Conflicting Indicators of Estuarine Health in a Southwest Florida Estuary Susceptible to Harmful Algal Blooms

Presentation to the National Water Quality Monitoring Council
March 28, 2019
Mike Wessel, Jon Perry, Tony Janicki
Jay Leverone, and Mark Alderson
The Sarasota Bay Estuary includes a 50 mile long coastal lagoon with four inlets.

The Sarasota Bay Estuary Program was established in 1989.

Between 1980’s and 2010:

- Nitrogen pollution was reduced by an estimated 64%.
- Seagrasses rebounded by 46% and have recently been above historical acreages.
- Water quality achieved state standards.
Factors Affecting Improvements

• Grizzle Figg Act – required wastewater discharges to SW Florida estuaries be treated to Advanced Wastewater Treatment (AWT) standards

• Improved stormwater treatment

• Septic to Sewer conversions in priority watersheds

• Eliminating small package plants and increasing production for reclaimed water supply
Increased Volume of Reclaimed Water Production

Bee Ridge Monthly Average Reuse Production (MGD)
Seagrass – Our Keystone Indicator

Increases mostly due to PSB, SB, and LSB.
However:

• Trends in nitrogen concentrations have recently been increasing throughout the watersheds and estuaries

• Water quality standards for chlorophyll are now being exceeded in most segments

• Coincident episodes of harmful algal blooms have heightened concerns regarding nutrient pollution and its effects on estuarine health
Timeseries Trends in TN
1998-2017
2008-2017
http://www.sarasota.wateratlas.usf.edu
“Red Tide”

Karenia brevis

Naturally occurring

Historical records back to 1500’s

Blooms initiated offshore

Evidence that intensity and duration is increasing

High P makes area susceptible to nitrogen

Statewide *Karenia brevis* concentrations
September 1 - 30, 2018
Relevance to Water Quality Standards

• Sarasota Bay Estuary Program established targets and thresholds for chlorophyll and nitrogen

• Based on a reference period when seagrasses (key ecological indicator) were stable
Water Quality Indicators
Reference Period Approach

Chlorophyll a
Reference Period

Total Nitrogen
Linear Regression

Accepted By FDEP as NNC
Likely Outcome of Next FDEP Assessment

<table>
<thead>
<tr>
<th>Segment</th>
<th>WBID</th>
<th>Chlorophyll α</th>
<th>TN</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarasota Bay</td>
<td>1968C</td>
<td>Impaired</td>
<td>Not Impaired</td>
<td>Not Impaired</td>
</tr>
<tr>
<td>Roberts Bay</td>
<td>1968D</td>
<td>Impaired</td>
<td>Not Impaired</td>
<td>Not Impaired</td>
</tr>
<tr>
<td>Little Sarasota Bay</td>
<td>1968E</td>
<td>Impaired</td>
<td>Not Impaired</td>
<td>Not Impaired</td>
</tr>
<tr>
<td>Blackburn Bay</td>
<td>1968F</td>
<td>Impaired</td>
<td>Impaired</td>
<td>Not Impaired</td>
</tr>
</tbody>
</table>

FDEP Evaluation Due in 2020
Sarasota Bay

2008-2017

Good exchange with Gulf
Robert’s Bay

Large creek discharge
Limited exchange with Gulf

2008-2017

Restorable Seagrass Target
Least exchange with Gulf
Blackburn Bay

2008-2017

Mixing of freshwater inputs and exchange with Gulf
Summary

- Chlorophyll now exceeding state standards

- Nitrogen concentrations increasing

+ Nitrogen not yet exceeding state standards in most Bays

+ Seagrasses remain above historic levels for most Bays

- Downward seagrass trends in Bays less exchange with Gulf
What’s With These TN Trends?

• **Lots of Ideas**
 • Laboratory results systematically biased? No
 • Rainfall /Atmospheric deposition changing?
 • Groundwater concentrations increasing?
 • Background conditions increasing?
 • Has increased volume of reuse affected nitrogen trends?

• **Need for a systematic approach**
Proposed Restoration and Protection Strategy (RA Plan)

SBEP serve as honest broker - existing inter-local agreements and WQ consortium and management structure in place

- Reevaluate Water Quality Targets
- Update/Reevaluate Loading Model
- Update Evaluation of Estuarine Responses
- Identify Nutrient Loading Limits
- Identify Nutrient Load Reduction Projects that Achieve Loading Limits

Many of the tools and data sources are in place
Benefits of FDEP Approved RA Plan

• Eligibility for funding and cost sharing

• Stresses proactive efforts to reduce nutrients in the watershed

• Maintains local control - Provides opportunity to demonstrate local efforts and provide local expertise

• Cleaner water faster
Lessons Learned

• A lot of benefits of having multiple indicators but it can lead to confusion / inaction

• Seagrasses may have threshold responses that have not been exceeded in Bays with better exchange

• Power of a strong monitoring program to pick up changes in water quality

• Having targets and thresholds works even if they aren’t perfect