84</td>
<td>3.3</td>
</tr>
<tr>
<td>6/6/84</td>
<td>3.0</td>
</tr>
<tr>
<td>7/9/84</td>
<td>3.2</td>
</tr>
<tr>
<td>10/24/84</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Catfish Creek
Station: #639 - Catfish Creek at Vamo Way Bridge

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2/84</td>
<td>3.8</td>
</tr>
<tr>
<td>6/6/84</td>
<td>3.7</td>
</tr>
<tr>
<td>9/19/84</td>
<td>3.2</td>
</tr>
<tr>
<td>10/24/84</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Elligraw Bayou
Station: #644 - Elligraw Bayou at U.S. 41 Bridge

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/24/84</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Clowers Creek
Station: #672 - Clowers Creek and Brook House Circle in Pelican Cove

<table>
<thead>
<tr>
<th>Total Coliform</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/9/84</td>
<td>3400</td>
</tr>
</tbody>
</table>
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>126</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>200</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>200</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>316</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>9</td>
<td>< 100*</td>
<td>< 100*</td>
<td>359</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>9</td>
<td>1000*</td>
<td>< 100*</td>
<td>278</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>10</td>
<td>10000*</td>
<td>< 100*</td>
<td>887</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>647</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>464</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>501</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>359</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>< 100*</td>
<td>< 100*</td>
<td>100</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>3400</td>
<td>< 100*</td>
<td>458</td>
</tr>
</tbody>
</table>

*Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>110*</td>
<td>< 10*</td>
<td>16</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>300*</td>
<td>< 10*</td>
<td>59</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>350</td>
<td>10*</td>
<td>50</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>530</td>
<td>10*</td>
<td>84</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>370</td>
<td>30*</td>
<td>112</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>1000*</td>
<td>30*</td>
<td>126</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>10</td>
<td>3800</td>
<td>30*</td>
<td>219</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>1000*</td>
<td>40*</td>
<td>169</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>1400*</td>
<td>70*</td>
<td>209</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>700*</td>
<td>50*</td>
<td>208</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>1300*</td>
<td>< 10*</td>
<td>99</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>60*</td>
<td>< 10*</td>
<td>20</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>700*</td>
<td>30*</td>
<td>140</td>
</tr>
</tbody>
</table>

*Estimated Count
FECAL STREPTOCOCCUS

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>42000</td>
<td>40*</td>
<td>409</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>5900</td>
<td>200*</td>
<td>947</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>12000*</td>
<td>100*</td>
<td>1117</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>7100</td>
<td>320</td>
<td>1398</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>>10000*</td>
<td>130*</td>
<td>1067</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>15000*</td>
<td>270</td>
<td>1665</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>10</td>
<td>6900</td>
<td>280</td>
<td>2166</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>3200</td>
<td>100*</td>
<td>668</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>7000</td>
<td>400*</td>
<td>1097</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>13000*</td>
<td>300*</td>
<td>1853</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>>100000*</td>
<td>100*</td>
<td>1242</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>700*</td>
<td>50*</td>
<td>136</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>4200</td>
<td>300*</td>
<td>1130</td>
</tr>
</tbody>
</table>

*Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>28.0</td>
<td>18.0</td>
<td>22.8</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>30.5</td>
<td>17.0</td>
<td>24.8</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>28.0</td>
<td>14.0</td>
<td>23.7</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>29.0</td>
<td>17.0</td>
<td>23.2</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>27.0</td>
<td>13.0</td>
<td>22.4</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>9</td>
<td>28.5</td>
<td>18.0</td>
<td>22.5</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>9</td>
<td>29.0</td>
<td>18.5</td>
<td>23.0</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>9</td>
<td>29.0</td>
<td>16.0</td>
<td>21.8</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>26.5</td>
<td>15.0</td>
<td>21.7</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>26.5</td>
<td>16.5</td>
<td>22.6</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>27.0</td>
<td>16.0</td>
<td>22.6</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>9</td>
<td>29.0</td>
<td>18.0</td>
<td>22.6</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>27.0</td>
<td>18.0</td>
<td>23.2</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>9.7</td>
<td>2.1</td>
<td>5.6</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>3.3</td>
<td>4.9</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>8.3</td>
<td>2.5</td>
<td>5.3</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>5.0</td>
<td>6.5</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>6.7</td>
<td>2.1</td>
<td>4.8</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>7.5</td>
<td>4.0</td>
<td>5.9</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>10</td>
<td>6.4</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>6.2</td>
<td>2.7</td>
<td>4.0</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>8.3</td>
<td>2.4</td>
<td>4.8</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>0.5</td>
<td>4.6</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>8.6</td>
<td>2.4</td>
<td>5.7</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>10.0</td>
<td>2.7</td>
<td>5.9</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>6.7</td>
<td>4.3</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Conductivity

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Emhos/cm at 25°C</th>
<th>Minimum Emhos/cm at 25°C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>808</td>
<td>225</td>
<td>535</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>29600</td>
<td>1328</td>
<td>15405</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>44010</td>
<td>575</td>
<td>21051</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>42130</td>
<td>2197</td>
<td>18306</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>3650</td>
<td>333</td>
<td>1132</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>30176</td>
<td>764</td>
<td>12349</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>9</td>
<td>38476</td>
<td>4574</td>
<td>15059</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>995</td>
<td>640</td>
<td>799</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>1980</td>
<td>55</td>
<td>1081</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>28119</td>
<td>734</td>
<td>5809</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>18230</td>
<td>656</td>
<td>2844</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>844</td>
<td>252</td>
<td>513</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>1134</td>
<td>507</td>
<td>726</td>
</tr>
</tbody>
</table>

pH

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Electrometric Units</th>
<th>Minimum Electrometric Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>6.8</td>
<td>7.3</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.0</td>
<td>7.6</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>7.9</td>
<td>7.2</td>
<td>7.5</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>7.0</td>
<td>7.3</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>7.4</td>
<td>7.5</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.4</td>
<td>7.7</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>7.9</td>
<td>7.4</td>
<td>7.7</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.1</td>
<td>7.5</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>7.4</td>
<td>7.2</td>
<td>7.3</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum NTU</th>
<th>Minimum NTU</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>4.7</td>
<td>1.1</td>
<td>2.5</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>22.2</td>
<td>2.4</td>
<td>7.5</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>4.1</td>
<td>1.1</td>
<td>2.6</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>4.0</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>9.5</td>
<td>1.3</td>
<td>5.8</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>5.3</td>
<td>1.1</td>
<td>2.4</td>
</tr>
<tr>
<td>618</td>
<td>III</td>
<td>10</td>
<td>10.6</td>
<td>1.8</td>
<td>3.8</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>3.2</td>
<td>0.8</td>
<td>2.1</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>6.2</td>
<td>1.6</td>
<td>3.7</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>7.4</td>
<td>1.4</td>
<td>3.2</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>7.5</td>
<td>1.8</td>
<td>3.6</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>6.5</td>
<td>0.6</td>
<td>2.1</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>16.7</td>
<td>3.5</td>
<td>8.2</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>III</td>
<td>10</td>
<td>160</td>
<td>55</td>
<td>86</td>
</tr>
<tr>
<td>587</td>
<td>III</td>
<td>10</td>
<td>180</td>
<td>35</td>
<td>86</td>
</tr>
<tr>
<td>588</td>
<td>III</td>
<td>10</td>
<td>220</td>
<td>20</td>
<td>81</td>
</tr>
<tr>
<td>612</td>
<td>III</td>
<td>10</td>
<td>160</td>
<td>35</td>
<td>77</td>
</tr>
<tr>
<td>615</td>
<td>III</td>
<td>10</td>
<td>220</td>
<td>60</td>
<td>104</td>
</tr>
<tr>
<td>617</td>
<td>III</td>
<td>10</td>
<td>140</td>
<td>40</td>
<td>91</td>
</tr>
<tr>
<td>619</td>
<td>III</td>
<td>10</td>
<td>80</td>
<td>15</td>
<td>47</td>
</tr>
<tr>
<td>632</td>
<td>III</td>
<td>10</td>
<td>110</td>
<td>15</td>
<td>73</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>120</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>639</td>
<td>III</td>
<td>10</td>
<td>120</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>644</td>
<td>III</td>
<td>10</td>
<td>150</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>671</td>
<td>III</td>
<td>10</td>
<td>200</td>
<td>45</td>
<td>89</td>
</tr>
<tr>
<td>672</td>
<td>III</td>
<td>10</td>
<td>130</td>
<td>45</td>
<td>93</td>
</tr>
</tbody>
</table>
GROUP III

SOUTH - SOUTHEAST COUNTY STREAM RUN STATIONS

The third group of stream run stations include the coastal region from the City of Venice through Englewood down to the South County boundary then east to encompass the Myakka River Basin. In this area there are three stations which are classified as Class I (Stations #0013, #404 and #410), while the remainder are Class III. (See Tables A, B and C for Water Quality Standards). See map for exact locations.
SOUTH-SOUTHEAST COUNTY STREAM RUN STATIONS

#593 - Deer Creek at Wentworth St.
#620 - Alligator Creek at U.S. 41 Bridge
#621 - Alligator Creek at Shamrock Blvd. Bridge
#623 - Forked Creek at Rt. 775 Bridge
#624 - Deer Creek - end of Horton Avenue
RANGE-SOUTHEAST COUNTY STREAM RUN STATIONS

#0008 - Myakka River at S.R. 780 Bridge
#0013 - Big Slough at S.R. 72 Bridge
#402 - Myakka River at U.S. 41 Bridge
#404 - Myakka River at Rt. 72
#408 - Myakka River at Snook Haven dock
#409 - Spring Run at U.S. 41 Bridge
#410 - Myakkahatchee Creek at U.S. 41 Bridge
#417 - Howard Creek & Rocking Horse Lane Bridge
VIOLATIONS

Myakka River

<table>
<thead>
<tr>
<th>Station: #0008 - Myakka River at S.R. 780 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>6/11/84</td>
<td>3.0</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>9/4/84</td>
<td>2.9</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/1/84</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station: #0013 - Big Slough at S.R. 72 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>9/4/84</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station: #402 - Myakka River at U.S. 41 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal Coliform</td>
<td>9/4/84</td>
<td>> 6000*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station: #404 - Myakka River at S.R. 72</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>7/25/84</td>
<td>3.4</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>9/4/84</td>
<td>3.0</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/1/84</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Deer Creek

<table>
<thead>
<tr>
<th>Station: #593 - Deer Creek at Wentworth Street</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/29/84</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station: #624 - Deer Creek at the End of Horton Avenue</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/29/84</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>8/15/84</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Alligator Creek

<table>
<thead>
<tr>
<th>Station: #620 - Alligator Creek at U.S. 41 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal Coliform</td>
<td>9/10/84</td>
<td>2900</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>5/29/84</td>
<td>3.7</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/23/84</td>
<td>3.4</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>8/15/84</td>
<td>3.4</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>10/29/84</td>
<td>3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station: #621 - Alligator Creek at Shamrock Boulevard Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/29/84</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Forked Creek

<table>
<thead>
<tr>
<th>Station: #623 - Forked Creek at Route 775 Bridge</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>5/29/84</td>
<td>3.3</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>6/19/84</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>7/23/84</td>
<td>3.8</td>
</tr>
</tbody>
</table>

*Estimated Count
TOTAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>126</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>214</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>167</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>129</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>214</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>278</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>269</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>9</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>215</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>145</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>9</td>
<td>1400*</td>
<td>100*</td>
<td>703</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>193</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>398</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>< 1000*</td>
<td>< 100*</td>
<td>148</td>
</tr>
</tbody>
</table>

*Estimated Count

FECAL COLIFORM

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>120*</td>
<td>< 10*</td>
<td>17</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>140*</td>
<td>10*</td>
<td>44</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>> 6000*</td>
<td>10*</td>
<td>60</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>9</td>
<td>610*</td>
<td>< 10*</td>
<td>20</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>440*</td>
<td>< 10*</td>
<td>45</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>420</td>
<td>30*</td>
<td>77</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>180*</td>
<td>10*</td>
<td>57</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>300</td>
<td>< 10*</td>
<td>62</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>250</td>
<td>20*</td>
<td>55</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>2900</td>
<td>50*</td>
<td>226</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>430</td>
<td>20*</td>
<td>74</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>190*</td>
<td>10*</td>
<td>70</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>150*</td>
<td>10*</td>
<td>26</td>
</tr>
</tbody>
</table>

*Estimated Count
FECAL STREPTOCOCCUS

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum # Colonies/100 ml</th>
<th>Minimum # Colonies/100 ml</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>2100</td>
<td>60</td>
<td>377</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>1300*</td>
<td>70*</td>
<td>327</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>> 10000*</td>
<td>60*</td>
<td>575</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>9</td>
<td>930</td>
<td>10*</td>
<td>141</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>1700*</td>
<td>40*</td>
<td>250</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>5900</td>
<td>340</td>
<td>2379</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>9100</td>
<td>200*</td>
<td>625</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>1300*</td>
<td>100*</td>
<td>559</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>> 10000*</td>
<td>200*</td>
<td>1228</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>8700</td>
<td>140*</td>
<td>1808</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>6700</td>
<td>60*</td>
<td>1263</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>7000</td>
<td>< 100*</td>
<td>1564</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>5900</td>
<td>500*</td>
<td>1604</td>
</tr>
</tbody>
</table>

*Estimated Count
TEMPERATURE

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum °C</th>
<th>Minimum °C</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>29.5</td>
<td>15.0</td>
<td>22.8</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>27.0</td>
<td>13.0</td>
<td>21.6</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>31.0</td>
<td>18.0</td>
<td>24.9</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>10</td>
<td>29.0</td>
<td>15.5</td>
<td>23.2</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>18.0</td>
<td>24.7</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>32.0</td>
<td>20.0</td>
<td>25.9</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>32.0</td>
<td>18.0</td>
<td>25.0</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>27.0</td>
<td>12.5</td>
<td>21.9</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>31.0</td>
<td>14.0</td>
<td>24.6</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>28.0</td>
<td>13.0</td>
<td>23.0</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>29.0</td>
<td>13.5</td>
<td>24.0</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>31.5</td>
<td>16.0</td>
<td>25.2</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>30.0</td>
<td>15.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

DISSOLVED OXYGEN

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum mg/l</th>
<th>Minimum mg/l</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>8.7</td>
<td>2.4</td>
<td>5.0</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>10.4</td>
<td>3.8</td>
<td>6.1</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>8.9</td>
<td>5.6</td>
<td>7.4</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>10</td>
<td>9.5</td>
<td>3.0</td>
<td>5.7</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>10.0</td>
<td>6.7</td>
<td>7.6</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>8.4</td>
<td>4.4</td>
<td>6.7</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>8.5</td>
<td>6.0</td>
<td>7.3</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>9.8</td>
<td>4.7</td>
<td>6.8</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>7.2</td>
<td>3.9</td>
<td>5.5</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>6.5</td>
<td>5.4</td>
<td>4.7</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>3.7</td>
<td>5.5</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>3.3</td>
<td>4.7</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>6.9</td>
<td>3.6</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Conductivity

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum $\text{mhos/cm at 25}^\circ\text{C}$</th>
<th>Minimum $\text{mhos/cm at 25}^\circ\text{C}$</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>392</td>
<td>151</td>
<td>240</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>694</td>
<td>57</td>
<td>347</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>18047</td>
<td>333</td>
<td>6084</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>10</td>
<td>272</td>
<td>165</td>
<td>214</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>446</td>
<td>175</td>
<td>286</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>21987</td>
<td>1573</td>
<td>12496</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>17895</td>
<td>255</td>
<td>3875</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>710</td>
<td>137</td>
<td>428</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>29412</td>
<td>674</td>
<td>13834</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>12130</td>
<td>595</td>
<td>3048</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>34470</td>
<td>733</td>
<td>16352</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>42284</td>
<td>2468</td>
<td>26944</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>43390</td>
<td>10151</td>
<td>30627</td>
</tr>
</tbody>
</table>

pH

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Electrometric Units</th>
<th>Minimum Electrometric Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>7.1</td>
<td>6.2</td>
<td>6.6</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>7.9</td>
<td>6.4</td>
<td>6.9</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>7.6</td>
<td>7.2</td>
<td>7.4</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>10</td>
<td>7.5</td>
<td>6.5</td>
<td>7.1</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>6.9</td>
<td>7.3</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>7.2</td>
<td>7.5</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>8.0</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>7.7</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>7.8</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>7.9</td>
<td>7.4</td>
<td>7.6</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>8.1</td>
<td>7.3</td>
<td>7.7</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>8.0</td>
<td>7.4</td>
<td>7.7</td>
</tr>
</tbody>
</table>
TURBIDITY

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times samples</th>
<th>Maximum NTU</th>
<th>Minimum NTU</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>4.8</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>5.1</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>3.5</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>10</td>
<td>4.0</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>2.2</td>
<td>0.9</td>
<td>1.6</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>3.8</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>4.0</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>8.6</td>
<td>1.1</td>
<td>3.4</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>2.9</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>3.3</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>3.3</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>2.2</td>
<td>1.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Station</th>
<th>Class</th>
<th>Number of times sampled</th>
<th>Maximum Pt-Co Units</th>
<th>Minimum Pt-Co Units</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>III</td>
<td>10</td>
<td>220</td>
<td>60</td>
<td>134</td>
</tr>
<tr>
<td>0013</td>
<td>I</td>
<td>10</td>
<td>280</td>
<td>50</td>
<td>124</td>
</tr>
<tr>
<td>402</td>
<td>III</td>
<td>10</td>
<td>130</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>404</td>
<td>I</td>
<td>10</td>
<td>180</td>
<td>65</td>
<td>113</td>
</tr>
<tr>
<td>408</td>
<td>III</td>
<td>10</td>
<td>160</td>
<td>60</td>
<td>107</td>
</tr>
<tr>
<td>409</td>
<td>III</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>410</td>
<td>I</td>
<td>10</td>
<td>220</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>417</td>
<td>III</td>
<td>10</td>
<td>260</td>
<td>50</td>
<td>114</td>
</tr>
<tr>
<td>593</td>
<td>III</td>
<td>10</td>
<td>100</td>
<td>40</td>
<td>79</td>
</tr>
<tr>
<td>620</td>
<td>III</td>
<td>10</td>
<td>90</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>621</td>
<td>III</td>
<td>10</td>
<td>100</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>623</td>
<td>III</td>
<td>10</td>
<td>100</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>624</td>
<td>III</td>
<td>10</td>
<td>100</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>
Any chemical elements or compounds that are essential to the life and to the growth of plants and animals are called Nutrients. Major Nutrients are Carbon, Nitrogen and Phosphorous. Other elements such as Sulfur, Calcium, Magnesium, Potassium, etc. are called micronutrients because their presence is needed in minor quantities. The Nutrients which the laboratory has determined in the Bays and the Streams are those in the Nitrogen Cycle and in the Phosphorous Cycle.

Nitrogen Cycle - We have determined the following compounds:
- Nitrite \((NO_2^-)\);
- Nitrite plus Nitrate \((NO_2^-+NO_3^-)\);
- Ammonia \((NH_3^-)\) and Total Nitrogen Kjeldahl \((TKN)\). All values are expressed as Nitrogen.

Phosphorous Cycle - We have determined Dissolved Orthophosphate \((PO_4^-)\) and Total Phosphorous \((TP)\). All values are expressed as Phosphorous.

NITROGEN

The Nitrogen compounds which can be found in waters and wastewaters are Nitrate, Nitrite, Ammonia and Organic Nitrogen. Nitrate is an essential nutrient for many photosynthetic organisms and in some cases, has been identified as the growth-limiting nutrient. Nitrate generally occurs in trace quantities in surface waters, but may attain high levels in some ground waters. Nitrate is found only in small amounts in raw domestic wastewaters, but in the effluent of nitrifying biological plants, Nitrate may be found in concentrations of up to 50 mg/l Nitrate as Nitrogen.

Ammonia is naturally present in surface waters, groundwaters and wastewaters. Ammonia is produced largely by the deamination of organic containing compounds and by the hydrolysis of urea. It may also be produced naturally in the reduction of Nitrate under anaerobic conditions.

The runoff from land may contain agricultural fertilizers which could be high in Nitrate or Ammonia or Ammonia degradable compounds.

Organic Nitrogen is defined functionally as organically bound Nitrogen in the trinegative state. Organic Nitrogen includes such natural materials as proteins, peptides, nucleic acids, urea and numerous synthetic organic materials. Analytically Organic Nitrogen and Ammonia can be determined together and have been referred to as Total Kjeldahl Nitrogen. Total Nitrogen is referred to as the addition of Nitrate plus Nitrite plus Total Nitrogen Kjeldahl. All of the above forms of Nitrogen, as well as Nitrogen gas, are biochemically interconvertible and thus, are components of the Nitrogen Cycle.
PHOSPHOROUS

Phosphorous occurs in natural waters and in wastewaters in the form of various types of phosphate. These forms are commonly classified into orthophosphates, condensed phosphates, (pyro, meta and polyphosphates) and organically bound phosphates. These may occur in three different forms being, in the soluble form, in particles of detritus or in the bodies of aquatic organisms. The various forms of phosphate find their way into wastewaters, effluents and polluted waters from a variety of sources. Orthophosphates applied to agricultural or residential cultivated land as fertilizer are carried into surface waters with storm run-off. Organic phosphates are formed primarily by biological processes and are contributed to sewage in body wastes and food residues.

Phosphorous is essential to the growth of organisms and it can be the nutrient that limits the productivity of a body of water. In instances where phosphate is a growth limiting nutrient, the discharge of a raw or treated wastewater, agricultural drainage or certain industrial wastes to a receiving water, may stimulate the growth in nuisance quantities of photosynthetic, aquatic micro and macro-organisms.

Total Phosphorous content of the sample includes all of the orthophosphates both soluble and insoluble, organic and inorganic species. Dissolve Orthophosphate depends on filtration through a 0.45 μm membrane filter.

EUTROPHICATION

The presence of excess nutrients in waters can produce an enrichment in either fresh or salt water by chemical elements or compounds present in various types of wastes. This enrichment is called eutrophication. Phosphates and Nitrogenous compounds are particularly eutrophying agents where they supply nutrients to both algae and plants, which proliferate so abundantly that a large portion die for lack of light. Their decomposition depletes the water of its Dissolved Oxygen and thus, causes the death of many fish and other living organisms.
DATA PRESENTATION

The presentation has been made in a format of a plot for each parameter. In the vertical axis, the concentration from the chemical species is given and in the horizontal axis, the stations are indicated. Below is a sample illustration of the use of the composite averages of the nutrient concentrations.

In the following pages, an attempt has been made to present a review of the Nutrient levels found in the water monitoring activity in County waters.
The Bay Run Stations were sampled for nutrients as follows:

Bay Run I 4 times
Bay Run II 7 times
Bay Run III 3 times
Bay Run IV 1 time

The following table is provided to highlight the Stations that show the highest nutrient value for each parameter tested:
All stations show lowest concentration of <0.020 mg/l.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>BAY RUN #1</th>
<th>BAY RUN #11</th>
<th>BAY RUN #111</th>
<th>BAY RUN #1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>510</td>
<td>537</td>
<td>541</td>
<td>567</td>
</tr>
<tr>
<td>TOTAL PHOSPHOROUS</td>
<td>523</td>
<td>537</td>
<td>559</td>
<td>564, 567</td>
</tr>
<tr>
<td>NITRITE</td>
<td>*</td>
<td>535</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NITRATE & NITRITE</td>
<td>*</td>
<td>537</td>
<td>541</td>
<td>*</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>510</td>
<td>535</td>
<td>590</td>
<td>562, 564</td>
</tr>
<tr>
<td>ORGANIC NITROGEN</td>
<td>523</td>
<td>531</td>
<td>589, 590, 610</td>
<td>567</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>523</td>
<td>531</td>
<td>589, 590, 610</td>
<td>567</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>523</td>
<td>537</td>
<td>589, 590, 610</td>
<td>567</td>
</tr>
</tbody>
</table>

* All stations show lowest concentration of <0.020 mg/l.
BAY RUN I
NITRITE NO_2^- - N
(ALL VALUES ARE ZERO)

NITRITE & NITRATE
($\text{NO}_2^+\text{NO}_3^-$) - N
(ALL VALUES ARE ZERO)
STATIONS: 507 508 510 514 516 517 519 520 521 523

ORGANIC NITROGEN

AMMONIA NH₃-N

CONCENTRATION mg/l

STATIONS: 507 508 510 514 516 517 519 520 521 523
BAY RUN II
NITRITE NO₂⁻N

NITRITE & NITRATE (NO₂⁻+NO₃⁻) - N

CONCENTRATION mg/l

STATIONS: 529 531 533 534 535 536 537 539 596 606 609
AMMONIA NH_3 - N

ORGANIC NITROGEN
TOTAL KJELDAHL NITROGEN

TOTAL NITROGEN
NITRATE NO$_2$-N
(ALL VALUES ARE ZERO)

NITRITE & NITRATE
(NO$_2$+NO$_3$)-N

CONCENTRATION mg/l
TOTAL KJELDAHL NITROGEN

Concentration mg/l

STATIONS: 540 541 543 545 547 548 559 589 590 610

TOTAL NITROGEN

Concentration mg/l

STATIONS: 540 541 543 545 547 548 559 589 590 610
ORTHOPHOSPHATE

TOTAL PHOSPHOROUS

Station concentrations for orthophosphate and total phosphorous are shown in the diagrams. The stations are identified by numbers such as 540, 541, 543, etc., along the x-axis.

Concentration levels are indicated on the y-axis for both orthophosphate and total phosphorous, with units in mg/l.

The diagrams illustrate the variability and distribution of orthophosphate and total phosphorous levels across different stations.
NITRITE NO_2^-N
(ALL VALUES ARE ZERO)

NITRITE & NITRATE
($\text{NO}_2^- + \text{NO}_3^-)$-N
(ALL VALUES ARE ZERO)
AMMONIA NH₃-N

ORGANIC NITROGEN

CONCENTRATION mg/l

STATIONS: 562 563 564 566 567 569 570 571 572 573
The Stream Run Stations were sampled for nutrients as follows:

North 5 times
Central 5 times
South 5 times

The following table is provided to highlight the Stations that show the highest nutrient value for each parameter tested.
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>STATIONS WITH HIGHEST CONCENTRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORTH</td>
</tr>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>549</td>
</tr>
<tr>
<td>TOTAL PHOSPHOROUS</td>
<td>670</td>
</tr>
<tr>
<td>NITRITE</td>
<td>670</td>
</tr>
<tr>
<td>NITRITE & NITRATE</td>
<td>626</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>670</td>
</tr>
<tr>
<td>ORGANIC NITROGEN</td>
<td>549</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>670</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>670</td>
</tr>
</tbody>
</table>
NORTH COUNTY STREAM RUN
CENTRAL COUNTY STREAM RUN
NITRITE
$\text{NO}_2^- \cdot \text{N}$

STATIONS: 501 587 588 612 615 617 618 619 632 639 644 671 672

NITRITE & NITRATE
($\text{NO}_2^- + \text{NO}_3^- \cdot \text{N}$)
TOTAL KJELDAHL NITROGEN

TOTAL NITROGEN

STATIONS: 501 587 588 612 615 617 618 619 632 639 644 671 677
SOUTH-SOUTHEAST STREAM RUN
NITRITE NO$_2$-N

(ALL VALUES ARE ZERO)

CONCENTRATION mg/l

NITRITE & NITRATE
(NO$_2$ + NO$_3$)-N

CONCENTRATION mg/l