This project was funded by an Urban BMP Research Grant from the Bureau of Watershed Restoration, Department of Environmental Protection. Total project cost was $347,272, of which DEP provided $347,272, or 100%
ACKNOWLEDGEMENTS

The authors thank Eric Livingston of Florida Department of Environmental Protection for his support of this project. Sarasota County, the City of Rockledge, and the City of Stuart are gratefully acknowledged for providing use of their sites for testing and for their support of the field activities. Sutron Inc. and PBS&J performed monitoring, including field installation, sample collection and processing. The contents of this report imply no endorsement by FDEP.

Project Team

Lead Investigator
Gordon England, PE – Stormwater Solutions, Inc.

Project Scientist
Daniel P. Smith, Ph.D., PE, DEE – GPI Southeast, Inc.

Project Manager
Scott M. Deitche- GPI Southeast, Inc.

Monitoring
Siaka Kone – Sutron Corporation
Forrest Jay – Sutron Corporation
Robert D. Woithe, Ph.D. – PBSJ

Client
Laura Ammeson – Sarasota County
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>V</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>VII</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENTAL EVALUATION</td>
<td>2</td>
</tr>
<tr>
<td>Baffle Box Technology</td>
<td>2</td>
</tr>
<tr>
<td>Project Sites</td>
<td>4</td>
</tr>
<tr>
<td>MONITORING APPROACH</td>
<td>10</td>
</tr>
<tr>
<td>WATER COLUMN SAMPLING AND ANALYSIS</td>
<td>11</td>
</tr>
<tr>
<td>BOTTOM CHAMBER SAMPLING AND ANALYSIS</td>
<td>13</td>
</tr>
<tr>
<td>SIEVE SCREEN SAMPLING AND ANALYSIS</td>
<td>15</td>
</tr>
<tr>
<td>PERFORMANCE ASSESSMENT METHODOLOGY</td>
<td>17</td>
</tr>
<tr>
<td>Storm Event Scale-Up</td>
<td>17</td>
</tr>
<tr>
<td>Estimation of Mass Removals</td>
<td>17</td>
</tr>
<tr>
<td>Equivalent Concentration</td>
<td>18</td>
</tr>
<tr>
<td>Derived Efficiency</td>
<td>19</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>19</td>
</tr>
<tr>
<td>Monitored Periods and Storm Events</td>
<td>19</td>
</tr>
</tbody>
</table>
POLLUTANT REMOVAL SUMMARY ... 25

Event Mean Concentrations (Water Column) .. 25
Mass in Water Column, Bottom Chamber and Sieve Screen ... 31
Equivalent Concentrations ... 34
Derived Efficiencies ... 34
Polycyclic Aromatic Hydrocarbons .. 35
Heavy Metals ... 39

INTEREVENT MONITORING .. 41

CONCLUSIONS AND RECOMMENDATIONS ... 48

REFERENCES ... 55

List of Tables

Table 1 – Baffle box pollutant removal efficiencies .. vii
Table 2 - Four baffle boxes monitored in study ... 7
Table 3 - Watershed characteristics ... 7
Table 4 – Parameters measured .. 12
Table 5 – Dates of box cleanouts .. 13
Table 6 – Sieve screen cleanout dates .. 15
Table 7 - Baffle box monitoring periods .. 20
Table 8 – Monitored storm events .. 20
Table 9 - Rockledge baffle box EMC performance .. 27
Table 10 - Sarasota baffle box EMC performance .. 28
Table 11 - Lincoln baffle box EMC performance ... 29
Table 12 - Parkway baffle box EMC Performance ... 30
Table 13 - Summary fecal coliform concentrations for all four baffle boxes 30
Table 14 - Comparison of average baffle box EMC performance 31
Table 15 - Rockledge baffle box constituent mass (lb) ... 32
Table 16 - Sarasota baffle box constituent mass (lb) .. 32
Table 17 - Lincoln baffle box constituent mass (lb) ... 33
Table 18 - Parkway baffle box constituent mass (lb) .. 33
Table 19 - Summary mass removals by baffle box type ... 33
Table 20 - Equivalent concentrations of accumulated solids ... 34
Table 21 - Mass removal efficiencies of monitored baffle boxes .. 35
Table 22 - Total polycyclic aromatic hydrocarbons in accumulated solids 38
Table 23 - Organic carbon normalized total polycyclic aromatic hydrocarbons levels 38
Table 24 - Metals mass in Rockledge water column and solids .. 39
Table 25 - Metals mass in Sarasota water column and solids ... 39
Table 26 - Metals mass in Lincoln water column and solids ... 40
Table 27 - Metals mass in Parkway water column and solids .. 40
Table 28 - Average water column values of field parameters .. 44
Table 29 - Water analyses method results for Rockledge sieve screen subsamples 45
Table 30 - Compost analyses method results for Rockledge sieve screen subsamples 46
Table 31 - Water analyses method results for Sarasota sieve screen samples 47
Table 32 – Type 1 baffle box removal efficiency using EMC and DE methodology 51
Table 33 - Type 1 baffle box removal efficiency using EMC and DE methodology 51
List of Figures

Figure 1 - Schematic of Type 2 baffle box showing sieve screen ... 3
Figure 2 - Sieve strainer screen of Type 2 baffle box... 4
Figure 3 - Rockledge baffle box project location and watershed ... 8
Figure 4 - Sarasota baffle box project location and watershed ... 8
Figure 5 - Lincoln baffle box project location and watershed .. 9
Figure 6 - Parkway baffle box project location and watershed ... 9
Figure 7 - Rockledge flow record showing monitored storm events 21
Figure 8 - Rockledge cumulative runoff distribution showing monitored storm events 22
Figure 9 - Sarasota flow record showing monitored storm events ... 22
Figure 10 - Sarasota cumulative runoff distribution showing monitored storm events 23
Figure 11 - Lincoln flow record showing monitored storm events .. 23
Figure 12 - Lincoln cumulative runoff distribution showing monitored storm events 24
Figure 13 - Parkway flow record showing monitored storm events .. 24
Figure 14 - Parkway cumulative runoff distribution showing monitored storm events 25
Figure 15 - Regression of Total Suspended Solids EMCs at Rockledge 26
Figure 16 – Polycyclic aromatic hydrocarbons in Rockledge solids 36
Figure 17 - Polycyclic aromatic hydrocarbons in Sarasota solids (bottom chamber PAH reported as less than detection limit).. 36
Figure 18 - Polycyclic aromatic hydrocarbons in Lincoln solids. ... 37
Figure 19 - Polycyclic aromatic hydrocarbons in Parkway solids.. 37
Figure 20 – Dissolved oxygen profiles in baffle boxes.. 42
Executive Summary

GPI Southeast, Inc. (GPI-SE) was engaged by Sarasota County using funding from the Florida Department of Environmental Protection (FDEP) to determine the pollutant removal effectiveness of Type 1 and Type 2 baffle box BMPs. Type 2 baffle boxes have horizontal sieve screens above the pipe inverts so that floating organic matter and suspended sediments can be trapped above the water filled vaults. The design hypothesis for the screen is that organic matter trapped above the water will not leach nutrients into the water filled vault below. Type 1 baffle boxes do not have horizontal sieve screens, rather, they have swinging vertical screens that are ineffective for capturing debris.

A mass loading methodology was developed for long term monitoring and evaluation of the mass removal of stormwater pollutants by baffle boxes and applied to four full scale field installations in Florida. Two Type 1 baffle boxes in Stuart and two Type 2 baffle boxes were monitored, one in Rockledge and one in Sarasota. A primary objective of the monitoring was to determine if Type 2 baffle boxes were more effective than Type 1 baffle boxes at removing nutrient mass loadings associated with organic debris trapped in the screens. All four baffle boxes were monitored for over two years for seven or more storm events using a combination of influent and effluent autosamplers to measure water column pollutants as Event Mean Concentrations (EMCs), and manual cleaning of sediment and debris from screens and vaults to measure masses of settleable and floating pollutants. Fourteen pollutants were monitored under this program, but the principal pollutants of concern were Total Nitrogen and Total Phosphorus.

A quantitative evaluative methodology was devised to estimate and compare the total pollutant mass removal in the water column, bottom chamber material, and strainer screen material trapped in a baffle box. Results from monitoring the four baffle boxes are shown in Table 1.

The results of this study clearly demonstrated that Type 2 baffle boxes are more effective than Type 1 baffle boxes for removing TN and TP from stormwater runoff. The improved effectiveness is attributed to the horizontal screens used in Type 2 baffle boxes. The mass of nutrient material collected in the screens exceeded the mass of nutrients in the water column. At both Type 2 baffle box locations there were significant masses of leaves collected from the vault boxes, indicating that the screens were only partially effective in removing leaves from stormwater flows.
<table>
<thead>
<tr>
<th>Site</th>
<th>Baffle Box Type</th>
<th>TN Mass Removal Efficiency (%)</th>
<th>TP Mass Removal Efficiency (%)</th>
<th>TN EMC Removal Efficiency (%)</th>
<th>TP EMC Removal Efficiency (%)</th>
<th>Fecal Coliform EMC Removal Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkway Blvd, Stuart</td>
<td>1</td>
<td>0.03</td>
<td>0.06</td>
<td>5.60</td>
<td>-15.30</td>
<td>-4.2</td>
</tr>
<tr>
<td>Lincoln Lane, Stuart</td>
<td>1</td>
<td>1.00</td>
<td>4.50</td>
<td>-8.30</td>
<td>1.50</td>
<td>-89</td>
</tr>
<tr>
<td>Average Type 1</td>
<td></td>
<td>0.50</td>
<td>2.30</td>
<td>-1.35</td>
<td>-6.90</td>
<td>-47</td>
</tr>
<tr>
<td>Little John Lane, Rockledge</td>
<td>2</td>
<td>28.10</td>
<td>19.40</td>
<td>-11.30</td>
<td>-8.20</td>
<td>-249</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>2</td>
<td>10.00</td>
<td>11.60</td>
<td>30.60</td>
<td>21.60</td>
<td>13.1</td>
</tr>
<tr>
<td>Average Type 2</td>
<td></td>
<td>19.05</td>
<td>15.50</td>
<td>9.65</td>
<td>6.70</td>
<td>-1188</td>
</tr>
</tbody>
</table>

Table 1 – Baffle box pollutant removal efficiencies

Note: TN and TP mass removal efficiencies for Type 2 baffle boxes are from watersheds with at least 44% tree canopy coverage. Since the majority of the gross solids collected in Type 2 baffle boxes was leaf material, watersheds with less than 44% tree canopy coverage will have lower mass removal efficiencies than shown in Table 1.

Both Type 1 and Type 2 baffle boxes showed net exports of fecal coliforms. Interevent sampling of Type 2 vault box water showed anaerobic conditions indicative of biological decomposition of organic material (predominantly leaves) leading to bacterial growth.

Monitoring results definitively showed that when performing an assessment of pollutant removals by baffle boxes, one must be cognizant of the materials not captured by typical autosamplers, including larger size sediment particles, large floating and suspended organic matter, and the pollutants associated with these materials. Using water column EMCs as the sole measure of performance can significantly underestimate loading reduction of stormwater constituents.

Upstream watershed characteristics greatly influence the mass removal efficiency of baffle boxes. The use of Type 2 baffle box BMPs are recommended when:

1. The pollutants targeted for reduction are nutrient based, and
2. There are no upstream BMPs such as ponds, exfiltration trenches, swales, inlet traps, or other filtration unit processes, and
3. The streets in the watershed have curb and gutters, and
4. The tree canopy coverage in the watershed exceeds 25%.
Background

Urban stormwater is an aqueous matrix containing a highly heterogeneous ensemble of solid components that span a size range from dissolved and colloidal to tens of centimeters (Roesner et al., 2007; Rushton et al., 2009). Stormwater solids include suspended sediment, bedload material transported by ablation, and large floating and suspended materials including grass, leaves, twigs and human derived trash. The size, density, and organic and inorganic composition of stormwater solids are highly variable. These factors greatly affect solids transport in conveyance systems and the amenability of stormwater solids to treatment through physical processes of skimming, straining, sedimentation, and filtration.

Although significant effort has been expended in characterizing solids removal by stormwater treatment devices, an approach is lacking that can unify the disparate components of stormwater solids in an integrated monitoring and evaluation framework. A number of factors hamper this effort. Urban stormwater runoff has extremely variable flowrates. The mass and composition of stormwater solids can change significantly over the course of single runoff events, and are influenced by factors including soil type, topography, land use, and magnitude of runoff (Kim and Sansalone, 2008). No single sampling technique is adequate for all types of stormwater solids. Stormwater treatment systems vary significantly in their design and configuration, and differential retention of solids components occurs at various applied flowrates. High flowrates can scour and remove previously deposited solids. These factors make it difficult to develop standardized monitoring protocols that represent solids content across the entire range of solids size and density (Clark et al., 2009; Strecker et al., 2001). Stormwater solids are also significant in affecting the fate and transport of urban stormwater constituents that sorb to stormwater solids or that are elemental components of the solid material itself. Stormwater constituents associated with solids include nitrogen (Taylor et al., 2005), phosphorus (Settle et al., 2007), heavy metals (Davis and Birch, 2009; Sansalone and Ying, 2008; Herngren et al., 2005), pathogenic indicator organisms (Characklis et al., 2005), and polycyclic aromatic hydrocarbons (Lau et al., 2009; Jartun et al., 2008; Hwang and Foster, 2006; Brown and Peake, 2006). Stormwater loadings of these constituents are a significant driver of impaired water quality and are inseparably linked to the retention of stormwater solids by treatment devices.

A standardized system for classifying stormwater solids was recently proposed based on particle sizes (Roesner et al., 2007). The size categories of stormwater solids were defined as dissolved (<2μm), fine (2-75μm), coarse (75μm–5 mm) and gross (> 5mm). The 2μm filter is similar to nominal filter pore sizes used in standard total suspended solids analyses, and delineates dissolved and colloidal materials that are typically not removed in sedimentation-based treatment devices. The No. 200 Sieve (75 μm) is the dividing boundary of fine and coarse stormwater solids and is the Unified Soil Classification System (USCS) divide defining the division between silt and sand (ASTM, 2006). Fine stormwater solids include clay, silt, and organic detritus from decomposition of larger organic materials. The No. 4
Sieve (5 mm) divides *coarse* from *gross* stormwater solids, and distinguishes between sand and gravel in USCS. *Coarse* solids include sand sized sediment and larger inorganic solids, organic detritus, larger organic solids such as leaf components, and human derived solids. *Gross* solids larger than 5mm include coarse sediment, organic matter such as twigs, leaves, grass, and pine needles, and human derived solids such as plastics, paper containers, styrofoam, and glass.

The ability of treatment devices to remove constituents of urban stormwater has traditionally focused on reduction of concentrations in flow weighted water column samples. For example, the International BMP Database provides an extensive compilation of performance evaluations of stormwater treatment devices for numerous water quality parameters (ASCE, 2009) and monitoring guidance for producing appropriate data sets (EPA, 2002). The primary performance metric employed by the database is flow weighted composite samples of influent and effluent water column, defined as EMCs. Autosampler-based EMC data are commonly used in many evaluations of stormwater treatment performance (Lee et al., 2007; Kim et al., 2005).

The traditional EMC approach is based on the use of autosamplers to collect flow composited samples of influent and effluent. A weakness in using EMCs is that autosamplers cannot sample the entire range of stormwater solids. This report uses an approach based upon the recommendations of the ASCE Guidelines for Monitoring Stormwater Gross Solids (Rushton, et.al. 2009) to estimate baffle box pollutant removal on a mass removal basis, including a description of a specifically designed monitoring program and a quantitative evaluative methodology. The goal of this approach is to measure masses of pollutants 1) in the water column using traditional EMC values and conversion factors, 2) in the sediment and herbaceous material accumulated in the bottom chamber, and 3) in the sediment and herbaceous material collected in the screens above the water. Summing of the masses removed continuously over a two year period will enable calculation of annual mass removal efficiency. Using a mass based efficiency calculation will give a more accurate evaluation of baffle box performance than just an EMC based calculation.

Experimental Evaluation

Baffle Box Technology

The baffle box is a structural stormwater treatment device that contains a series of settling chambers separated by baffles (Fig. 1). The unit processes utilized are sedimentation and filtration. In Florida, baffle boxes are used in retrofit scenarios where typical new development BMPs cannot be employed. A baffle box can be used with single or multiple inflow pipes and in offline or online designs. The “Type 2” baffle box is distinguished from the “Type 1” baffle box in that the Type 2 contains a sieve screen located above the water filled bottom chambers and collects larger floating and suspended materials.
Capture of stormwater sediment particles through the sedimentation unit process in a baffle box is a function of the particle size and density. Larger stormwater particles that move by ablation along the bottom of the influent pipe immediately settle into the chambers upon entry into the baffle box. Organic matter has a lower density than inorganic particles, making the capture of an equivalent size organic particle less likely than an inorganic particle with intrinsic density of 2.5 g/cc (Kayhanian, et al., 2008). Organic material consisting of ground up organic debris cannot be distinguished or separated from inorganic sediment. Standard methods used for TSS analysis do not differentiate between organic and inorganic sediments, leading to inherent inaccuracies in calculations of organic loadings in stormwater based solely on TSS measurements. In this study, the Percent Organic Matter test was used to determine the fraction of the dry mass of solids collected in the baffle boxes that was organic.

The Type 2 baffle boxes contain a basket-shaped strainer screen with 1.3 to 2 cm openings that is mounted above the bottom chamber baffles (Fig. 2). The strainer screen provides a second mechanism for removal of stormwater solids. Larger floating and suspended materials, including leaves, pine needles, and natural and human derived trash and debris, are retained on the screen by physical straining. Material captured in the baffle box screen during runoff events is held above the surface of the water column in interevent periods, thus reducing the potential for leaching of constituents into the water column and
enhancing the opportunity to dry. Material that is captured and retained by the screens can form a mat on the screen surface, reducing the effective size of openings through which runoff passes. The result is the retention of stormwater particles that are smaller than the screen openings.

Project Sites
In order to monitor a baffle box or any BMP in the field, it is critical to choose a location that allows the researcher to control the flow and water quality variables to a degree that provides accurate results. Taking the laboratory to the field is difficult. Site selection criteria that were used for this baffle box monitoring program included:

- The baffle box had one influent pipe and one effluent pipe.
- There were no base flows through the pipes.
- There were no bypass flows during large storms.
- There were no backflows into the baffle box from adjacent streams, bays, or ocean.
- The baffle box was not located in a roadway. Access dictated a location outside of the pavement for safety reasons.
- For the rain gauge and solar panels to operate there was no tree coverage over the site.
- The autosamplers are expensive equipment. A site was chosen in neighborhoods where the vandalism potential was low. There was room for a theft proof enclosure to be placed in a yard or next to a road. Adjacent property owners were canvassed to ensure their cooperation with technicians accessing equipment at any hour.
- Technicians were able to park vehicles adjacent to the site to perform collection activities. Lane closures of roadways were avoided.
In this study leaf collection was a major objective for the Type 2 baffle boxes. Therefore drainage basins were chosen for the Type 2 boxes that had significant tree canopy coverage.

All four drainage basins were chosen with primarily residential land use in order to have similar pollutant loadings.

The interior of the BMPs had sufficient clearance and access to enable a technician to install equipment and take samples.

The sites were within reasonable driving distance of technicians making weekly visits to inspect and calibrate equipment.

At the Type 2 locations there were no upstream BMPs in the drainage basin, including roadside swales that would filter pollutants, especially gross solids, before they entered the baffle box. The roadways had curb and gutters.

The monitoring study was conducted on four full-scale baffle boxes in Florida. Characteristics of the baffle boxes that were monitored in this study are summarized in Table 2. The Rockledge and two Stuart sites were located on the eastern central coast of Florida. Sutron Corporation was used to collect data at the three east coast sites. The Sarasota site was located on Florida’s southwest coast. Due to the long distances between Sarasota and the east coast sites, a Sarasota based PBSJ office was chosen for data collection at the Oriole Drive site. The laboratories used for analyses of samples from the east coast sites were Harbor Branch Environmental, Inc., Genapure Analytical Services, Inc., and Mactec Engineering and Consulting, Inc. The laboratories used for the Oriole Drive sample analysis of the Sarasota site were Sanders Laboratories, Inc., U.S. Biosystems, and Mactec Engineering and Consulting, Inc.

All four baffle boxes evaluated in the study had a single entrance pipe and a single discharge pipe. Land uses of the contributing drainage basins were single family residential and light commercial as summarized in Table 3. Delineations of the contributing watersheds were shown in Figs. 3 through 6.

Little John Lane Baffle Box (Rockledge) – Type 2

The Little John Lane Baffle Box site receives runoff from a 16.18 acre drainage basin. The land use is single family residential with Type A soils and 0.4 acre lots. The streets have curb and gutter. There is a 44% tree canopy coverage, principally oak trees, in the basin that contribute to high levels of leaves trapped in the baffle box. All of the runoff is transported by sheet flow along the gutters until it reaches the intersection of Little John Lane and Rockledge Drive where 2 grated inlets intercept the water and small pipes convey the water to the baffle box. The grade of the land is steep, falling 15 feet from Brevard Ave. eastward to the Indian River.

Oriole Drive Baffle Box (Sarasota) – Type 2

There are 21 acres in the Oriole Drive drainage basin consisting of single family land use. The lots are ¾ to 1.0 acre in size. The roads have curb and gutters and storm drains throughout the basin. Oak and pine tree coverage in the basin is 86.8%. The grade of the land is moderate from east to west. Soil types in the area are B/D.
Lincoln Lane Baffle Box (Stuart) – Type 1
The drainage basin for this baffle box consists of 102.91 acres of mixed used residential, light industrial, and park land uses. Almost all of the basin has curb and gutters. A well developed stormdrain pipe system conveys water throughout the basin. The basin topography is flat with long times of concentration. In the northern end of the basin there are both a regional and two private wet detention ponds providing treatment for 27.85 acres. This treated area has curb and gutters. Downstream of those wet ponds there is no other stormwater treatment for the remaining 75.06 acres. Ground water west of the railroad tracks is low due to the low elevation of the adjacent Poppleton Creek. The soils in the basin are classified as Type A soils with high infiltration rates. Tree canopy coverage in the basin area downstream of the ponds is 9%. The trees are mostly isolated and scattered throughout the basin. Few of the trees are adjacent to streets where leaves could easily enter the storm drains. During the first seven months of monitoring, which corresponded to a drought period, the baffle box had no base flows from the upstream ponds. During the remainder of the monitoring period after the drought broke there were base flows measured through the baffle box.

Parkway Lane Baffle Box (Stuart) – Type 1
This baffle box receives runoff from 23.28 acres of single family residential property. There are no curb and gutters and no roadside swales. Most of the runoff in the basin is conveyed by sheet flow along the streets. There is one 900 foot long run of pipe leading to the baffle box. North of 7th Street, between SE Madison and SE Fini Drive, there is a vegetated swale in the alley receiving water from the northern parts of the drainage basin. The swale has a number of berms to create a series of cascading retention swales that lead to SE 7th. The ground water in much of the basin should be low due to the low elevation of the adjacent Krueger Creek. Soils in the drainage basin are predominantly B soils with moderate infiltration. There is only 7.5% tree coverage in the drainage basin. Topography in the basin is flat with low flow velocities and little erosion.
Type 1 does not include strainer screen; Type 2 includes strainer screen.

Table 2 - Four baffle boxes monitored in study

<table>
<thead>
<tr>
<th>Site</th>
<th>Baffle Box Type</th>
<th>Inner Length, ft.</th>
<th>Inner Width, ft.</th>
<th>Plan Area, ft²</th>
<th>Number of Chambers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>2</td>
<td>9.83</td>
<td>5.00</td>
<td>49.2</td>
<td>3</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>2</td>
<td>9.00</td>
<td>5.00</td>
<td>45.0</td>
<td>3</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>1</td>
<td>9.00</td>
<td>4.17</td>
<td>37.5</td>
<td>3</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>1</td>
<td>9.00</td>
<td>4.17</td>
<td>37.5</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 3 - Watershed characteristics

<table>
<thead>
<tr>
<th>Site</th>
<th>Baffle Box Type</th>
<th>Drainage Basin (ac)</th>
<th>Curb and Gutter</th>
<th>Tree Coverage (%)</th>
<th>Upstream BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkway Blvd</td>
<td>1</td>
<td>23.28</td>
<td>No</td>
<td>9</td>
<td>Swales</td>
</tr>
<tr>
<td>Lincoln Lane</td>
<td>1</td>
<td>102.91</td>
<td>No</td>
<td>7.5</td>
<td>Ponds</td>
</tr>
<tr>
<td>Little John Lane</td>
<td>2</td>
<td>16.18</td>
<td>Yes</td>
<td>44</td>
<td>N/A</td>
</tr>
<tr>
<td>Oriole Drive</td>
<td>2</td>
<td>21</td>
<td>Yes</td>
<td>86.8</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Figure 2 - Rockledge baffle box project location and watershed

Figure 3 - Sarasota baffle box project location and watershed
Figure 4 - Lincoln baffle box project location and watershed

Figure 5 - Parkway baffle box project location and watershed
Monitoring Approach

The primary objectives of this project were to 1) provide a comprehensive representation of all pollutant masses removed by the baffle boxes, 2) compare the performance of Type 1 vs. Type 2 baffle boxes, and 3) provide recommendations for site selection criteria for use of baffle box BMPs. The monitoring program was developed to include three separate components:

- **Water column**: autosamplers to collect flow composited samples of baffle box influent and effluent in runoff events to develop EMCs;
- **Bottom chamber material**: discreet monitoring to determine total accumulated mass and to perform physical and chemical analyses; and
- **Strainer screen materials**: quantifying total volume and captured mass of captured materials including gross solids components and to perform physical and chemical analyses of representative samples.

To relate and integrate monitoring results for all three solids components, continuous flow monitoring over the whole test period allowed matching the three sampling components to their appropriate time frames and volumetric data. For instance, water column samples were matched to storm event flows that were high enough to trip autosampling. Gross solids samples were matched to total volumes of flow between sampling events, including the storms too small to trip the autosampler. Based upon the completeness of flow data at each baffle box site, a common time period was chosen at each site to combine the water column and gross solids data, enabling total mass calculations over the common time period.

Multiple influent and effluent EMC pairs were used to represent overall water column removals over the common time period. The materials that accumulated in the bottom chamber and strainer screen were not amenable to event-based autosampler monitoring, requiring a different sampling approach. For solids collected in the bottom chamber and strainer screen, the total mass of solids that accumulated during the study period was determined by completely cleaning the baffle box at the start and end of the common study period, and by accounting for all mass removed through during the study period \(t_{\text{start}} < t < t_{\text{end}} \). The common period of operation was defined by the initial baffle box cleanout \(t_{\text{start}} \) and the final cleanout \(t_{\text{end}} \). Physical and chemical analyses of accumulated solids in the bottom chamber and strainer screen materials was performed on materials collected at the end of the study period and was not able to account for decomposition of collected material that may have occurred during storage.
Water Column Sampling and Analysis

Water column sampling and analyses methods were described in the Baffle Box Testing Program Final Quality Assurance Project Plan (QAPP) (Sutron Corporation, 2006) (QAPP), approved by FDEP. Baffle boxes were equipped with a rain gauge (ISCO 674), two refrigerated Portable Sequential Samplers (ISCO 6712), and an Area-Velocity Flow Module (ISCO 750). Flowlink software was used to program the flow meter, collect precipitation data, and instruct autosamplers to initiate sample collection when cumulative event precipitation reached 0.508 cm. Autosampler initiation was also constrained by analyte holding times and laboratory availability. Flow composited samples were poured into prepared HDPE containers, placed on ice and shipped to the analytical laboratory within allocated holding times, except where noted. Seven or more individual runoff events were monitored at each baffle box and a flow record was maintained through the study. Analyses performed on water column samples are listed in Table 4. Composite samples were analyzed using EPA methods for Total Suspended Solids (160.2), Total Kjeldahl Nitrogen (351.2), Ammonia (350.1), Nitrate+Nitrite (353.2), Total Phosphorus (365.1), Orthophosphate (365.1), and heavy metals (EPA 200.7). Grab samples were utilized to test for Fecal Coliforms (SM 18-9222D).

Per the QAPP, sampling events were initially set to occur after 0.2 inches of rain in a 30 minute time period. Sampling of several storms of this small magnitude resulted in sampling volumes too small to send to the lab. In order to meet the temporal nature of rainfall at the Rockledge and Stuart sites, several adjustments to the tripping criteria were tried, with the final criteria being a 0.4-inch storm in 15 minutes.

Holding times were the maximum time between sample collection and lab analysis. Holding times defined the time windows that could be used for autosampler collection, technician travel to site, sample preparation, shipping, lab receipt, and lab analysis. The QAPP defined holding times for the various parameters analyzed. The minimum holding times for water column samples were 4 hours for fecal coliform and 48 hours for Orthophosphate. Laboratories generally do not work overtime, meaning only storms occurring before 12:00 P.M. could be sampled to meet the fecal coliform holding time. Many storms in Florida occur in the afternoon and evenings. For the first few months numerous afternoon storms were missed due to this holding time limitation. After consultation with FDEP the QAPP was amended to allow testing for fecal coliforms with grab samples independently from the autosampler samples and fecal tests became optional if the technician could reach the site during the morning hours. This QAPP revision allowed collection of storm samples any time of the day or night.

At the Rockledge site a problem was encountered with the flow meter incorrectly recording data. The meter was recalibrated, then replaced, but still was showing erratic flows during storms. An inspection of the downstream pipe showed numerous spider webs hanging from the pipe soffit that were full of leaves. During storms these dangling spider webs over the flow meter caused interference with the readings. After removing the spider webs no further problems were encountered with the flow meter.
At the Sarasota site there were several set up problems and equipment failures in the first year. As a result, only one of the first five sampling events met QAQC protocols and was fully usable.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Matrix</th>
<th>Units</th>
<th>Method</th>
<th>Precision (% RSD)</th>
<th>Accuracy (% Recovery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Analysis (5 screens: #20, #40, #80, #100, <#200)</td>
<td>Sediment/Solid</td>
<td>N/A</td>
<td>ASTM D422</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Percent Organic Matter</td>
<td>Sediment/Solid</td>
<td>%</td>
<td>ASTM D2974</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Density</td>
<td>Sediment/Solid</td>
<td>g/cc</td>
<td>ASTM D2937</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA/CE81</td>
<td>12</td>
<td>64 - 136</td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 410.4</td>
<td>12</td>
<td>71 - 136</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 365.4</td>
<td>14</td>
<td>70 - 132</td>
</tr>
<tr>
<td>Mercury</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 7470</td>
<td>12</td>
<td>67 - 141</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>15</td>
<td>80 - 116</td>
</tr>
<tr>
<td>Barium</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>9</td>
<td>88 - 111</td>
</tr>
<tr>
<td>Chromium</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>7</td>
<td>88 - 112</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>8</td>
<td>89 - 113</td>
</tr>
<tr>
<td>Iron</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>18</td>
<td>79 - 138</td>
</tr>
<tr>
<td>Nickel</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>7</td>
<td>85 - 111</td>
</tr>
<tr>
<td>Zinc</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>18</td>
<td>80 - 125</td>
</tr>
<tr>
<td>Copper</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>17</td>
<td>84 - 120</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>22</td>
<td>36 - 122</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>9</td>
<td>55 - 117</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>13</td>
<td>56 - 123</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>20</td>
<td>50 - 126</td>
</tr>
<tr>
<td>Fluorene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>14</td>
<td>40 - 131</td>
</tr>
<tr>
<td>1-Methylnaphthalene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>18</td>
<td>25 - 113</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>21</td>
<td>27 - 112</td>
</tr>
<tr>
<td>Pyrene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>13</td>
<td>51 - 121</td>
</tr>
</tbody>
</table>

Table 4 – Parameters measured
Bottom Chamber Sampling and Analysis

Samples collected from Type 1 baffle box bottom chambers were almost entirely sediment or decomposed organic material. At the Lincoln Lane site 3,014 pounds of material were collected over the sampling period. At the Parkway Lane site only 87 pounds of material was collected over the sampling period.

Bottom chamber sampling and analyses methods were described in the QAPP. The bottom chambers were sampled and cleaned at the end of each sampling period on the dates shown below. There was so little sediment accumulation in the Parkway baffle box that only one cleaning operation was performed at the end of the project. Cleanout masses are shown in Tables 15 – 18.

At the Sarasota site only one bottom chamber sediment sample was correctly performed, on 11/15/2007. On 1/27/2009 County crews inadvertently cleaned the bottom chamber and sieve screens without the knowledge of PBSJ. Two other baffle boxes not associated with the project were also cleaned on the same day and the materials from all three baffle boxes were mixed and deposited at a County facility. Samples were taken of the mixed material from all three baffle boxes; however, sediment sampling results for this event were considered to be inaccurate.

<table>
<thead>
<tr>
<th>Site</th>
<th>Cleanout #</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>1</td>
<td>11/6/2007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3/9/2009</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>1</td>
<td>11/15/2007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/27/2009</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>1</td>
<td>12/6/2007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2/26/2009</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>1</td>
<td>2/26/2009</td>
</tr>
</tbody>
</table>

Table 5 – Dates of box cleanouts
Before sampling, the depth of sediment was measured at multiple points in each chamber and total bulk volume was calculated using the average depth and chamber cross sectional areas. Sediment sampling and analyses were conducted following recommended procedures (EPA, 2001) designated in the QAPP. For each chamber, numerous sediment samples were collected with a Stainless Steel Petite Ponar, mixed, placed into Ziploc bags for geotechnical analyses, into glass bottles for inorganics and metals analyses, and into glass bottles with Teflon lids for organics analyses. Ziploc bag samples for each separate chamber were shipped to the geotechnical laboratory. In the laboratory, a single composite sample was assembled for geotechnical analyses by combining samples from each bottom chamber in proportion to the volume accumulated in that chamber. Geotechnical analyses were conducted according to American Society for Testing and Materials methods (ASTM, 2009) and included wet and dry density (D2937), percent organic matter (D2974), and sieve analysis for Particle Size Distribution (D422). Glass bottle samples for each separate chamber were placed on ice for shipment. In the analytical laboratory, single composite samples for chemical analyses was assembled by combining material from each of the three chambers in proportion to the volume accumulated in each chamber. Analyses were conducted by the following EPA methods: Chemical Oxygen Demand (410.4), Total Nitrogen (351.2/353.2), Total Phosphorus (365.4), metals (6010), mercury (7470), and Polycyclic Aromatic Hydrocarbons (8270). The geotechnical and chemical analyses results for the composite samples were used to represent the entire mass of solids removed from the bottom chambers at the end of the common study period (t_{final}). A list of analyses performed for material collected from the bottom chambers of the baffle boxes is listed in Table 4.

Field sampling showed that materials in the bottom chambers of the Rockledge and Sarasota baffle boxes were a mixture of sediment and leaves that had not been trapped in the screen. See photographs in Appendix A. Laboratory analyses of composite bottom chamber samples indicated the percentage of the bottom chamber materials that were organic were 12.6% to 16.7% for Rockledge and 55.8% for Sarasota baffle boxes. Percent Organic Material collected in the Stuart baffle boxes were 5.8% for Lincoln, and 7.5% for Parkway. The higher levels of bottom chamber organic content at the Rockledge and Sarasota baffle boxes were ostensibly due to leaf and organic materials that had bypassed the sieve screen or to finer organic breakdown products that had passed through the screen.

Results of the bottom chamber sampling were used to represent the entire mass of solids removed from the bottom chambers from all four baffle boxes over the common study periods.
Sieve Screen Sampling and Analysis

Type 2 baffle boxes screens are designed to trap gross solids, primarily organic debris, and keep the material above the water in the vault, thus preventing nutrients from leaching into the vault water and out to receiving waters. At the two sites monitored, the organic debris was almost entirely leaves. There was no significant accumulation of grass clippings in the debris. Observations of collected mass in both Type 2 baffle boxes showed that after leaf mass collected just a few centimeters on the screens, the screen openings became blocked and the leaves became fine filters that trapped sediment as well as fine organic debris. The resulting mass of trapped material and sediment had very low porosity causing water to become trapped in the matted material and ponding above the vault water level in a micro pond in the basket. Interevent observations showed that the organic material stayed moist and sometimes submerged for days after a rain event. Ponded water in the screen was turbid even though water in the vault was clear, indicating that nutrients were leaching out of the organic debris. In addition, material collected from the vault chambers had a high number of leaves, demonstrating that the screens were only partially successful in keeping organic debris out of the water filled vaults.

Sieve screen sampling and analyses methods were described in the QAPP. The material captured on the strainer screen was removed nine and five times over the course of the study for Rockledge and Sarasota, respectively. Total masses cleaned are shown in Tables 15 – 18.

<table>
<thead>
<tr>
<th>Site</th>
<th>Cleanout #</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>1</td>
<td>3/13/2007</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4/20/2007</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8/1/2007</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11/6/2007</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2/14/2008</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6/18/2008</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9/9/2008</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3/9/2009</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>1</td>
<td>2/13/2007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7/26/2007</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11/15/2007</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7/17/2008</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1/27/2009</td>
</tr>
</tbody>
</table>

Table 6 – Sieve screen cleanout dates
This material was a combination of leaves, organic debris, and sediment. For each removal event, the bulk volume of accumulated material was first estimated from the average depth and plan area of the strainer screen. The material was placed in plastic bags and weighed in an as-collected state. Strainer screen materials were processed for geotechnical and chemical analyses at the conclusion of the common study periods (t\textsubscript{end}). After bulk volume determination, the accumulated material was removed from the screens, weighed and transported to an indoor processing facility. All of the material was spread out at approximately two-inch thickness on a polyethylene sheet to air-dry for 48 hours. The material was then mixed and spread to a thickness of ½ inch and air-dried for an additional 72 hours. The material was mixed again, and human-derived trash was removed and quantified.

The material was then divided into a grid with 20 regions. A large polypropylene scoop was used to collect 20 individual samples that were placed in empty polypropylene beakers (empty weights were recorded before material was collected). The beakers containing the sampled material were dried for several days until the material was sufficiently dry to enable the fine sediment particles to be separated from the larger materials (predominantly leaves) using a 1mm mesh non metallic screen. The separation process was accomplished by moving the large material gently back and forth over the 1 mm grid screen, such that smaller particles were able to dissociate from the larger material while the leaves did not break apart. The separation screen was placed over a tared polypropylene beaker. The weight of the tared collecting beaker plus the material passing through the 1 mm screen was recorded before sending samples to geotechnical and analytical laboratories. The remaining mass of the large sized material, from which the smaller sediment was derived, was removed and recorded before preparing samples for shipment to geotechnical and analytical laboratories.

Samples of material > 1mm and < 1 mm were placed in Ziploc bags and shipped in a cooler to the geotechnical laboratory. Geotechnical analyses were conducted according to ASTM methods and included wet and dry density (D2937), percent organic matter (D2974), and sieve analysis for Particle Size Distribution (D422). Samples of > 1mm and < 1 mm materials were placed in glass bottles for inorganics and metals analyses, and glass bottles with Teflon lids for organics analyses, and shipped on ice to the analytical laboratory. Analyses were conducted by the following EPA methods: Chemical Oxygen Demand (410.4), Total Nitrogen (351.2/353.2), Total Phosphorus (365.4), metals (6010), mercury (7470), and Polycyclic Aromatic Hydrocarbons (8270). The analyses used for sieve screen samples are listed in Table 4. The results of geotechnical and chemical analyses of composite samples were used to represent the entire mass of solids removed from the strainer screen of the Rockledge and Sarasota baffle boxes over the common study periods.
Performance Assessment Methodology

Storm Event Scale-Up
Mass removals for the common periods were calculated individually for three components: 1) water column runoff, 2) material accumulated in bottom chambers, and 3) material accumulated on the strainer screen. Due to sampling thresholds, equipment failures, holding time limitations, and not sampling during Tropical Storm Fay for safety reasons, water column monitoring was not conducted for all runoff events that occurred in the common study period. However total flow volumes passing through the baffle boxes were recorded during the common study period. Therefore total water column mass removals were scaled up based on the ratio of total runoff volume during the common study period to the total monitored runoff volume:

\[R = \frac{\sum_{i=1}^{n} Volume_i}{\sum_{i=1}^{tot} Volume_i} \]

where:
\[R \] = ratio of total runoff volume to monitored event runoff volume (-)
\[tot \] = total runoff events in common period
\[n \] = monitored runoff events in common period
\[Volume_i \] = volume of runoff event i (liter)

Estimation of Mass Removals
Total water column mass removal over the common periods were estimated as the sum of mass removals for the monitored events, scaled up to the total runoff volume treated by the baffle boxes during the study period.

\[Mass_{WCM} = \sum_{i=1}^{n} Volume_i * (EMC_{inf_i} - EMC_{eff_i}) * R \]

where:
\[Mass_{WCM} \] = water column mass removal in common period, (mg)
\[EMC_{inf_i} \] = influent EMC of runoff event i, (mg/L)
\[EMC_{eff_i} \] = effluent EMC of runoff event i, (mg/L)

Mass removals of stormwater pollutants in bottom chamber materials were calculated as the product of the accumulated bulk volume, its dry bulk density, and the solids pollutant concentration.

\[Mass_{BCM} = Volume_{bcm} * \rho_{bulk,bcm} * q_{bcm} \]

where:
\[Mass_{BCM} \] = mass removed in bottom chamber in common period, (mg)
\[Volume_{bcm} \] = bulk volume of bottom chamber material removed, (liter)
\[\rho_{\text{bulk,bcm}} = \text{bulk density of bottom chamber material, (kg/L)} \]
\[q_{\text{bcm}} = \text{solid phase constituent concentration, (mg/L)} \]

Mass removals of stormwater constituents in strainer screen materials were calculated as the product of the accumulated bulk volume, its dry bulk density, and the solid phase concentration.

\[\text{Mass}_{\text{SSM}} = \text{Volume}_{\text{ssm}} \cdot \rho_{\text{bulk,ssm}} \cdot q_{\text{ssm}} \]
(4)

where:
- \(\text{Mass}_{\text{SSM}} \) = mass removed in strainer screen in common period, (mg)
- \(\text{Volume}_{\text{ssm}} \) = bulk volume of strainer screen material removed (liter)
- \(\rho_{\text{bulk,ssm}} \) = bulk density of strainer screen material, (kg/L)
- \(q_{\text{ssm}} \) = solid phase constituent concentration, (mg/kg)

Equivalent Concentration

Traditional testing methods for the water column use an EMC measurement at the inflow and outflow points of a BMP. The difference in concentrations gives the percent removal efficiency of the device for one storm or group of storms based on the water column measurements. This method cannot be used for measuring gross solids because there is no method for measuring gross solids entering and leaving the BMP. The only measurement is mass of gross solids trapped in the BMP. Taking mass samples of gross solids upstream of the BMP would invalidate the measurement of masses trapped in the BMP.

Therefore an alternative method was used to determine the mass removal efficiency of the Rockledge baffle box. Whole mass measurements (not samples) of effluent and gross solids leaving the baffle box were taken with a specially designed screening device, see Appendix A. While this device accurately captured large floating gross solids, its ability to capture bypass sediment particles was limited to visual rather than measured quantification. Results from the bypass test showed a 99% capture efficiency for the Rockledge baffle box, i.e. the mass of leaves and sediment captured in the bypass device were only a few grams, whereas the masses captured in the baffle box were hundreds of pounds. By summing the total mass of gross solids trapped in the baffle box with the total mass leaving the baffle box, the total influent gross solids mass was calculated.

The equivalent concentration of captured solids and associated constituents is that which would occur if the captured material were homogenized and distributed uniformly into the entire volume of runoff treated during the common study period., (mg/L)

\[EC_{\text{BCM}} = \frac{\text{Mass}_{\text{BCM}}}{\text{Volume}_{\text{tot}}} \]
(5)

\[EC_{\text{SSM}} = \frac{\text{Mass}_{\text{SSM}}}{\text{Volume}_{\text{tot}}} \]
(6)

where:
- \(EC_{\text{BCM}} \) = equivalent concentration of bottom chamber material (mg/L)
- \(EC_{\text{SSM}} \) = equivalent concentration of strainer screen material (mg/L)

(7)
Derived Efficiency

The baffle box monitoring configuration was not able to fully measure all components of stormwater solids entering and leaving the baffle boxes, precluding conventional approaches to estimating mass removal efficiency. A new approach was developed to estimate mass removal efficiency for the baffle boxes in this study, based on the assumption that the influent water column samples plus the accumulation of solids in the baffle box account for all influent discharge mass, while effluent water column samples account for all discharge mass. The calculated mass removal efficiency is here termed the Derived Efficiency, and is calculated for individual constituents over the common period:

\[
DE = \frac{Mass_{BCM} + Mass_{SSM}}{Mass_{BCM} + Mass_{SSM} + Mass_{WC, Eff}} \times 100
\]

(8)

where: \(DE \) = derived efficiency in common period. The DE is an upper limit of removal efficiency because any passage of larger solids into the discharge would reduce the calculated efficiency.

Results and Discussion

Monitored Periods and Storm Events

Baffle box monitoring periods are shown in Table 7, along with days of operation, total treated volume, and water column scale-up factor for constituent mass. Monitored storm events are listed in Table 8, including precipitation associated with the monitored storm event and the total treated volume. A runoff volume time series for the Rockledge baffle box is shown in Figure 7, which illustrates the dates at which the individual storm event monitoring was conducted. The cumulative distribution of runoff events for Rockledge is shown in Figure 8, along with the position of the monitored storm events on the runoff volume distribution. Similar plots are shown for the Sarasota, Lincoln, and Parkway baffle boxes in Figures 9 through 14. Visual inspection of runoff distribution plots indicated that treated volumes of the monitored storm events were reasonably distributed over the runoff volumes.
Table 7 - Baffle box monitoring periods

<table>
<thead>
<tr>
<th>Site</th>
<th>Start Date</th>
<th>End Date</th>
<th>Number of Days</th>
<th>Total Volume, million gallon</th>
<th>Treated Runoff Volume, inch/year</th>
<th>Monitored Storm Volume, million gallon</th>
<th>Water Column Scale Up Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>10/11/06</td>
<td>3/9/09</td>
<td>880</td>
<td>2.94</td>
<td>2.8</td>
<td>0.290</td>
<td>10.1</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>11/1/06</td>
<td>1/27/09</td>
<td>818</td>
<td>13.0</td>
<td>10.2</td>
<td>1.16</td>
<td>11.2</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>10/2/06</td>
<td>2/26/09</td>
<td>878</td>
<td>17.9</td>
<td>2.7</td>
<td>0.232</td>
<td>77.2</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>10/2/06</td>
<td>2/26/09</td>
<td>878</td>
<td>5.79</td>
<td>3.8</td>
<td>0.560</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Table 8 - Monitored storm events

| Storm Event Number | Date | Precip., in | Runoff Volume, gal. | Date | Precip., in | Runoff Volume, gal. | Date | Precip., in | Runoff Volume, gal. | Date | Precip., in | Runoff Volume, gal. | Date | Precip., in | Runoff Volume, gal. | Date | Precip., in | Runoff Volume, gal. |
|--------------------|------------|-------------|---------------------|------------|-------------|---------------------|------------|-------------|---------------------|------------|-------------|---------------------|------------|-------------|---------------------|------------|-------------|---------------------|------------|-------------|---------------------|
| 1 | 3/16/07 | 0.52 | 12,765 | 11/16/06 | 0.86 | 33,791 | 4/10/07 | 1.11 | 30,693 | 5/14/07 | 1.19 | 29,020 |
| 2 | 4/10/07 | 0.81 | 17,932 | 12/21/07 | 0.48 | 75,241 | 5/13/07 | 0.72 | 11,362 | 7/25/07 | 0.46 | 2,306 |
| 3 | 7/24/07 | 0.41 | 17,249 | 6/21/08 | 0.61 | 46,855 | 5/14/07 | 0.72 | 25,639 | 8/14/07 | 2.34 | 165,287 |
| 4 | 7/31/07 | 0.79 | 36,207 | 7/8/08 | 1.24 | 122,926 | 5/24/07 | 0.27 | 10,503 | 12/14/07 | 0.74 | 20,311 |
| 5 | 8/2/07 | 1.47 | 77,943 | 8/4/08 | 0.67 | 91,645 | 7/23/07 | 0.42 | 35,146 | 3/6/08 | 2.32 | 377,526 |
| 6 | 8/23/07 | 0.92 | 43,817 | 8/8/08 | 1.16 | 197,450 | 7/25/07 | 0.68 | 40,321 | 3/30/08 | 2.61 | 291,140 |
| 7 | 10/18/07 | 1.24 | 53,900 | 8/9/08 | 0.79 | 108,026 | 7/30/07 | 0.49 | 43,728 | 10/18/08 | 1.30 | 46,646 |
| 8 | 2/12/08 | 0.89 | 30,392 | 9/9/08 | 2.72 | 395,393 | 2/12/08 | 1.16 | 34,748 | - | - | - |
| 9 | - | - | - | 9/30/08 | 0.50 | 24,639 | - | - | - | - | - | - |
| 10 | - | - | - | 10/6/08 | 0.91 | 32,968 | - | - | - | - | - | - |
| 11 | - | - | - | 1/13/09 | 0.71 | 30,745 | - | - | - | - | - | - |

Table 8 – Monitored storm events
treated by the baffle boxes over the time period of the study. The flow rate data collected by flow monitors was used directly to calculate treated volume for three of the four baffle boxes; a different procedure was applied to the Lincoln Ave. baffle box volume data due to a baseflow component providing significant flow volumes on single or multiple days with zero precipitation.

Due to the sampling and monitoring failures at the Sarasota site, autosampling data was compromised on several occasions. Gross solids mass cleanout data at that location was also compromised. The mass cleaned on 1/27/2009 from the screens and bottom chamber were estimated from County records rather from PBSJ measurements. Laboratory sampling of bottom sediments were qualified as being from a combination of three baffle boxes rather than just the Oriole baffle box. The overall usefulness of data from the Sarasota site was limited and did not meet program goals. Result summaries of pollutant removals from the Sarasota site are adjusted to reflect the time periods of accurate data collection.

Data collection at the other three sites had minor problems typically encountered in field sampling, but nothing significant like the Sarasota site. Therefore, the Rockledge site data collection over the entire time period was accurate and will be referenced more heavily than the Sarasota site for summaries and conclusions.

![Figure 6 - Rockledge flow record showing monitored storm events](image-url)
Figure 7 - Rockledge cumulative runoff distribution showing monitored storm events

Figure 8 - Sarasota flow record showing monitored storm events
Figure 9 - Sarasota cumulative runoff distribution showing monitored storm events

Figure 10 - Lincoln flow record showing monitored storm events
Figure 11 - Lincoln cumulative runoff distribution showing monitored storm events

Figure 12 - Parkway flow record showing monitored storm events
Pollutant Removal Summary

Event Mean Concentrations (Water Column)

Discussion in the section is limited to water column concentrations. Water column mass removals are discussed in the next section. Average EMC reduction performance of the four baffle boxes are summarized in Tables 9 through 12. An example regression of TSS discharge EMC to influent EMC is shown in Fig. 15 for the Rockledge baffle box (n=7). The correlation had an R^2 of 0.72. Average EMC reductions represent the average percent reduction in EMC based on the monitored storm events. The overall flow weighted mass removal efficiency (last column on Tables 9-12) accounts for the masses removed during the storm events. EMC performance of the four baffle boxes are compared in Table 14. Overall EMC reduction efficiency was moderate or negative for suspended solids, total nitrogen, and total phosphorus. EMCs were used for the water column mass calculations in the next section.

There was not a strong correlation between TN, TP, and fecal coliform effluent concentrations. Type 1 baffle boxes averaged a 46.9% increase between influent and effluent fecal coliform concentrations. Type 2 baffle boxes had mixed results with a 13.1% reduction at the Sarasota site and -249% increase in fecal coliform concentrations at the Rockledge site. See Table 13. Probable causes for fecal coliform growth in baffle boxes are the interevent anaerobic conditions discussed further in the Interevent Monitoring section.
Figure 14 - Regression of Total Suspended Solids EMCs at Rockledge

Effluent TSS, mg/L

Influent TSS, mg/L

Influent =

\[y = 0.773x \]

\[R^2 = 0.7219 \]
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Average EMC$_{inf}$</th>
<th>Average EMC$_{eff}$</th>
<th>Average % EMC Reduction</th>
<th>EMC % Reduction Range</th>
<th>Average EMC Reduction, (EMC${inf}$ - EMC${eff}$)</th>
<th>Flow Weighted Mass Removal Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids, mg/L</td>
<td>49.0</td>
<td>43.2</td>
<td>8.5</td>
<td>-57</td>
<td>68</td>
<td>5.7</td>
</tr>
<tr>
<td>Total Nitrogen, mg/L</td>
<td>2.19</td>
<td>2.14</td>
<td>-11.3</td>
<td>-67</td>
<td>36</td>
<td>0.05</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen, mg/L</td>
<td>1.75</td>
<td>1.85</td>
<td>-17.3</td>
<td>-77</td>
<td>19</td>
<td>-0.10</td>
</tr>
<tr>
<td>Organic Nitrogen, mg/L</td>
<td>1.56</td>
<td>1.62</td>
<td>-15.2</td>
<td>-71</td>
<td>24</td>
<td>-0.06</td>
</tr>
<tr>
<td>NH$_4^+$-N, mg/L</td>
<td>0.19</td>
<td>0.22</td>
<td>-31.6</td>
<td>-157</td>
<td>72</td>
<td>-0.04</td>
</tr>
<tr>
<td>NO$_x$-N, mg/L</td>
<td>0.45</td>
<td>0.30</td>
<td>10.2</td>
<td>-18</td>
<td>68</td>
<td>0.15</td>
</tr>
<tr>
<td>Total Phosphorus, mg/L</td>
<td>0.56</td>
<td>0.57</td>
<td>-8.2</td>
<td>-27</td>
<td>18</td>
<td>-0.01</td>
</tr>
<tr>
<td>Organic Phosphorus, mg/L</td>
<td>0.23</td>
<td>0.23</td>
<td>-4.7</td>
<td>-27</td>
<td>17</td>
<td>-0.003</td>
</tr>
<tr>
<td>PO$_4$-P, mg/L</td>
<td>0.33</td>
<td>0.34</td>
<td>-13.3</td>
<td>-57</td>
<td>18</td>
<td>-0.01</td>
</tr>
<tr>
<td>Fecal Coliform, counts/100 ml</td>
<td>34,517</td>
<td>78,014</td>
<td>-249</td>
<td>-841</td>
<td>75</td>
<td>0.10000</td>
</tr>
<tr>
<td>Cadmium, ug/L</td>
<td>0.00085</td>
<td>0.00059</td>
<td>9.4</td>
<td>0</td>
<td>47</td>
<td>-0.08200</td>
</tr>
<tr>
<td>Chromium, ug/L</td>
<td>0.00321</td>
<td>0.00293</td>
<td>9.5</td>
<td>-28</td>
<td>34</td>
<td>-0.02000</td>
</tr>
<tr>
<td>Copper, ug/L</td>
<td>0.00773</td>
<td>0.00768</td>
<td>0.014</td>
<td>-34</td>
<td>56</td>
<td>0.00000</td>
</tr>
<tr>
<td>Zinc, ug/L</td>
<td>0.07523</td>
<td>0.06315</td>
<td>5.1</td>
<td>-136</td>
<td>35</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Table 9 - Rockledge baffle box EMC performance
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Average EMC_{inf}</th>
<th>Average EMC_{eff}</th>
<th>Average % EMC Reduction</th>
<th>EMC % Reduction Range</th>
<th>Average EMC Reduction, (EMC_{inf} - EMC_{eff})</th>
<th>Flow Weighted Mass Removal Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids, mg/L</td>
<td>108.4</td>
<td>66.5</td>
<td>35.1</td>
<td>-65 - 89</td>
<td>41.9 - 49.7</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen, mg/L</td>
<td>3.62</td>
<td>2.42</td>
<td>30.6</td>
<td>14 - 52</td>
<td>1.20 - 41.2</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen, mg/L</td>
<td>3.48</td>
<td>2.27</td>
<td>32.5</td>
<td>15 - 52</td>
<td>1.22 - 42.5</td>
<td></td>
</tr>
<tr>
<td>Organic Nitrogen, mg/L</td>
<td>3.26</td>
<td>2.12</td>
<td>31.8</td>
<td>15 - 52</td>
<td>1.14 - 42.8</td>
<td></td>
</tr>
<tr>
<td>NH_{4}^-N, mg/L</td>
<td>0.22</td>
<td>0.15</td>
<td>20.7</td>
<td>-84 - 78</td>
<td>0.07 - 33.4</td>
<td></td>
</tr>
<tr>
<td>NO_{2}-N, mg/L</td>
<td>0.13</td>
<td>0.15</td>
<td>-95.3</td>
<td>-500 - 12</td>
<td>-0.02 - 35.5</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus, mg/L</td>
<td>0.59</td>
<td>0.44</td>
<td>21.6</td>
<td>-3 - 59</td>
<td>0.15 - 39.5</td>
<td></td>
</tr>
<tr>
<td>Organic Phosphorus, mg/L</td>
<td>0.34</td>
<td>0.22</td>
<td>37.7</td>
<td>-18 - 98</td>
<td>0.123 - 43.8</td>
<td></td>
</tr>
<tr>
<td>PO_{4}-P, mg/L</td>
<td>0.25</td>
<td>0.22</td>
<td>7.6</td>
<td>-17 - 67</td>
<td>0.02 - 32.1</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform, counts/100 ml</td>
<td>74,250</td>
<td>40,250</td>
<td>13</td>
<td>-19 - 25</td>
<td>0.20900 - 57.3</td>
<td></td>
</tr>
<tr>
<td>Chromium, ug/L</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>-396 - 66</td>
<td>-0.04300 - Cr</td>
<td></td>
</tr>
<tr>
<td>Copper, ug/L</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>-480 - 96</td>
<td>0.00500 - Cu</td>
<td></td>
</tr>
<tr>
<td>Zinc, ug/L</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>-93 - 109</td>
<td>0.00000 Zn</td>
<td></td>
</tr>
</tbody>
</table>

Table 10 - Sarasota baffle box EMC performance
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Average EMC<sub>inf</sub></th>
<th>Average EMC<sub>eff</sub></th>
<th>Average % EMC Reduction</th>
<th>EMC % Reduction Range</th>
<th>Flow Weighted Mass Removal Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids, mg/L</td>
<td>55.8</td>
<td>35.5</td>
<td>12.3</td>
<td>-61 - 78</td>
<td>20.3 - 41.3</td>
</tr>
<tr>
<td>Total Nitrogen, mg/L</td>
<td>1.00</td>
<td>0.97</td>
<td>-8.3</td>
<td>-45 - 65</td>
<td>0.03 - 11.1</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen, mg/L</td>
<td>0.81</td>
<td>0.73</td>
<td>-5.5</td>
<td>-49 - 67</td>
<td>0.08 - 17.6</td>
</tr>
<tr>
<td>Organic Nitrogen, mg/L</td>
<td>0.72</td>
<td>0.65</td>
<td>-7.6</td>
<td>-49 - 65</td>
<td>0.07 - 16.0</td>
</tr>
<tr>
<td>NH<sub>4</sub>-N, mg/L</td>
<td>0.10</td>
<td>0.08</td>
<td>8.3</td>
<td>-51 - 87</td>
<td>0.02 - 29.0</td>
</tr>
<tr>
<td>NO<sub>2</sub>-N, mg/L</td>
<td>0.19</td>
<td>0.24</td>
<td>-50.7</td>
<td>-373 - 17</td>
<td>-0.05 - 16.8</td>
</tr>
<tr>
<td>Total Phosphorus, mg/L</td>
<td>0.17</td>
<td>0.15</td>
<td>1.5</td>
<td>-20 - 58</td>
<td>0.02 - 12.8</td>
</tr>
<tr>
<td>Organic Phosphorus, mg/L</td>
<td>0.13</td>
<td>0.12</td>
<td>-1.1</td>
<td>-26 - 62</td>
<td>0.011 - 12.5</td>
</tr>
<tr>
<td>PO<sub>4</sub>-P, mg/L</td>
<td>0.04</td>
<td>0.03</td>
<td>5.4</td>
<td>-44 - 36</td>
<td>0.00 - 14.0</td>
</tr>
<tr>
<td>Fecal Coliform, counts/100 ml</td>
<td>5,088</td>
<td>10,505</td>
<td>-89</td>
<td>-600 - 75</td>
<td>0.01690 - 32.4</td>
</tr>
<tr>
<td>Cadmium, ug/L</td>
<td>0.00066</td>
<td>0.00063</td>
<td>9.4</td>
<td>0 - 49</td>
<td>-0.01100 - 6.9</td>
</tr>
<tr>
<td>Chromium, ug/L</td>
<td>0.00311</td>
<td>0.00308</td>
<td>-13.4</td>
<td>-75 - 73</td>
<td>0.00200 - 12.2</td>
</tr>
<tr>
<td>Copper, ug/L</td>
<td>0.01309</td>
<td>0.01168</td>
<td>7.612</td>
<td>-50 - 75</td>
<td>0.000000 - 24.0</td>
</tr>
<tr>
<td>Zinc, ug/L</td>
<td>0.13700</td>
<td>0.08084</td>
<td>18.7</td>
<td>-28 - 129</td>
<td>0.000000 - 38.9</td>
</tr>
</tbody>
</table>

Table 11 - Lincoln baffle box EMC performance
Table 12 - Parkway baffle box EMC Performance

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Average EMC<sub>inf</sub></th>
<th>Average EMC<sub>eff</sub></th>
<th>Average % EMC Reduction</th>
<th>EMC % Reduction Range</th>
<th>Average EMC Reduction, (EMC<sub>inf</sub>-EMC<sub>eff</sub>)</th>
<th>Flow Weighted Mass Removal Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids, mg/L</td>
<td>39.5</td>
<td>45.7</td>
<td>-38.5</td>
<td>-122</td>
<td>4</td>
<td>-5.6</td>
</tr>
<tr>
<td>Total Nitrogen, mg/L</td>
<td>2.48</td>
<td>2.14</td>
<td>5.6</td>
<td>-53</td>
<td>52</td>
<td>0.35</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen, mg/L</td>
<td>1.94</td>
<td>1.69</td>
<td>4.1</td>
<td>-48</td>
<td>55</td>
<td>0.25</td>
</tr>
<tr>
<td>Organic Nitrogen, mg/L</td>
<td>1.80</td>
<td>1.57</td>
<td>3.1</td>
<td>-61</td>
<td>56</td>
<td>0.24</td>
</tr>
<tr>
<td>NH<sub>4</sub>-N, mg/L</td>
<td>0.14</td>
<td>0.12</td>
<td>-112.8</td>
<td>-882</td>
<td>65</td>
<td>0.02</td>
</tr>
<tr>
<td>NO<sub>3</sub>-N, mg/L</td>
<td>0.54</td>
<td>0.45</td>
<td>2.7</td>
<td>-59</td>
<td>43</td>
<td>0.09</td>
</tr>
<tr>
<td>Total Phosphorus, mg/L</td>
<td>0.51</td>
<td>0.56</td>
<td>-15.3</td>
<td>-90</td>
<td>18</td>
<td>-0.05</td>
</tr>
<tr>
<td>Organic Phosphorus, mg/L</td>
<td>0.12</td>
<td>0.15</td>
<td>-20.1</td>
<td>-65</td>
<td>51</td>
<td>-0.028</td>
</tr>
<tr>
<td>PO<sub>4</sub>-P, mg/L</td>
<td>0.39</td>
<td>0.41</td>
<td>-21.1</td>
<td>-181</td>
<td>9</td>
<td>-0.02</td>
</tr>
<tr>
<td>Fecal Coliform, counts/100 mL</td>
<td>37,736</td>
<td>61,419</td>
<td>-4</td>
<td>42</td>
<td>40</td>
<td>0.06000</td>
</tr>
<tr>
<td>Cadmium, ug/L</td>
<td>0.00044</td>
<td>0.00041</td>
<td>-3.8</td>
<td>-100</td>
<td>28</td>
<td>-0.29000</td>
</tr>
<tr>
<td>Chromium, ug/L</td>
<td>0.00259</td>
<td>0.00246</td>
<td>5.5</td>
<td>-7</td>
<td>8</td>
<td>0.01200</td>
</tr>
<tr>
<td>Copper, ug/L</td>
<td>0.00793</td>
<td>0.00809</td>
<td>-19.538</td>
<td>-125</td>
<td>53</td>
<td>0.00000</td>
</tr>
<tr>
<td>Zinc, ug/L</td>
<td>0.04267</td>
<td>0.04583</td>
<td>-19.0</td>
<td>-233</td>
<td>3</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Table 13 - Summary pollutant concentrations for all four baffle boxes

<table>
<thead>
<tr>
<th>Site</th>
<th>Baffle Box Type</th>
<th>Average TN Effluent Conc. (mg/L)</th>
<th>Average TP Effluent Conc. (mg/L)</th>
<th>Average Fecal Coliform Effluent Concentration (counts/100mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkway Blvd, Stuart</td>
<td>1</td>
<td>2.14</td>
<td>0.56</td>
<td>61,419</td>
</tr>
<tr>
<td>Lincoln Lane, Stuart</td>
<td>1</td>
<td>0.97</td>
<td>0.15</td>
<td>10,505</td>
</tr>
<tr>
<td>Average Type 1</td>
<td></td>
<td>1.56</td>
<td>0.36</td>
<td>35,962</td>
</tr>
<tr>
<td>Little John Lane, Rockledge</td>
<td>2</td>
<td>2.14</td>
<td>0.57</td>
<td>78,014</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>2</td>
<td>2.42</td>
<td>0.44</td>
<td>40,250</td>
</tr>
<tr>
<td>Average Type 2</td>
<td></td>
<td>2.18</td>
<td>0.51</td>
<td>59,132</td>
</tr>
</tbody>
</table>
Table 14 - Comparison of average baffle box EMC performance

<table>
<thead>
<tr>
<th>Site</th>
<th>Average EMC Removal Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>8.5</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>35.1</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>12.3</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>-38.5</td>
</tr>
<tr>
<td>Average</td>
<td>4.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Total nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>-11.3</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>30.6</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>-8.3</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>5.6</td>
</tr>
<tr>
<td>Average</td>
<td>4.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Total phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>-8.2</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>21.6</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>1.5</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>-15.3</td>
</tr>
<tr>
<td>Average</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Fecal coliforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>-249</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>13.1</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>-89.5</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>-4.2</td>
</tr>
<tr>
<td>Average</td>
<td>-82.4</td>
</tr>
</tbody>
</table>

Table 14 - Comparison of average baffle box EMC performance

Mass in Water Column, Bottom Chamber and Sieve Screen

The masses of constituents contained in the solids that accumulated in the bottom chambers and sieve screens are summarized in Tables 15 through 18 respectively for the Rockledge, Sarasota, Lincoln, and Parkway baffle boxes. Also shown is the calculated mass removed in the water column based on EMC monitoring discussed in the previous section. The ratio of the total accumulated solids mass to calculated water column mass scales the mass calculations.

In the material collected from the Rockledge sieve screen, the mass of non-dissolved solids, TN, and TP in the < 1 mm fraction were greater than or similar to the > 1 mm fraction. The solids in the < 1 mm fraction were a combination of sediment, and fine organic debris. The % organic matter in the Rockledge > 1 mm fraction were 73.3 and 11% for Cleanouts 1 and 2, and for the < 1 mm fraction were 30 and 51.6%.

For the Sarasota baffle box, the % organic matter in the > 1 mm fraction was 83% and for the < 1 mm fraction was 54.6%. For the Rockledge baffle box, accumulated solids are 26.8 times the water column EMC calculation, indicating that the autosampler is not representing all stormwater solids in the stormwater entering the baffle box. Negative values for nitrogen and phosphorus indicate that these parameters were actually being exported during storm events. Variable results for other baffles boxes reflect the flow and quality characteristics of runoff,
limited solids mass that accumulate within the baffle box, and uncertainties in sampling, analysis and quantification of solid materials that accumulate within the baffle box.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Bottom Chambers</th>
<th>Strainer Screen</th>
<th>Total Chamber + Screen</th>
<th>Water Column</th>
<th>Water Column Mass/ Accumulated Solids Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-dissolved Solids</td>
<td>3,479</td>
<td>1,012</td>
<td>5,869</td>
<td>110</td>
<td>0.019</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>16.1</td>
<td>0.79</td>
<td>17.99</td>
<td>-1.91</td>
<td>-0.106</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>1.1</td>
<td>0.64</td>
<td>2.80</td>
<td>-0.32</td>
<td>-0.116</td>
</tr>
</tbody>
</table>

Table 15 - Rockledge baffle box constituent mass (lb)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Bottom Chambers</th>
<th>Strainer Screen</th>
<th>Total Chamber + Screen</th>
<th>Water Column</th>
<th>Water Column Mass/ Accumulated Solids Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-dissolved Solids</td>
<td>1627</td>
<td>2491</td>
<td>7704</td>
<td>7232</td>
<td>0.94</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>9.0</td>
<td>1.64</td>
<td>32</td>
<td>200</td>
<td>6.3</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>1.4</td>
<td>0.26</td>
<td>5.81</td>
<td>29</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table 16 - Sarasota baffle box constituent mass (lb)
Table 17 - Lincoln baffle box constituent mass (lb)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Bottom Chambers</th>
<th>Water Column</th>
<th>Water Column Mass/Accumulated Solids Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-dissolved Solids</td>
<td>3.014</td>
<td>3.521</td>
<td>1.17</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.28</td>
<td>16.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>1.05</td>
<td>3.28</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Table 18 - Parkway baffle box constituent mass (lb)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Bottom Chambers</th>
<th>Water Column</th>
<th>Water Column Mass/Accumulated Solids Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-dissolved Solids</td>
<td>87</td>
<td>-195</td>
<td>-2.2</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.030</td>
<td>19.1</td>
<td>628</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>0.017</td>
<td>-1.95</td>
<td>-116</td>
</tr>
</tbody>
</table>

Table 19 - Summary mass removals by baffle box type

<table>
<thead>
<tr>
<th>Average Parameter Mass Removals Over Monitoring Period</th>
<th>Type 1 Baffle Box</th>
<th>Type 2 Baffle Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN Removed From Water Column (lb)</td>
<td>35.1</td>
<td>198.1</td>
</tr>
<tr>
<td>TN Removed From Vault (lb)</td>
<td>1.31</td>
<td>25.1</td>
</tr>
<tr>
<td>TN Removed From Screens (lb)</td>
<td>NA</td>
<td>24.57</td>
</tr>
<tr>
<td>TP Removed From Water Column (lb)</td>
<td>1.33</td>
<td>28.68</td>
</tr>
<tr>
<td>TP Removed From Vault (lb)</td>
<td>1.07</td>
<td>2.5</td>
</tr>
<tr>
<td>TP Removed From Screens (lb)</td>
<td>NA</td>
<td>6.15</td>
</tr>
</tbody>
</table>

Table 17 - Lincoln baffle box constituent mass (lb)

Table 18 - Parkway baffle box constituent mass (lb)

Table 19 - Summary mass removals by baffle box type
Equivalent Concentrations

Equivalent concentrations based on treatment volume and mass removals from the whole study period are shown in Table 20 for solids, nitrogen and phosphorus. ECs were higher for the Type 2 baffle box that included the sieve screen, but the higher EC in Type 2 baffle boxes also reflected the characteristics of the contributing watershed. The contributing watersheds to the Type 2 baffle boxes (Rockledge and Sarasota) had large macroscopic vegetation inputs and limited upstream opportunity for attenuation of pollutant mass. The Stuart sites had relatively limited organic matter input and possible upstream attenuation.

<table>
<thead>
<tr>
<th>Site</th>
<th>Equivalent Concentration of Accumulated Solids (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total non-dissolved solids</td>
</tr>
<tr>
<td>Little John Drive, Rockledge City</td>
<td>183</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>37.9</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City</td>
<td>20.2</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>1.8</td>
</tr>
<tr>
<td>Average</td>
<td>60.7</td>
</tr>
</tbody>
</table>

Table 20 - Equivalent concentrations of accumulated solids

Derived Efficiencies

Derived Efficiencies based on total mass removals are summarized in Table 1. DE for Type 1 baffle boxes averaged 0.5% for nitrogen and 2.3% for phosphorus. Type 2 baffle boxes averaged 19.1% DE for TN and 15.5% DE for TP. The higher removal efficiencies of Type 2 baffle boxes was attributed to the sieve screen capture of large floating and suspended materials in Type 2 boxes. Note that mass loadings from leaves were in drainage basins having 44% to 87% tree canopy coverage.
<table>
<thead>
<tr>
<th>Site</th>
<th>Baffle Box Type</th>
<th>TN Mass Removal Efficiency (%)</th>
<th>TP Mass Removal Efficiency (%)</th>
<th>TN EMC Removal Efficiency (%)</th>
<th>TP EMC Removal Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkway Blvd, Stuart</td>
<td>1</td>
<td>0.03</td>
<td>0.06</td>
<td>5.60</td>
<td>-15.30</td>
</tr>
<tr>
<td>Lincoln Lane, Stuart</td>
<td>1</td>
<td>1.00</td>
<td>4.50</td>
<td>-8.30</td>
<td>1.50</td>
</tr>
<tr>
<td>Average Type 1</td>
<td></td>
<td>0.50</td>
<td>2.30</td>
<td>-1.35</td>
<td>-6.90</td>
</tr>
<tr>
<td>Little John Lane, Rockledge</td>
<td>2</td>
<td>28.10</td>
<td>19.40</td>
<td>-11.30</td>
<td>-8.20</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>2</td>
<td>10.00</td>
<td>11.60</td>
<td>30.60</td>
<td>21.60</td>
</tr>
<tr>
<td>Average Type 2</td>
<td></td>
<td>19.05</td>
<td>15.50</td>
<td>9.65</td>
<td>6.70</td>
</tr>
</tbody>
</table>

Table 21 - Mass removal efficiencies of monitored baffle boxes

Polycyclic Aromatic Hydrocarbons
Polycyclic aromatic hydrocarbon (PAH) concentrations in accumulated solids are shown in Figures 16 through 19. PAH levels in bottom chamber and sieve screen solids are summarized in Tables 22 and 23 based respectively on total dry solids and solid organic matter. For the Rockledge baffle box, PAH levels were highest in the sieve screen captured material that was smaller than 1 mm, and both size fractions of the sieve screen material had higher PAH levels than the chamber sediment (Fig. 16). The PAH levels were below the exposure limits found in Chapter 62-777, Table II, F.A.C., with the exception of Benzo (A) pyrene, which was slightly higher than residential and industrial exposure limits.
Figure 15 – Polycyclic aromatic hydrocarbons in Rockledge solids

Figure 16 - Polycyclic aromatic hydrocarbons in Sarasota solids (bottom chamber PAH reported as less than detection limit)
Figure 17 - Polycyclic aromatic hydrocarbons in Lincoln solids.

Figure 18 - Polycyclic aromatic hydrocarbons in Parkway solids.
<table>
<thead>
<tr>
<th>Site</th>
<th>Total PAH, mg/kg solids</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom chamber</td>
<td>Sieve screen > 1 mm</td>
<td>Sieve screen < 1 mm</td>
</tr>
<tr>
<td>Little John Drive, Rockledge City First Cleanout</td>
<td>7.6</td>
<td>19.8</td>
<td>28.2</td>
</tr>
<tr>
<td>Little John Drive, Rockledge City Second Cleanout</td>
<td>1.7</td>
<td>52.9</td>
<td>70.0</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>ND</td>
<td>ND</td>
<td>3.02</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City First Cleanout</td>
<td>12.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City Second Cleanout</td>
<td>15.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>0.66</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 22 - Total polycyclic aromatic hydrocarbons in accumulated solids

<table>
<thead>
<tr>
<th>Site</th>
<th>Total PAH, mg/kg solid organic matter</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom chamber</td>
<td>Sieve screen > 1 mm</td>
<td>Sieve screen < 1 mm</td>
</tr>
<tr>
<td>Little John Drive, Rockledge City First Cleanout</td>
<td>60.7</td>
<td>27.1</td>
<td>94.0</td>
</tr>
<tr>
<td>Little John Drive, Rockledge City Second Cleanout</td>
<td>10.0</td>
<td>480.9</td>
<td>135.6</td>
</tr>
<tr>
<td>Oriole Drive, Sarasota</td>
<td>5.52</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City First Cleanout</td>
<td>29.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lincoln Avenue, Stuart City Second Cleanout</td>
<td>266</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SE Parkway Drive, Stuart City</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 23 - Organic carbon normalized total polycyclic aromatic hydrocarbons levels
Heavy Metals

The reported levels of heavy metals in solids materials from sieve screen and bottom chamber are listed below.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bottom Chamber Material, mg/kg dry weight</th>
<th>Sieve Screen Material, mg/kg dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cleanout 1</td>
<td>Cleanout 2</td>
</tr>
<tr>
<td></td>
<td>> 1 mm</td>
<td>< 1 mm</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0404</td>
<td>2.10</td>
</tr>
<tr>
<td>Chromium</td>
<td>4.6</td>
<td>29</td>
</tr>
<tr>
<td>Copper</td>
<td>8.17</td>
<td>15.6</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.59</td>
<td>14</td>
</tr>
<tr>
<td>Zinc</td>
<td>58.5</td>
<td>49.8</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0162</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Table 24 - Metals concentration in Rockledge water column and solids

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bottom Chamber Material, mg/kg dry weight</th>
<th>Sieve Screen Material, mg/kg dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 1 mm</td>
<td>< 1 mm</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.55</td>
<td>0.14</td>
</tr>
<tr>
<td>Chromium</td>
<td>6.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Copper</td>
<td>22.6</td>
<td>33.4</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Zinc</td>
<td>116</td>
<td>158</td>
</tr>
<tr>
<td>Mercury</td>
<td>-</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Table 25 - Metals concentration in Sarasota water column and solids
Table 26 - Metals concentration in Lincoln water column and solids

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bottom Chamber Material, mg/kg dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cleanout 1</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.144</td>
</tr>
<tr>
<td>Chromium</td>
<td>5.5</td>
</tr>
<tr>
<td>Copper</td>
<td>19.4</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.03</td>
</tr>
<tr>
<td>Zinc</td>
<td>290</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0158</td>
</tr>
</tbody>
</table>

Table 26 - Metals concentration in Lincoln water column and solids

Table 27 - Metals concentration in Parkway water column and solids

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bottom Chamber Material, mg/kg dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cleanout 1</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.87</td>
</tr>
<tr>
<td>Chromium</td>
<td>12.0</td>
</tr>
<tr>
<td>Copper</td>
<td>2.8</td>
</tr>
<tr>
<td>Nickel</td>
<td>5.70</td>
</tr>
<tr>
<td>Zinc</td>
<td>44</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0060</td>
</tr>
</tbody>
</table>

Table 27 - Metals concentration in Parkway water column and solids
Interevent Monitoring

A primary mechanism by which baffle boxes remove stormwater pollutants is by sedimentation of stormwater solids that enter during storm events, sieving in Type 2 baffle boxes, and by retention of large macroscopic solids that may bypass the sieve screen and become trapped beneath it and ultimately sink to the bottom. In interevent periods, the organic materials in the solids that collect in bottom chambers can biologically degrade. Organic matter degradation could be expected to result in oxygen utilization with possible anoxic or anaerobic conditions and release of inorganic nutrients from the decomposing solids. Inorganic nutrients in the baffle box water column could be flushing into the receiving water during the initial period of the next storm event, or continuously flushed out if there was a baseflow during interevent periods. A limited scope sampling program was implemented as a first step in assessing interevent water quality within baffle boxes. Another scope task was to evaluate methods of collection and laboratory analyses for the materials that accumulate in the sieve screens of Type 2 baffle boxes. This material is a mixture of large size vegetation (leaves, plant parts), smaller organic materials, and inorganic particles. The estimate of the mass of pollutant removed in solids that accumulated within sieve screens depends on the sampling, sample preparation, and analytical methods used to characterize these materials. Interevent monitoring and sampling of the four baffle boxes was conducted on 3/25/2009. Monitoring included measurements of dissolved oxygen profiles, point measurements of temperature, pH, alkalinity and oxidation reduction potential, and collection of water column samples from a single point in the downstream baffle box chamber for laboratory analyses of suspended solids, BOD, COD, and nitrogen and phosphorus species. Water column samples were stored on ice and delivered to Pace Analytical Services, Inc. Tampa, FL on 3/26/2009.

Dissolved oxygen profiles are shown in Figure 20. Dissolved oxygen in the Rockledge and Sarasota baffle boxes was zero from 6 in. below the surface to the bottom. The Lincoln and Parkway baffle boxes had DO greater than 4 throughout their depth. For all baffle boxes, DO levels were constant through the vertical profile of the baffle boxes, with very limited depth stratification. Water column field parameter results for the interevent monitoring are summarized in Table 28. The water quality of the Type 2 baffle boxes (Rockledge and Sarasota) was distinct from the Type 1 baffle boxes (Lincoln and Parkway). Rockledge and Sarasota exhibited zero dissolved oxygen, highly negative oxidation reduction potentials, and higher chemical and biochemical oxygen demand, total nitrogen, and total phosphorus. Highly negative oxidation reduction potentials indicate that oxygen has been consumed and reducing conditions have been established by biochemical degradation of organic matter.

These observations are consistent with the hypothesis that organic matter captured in the Rockledge and Sarasota baffle boxes undergoes biological decomposition within the baffle box, leading to depletion of molecular oxygen, anaerobic redox conditions, and release of inorganic and soluble nutrient species into the overlying water column within the baffle box. The data in Figure 20 provide the first known documentation of patterns of DO depletion in Florida baffle boxes, due ostensibly to interevent biochemical processes. Organic matter decomposition was apparently more significant in the Rockledge and Sarasota baffle boxes, while the Lincoln and Parkway baffle box DO and ORP indicated a lower predominance of
organic matter decomposition. Several factors could contribute to the observed difference in
the interevent water quality between the Type 2 and Type 1 baffle boxes. The most significant
could be the characteristics of the contributing watershed, particularly in terms of the
vegetative contributions from the watershed. Rockledge and Sarasota watersheds were
generally highly vegetated while vegetation coverage in the Lincoln and Parkway watersheds
was much lighter.

![Dissolved Oxygen Profiles](image)

Figure 19 – Dissolved oxygen profiles in baffle boxes

The organic matter and vegetation that are subject to biological decomposition in a Type 2
baffle box can include materials that are retained in the sieve screen overlying the water
column and materials that are not retained in the sieve screen that end up in the bottom
chambers. Organic particulate material can enter the bottom chamber through bypass of the
sieve screen or by transport of smaller organic matter through the sieve screen itself,
particularly when the screen has been cleaned and a mat layer has not built up. Storm-
transported vegetation that enters a Type 1 baffle box could pass directly through the baffle
box into the receiving water, thus not contributing to water quality modifications in the baffle
box itself. Another factor is the contribution of baseflow, which could act to continuously
dilute soluble nutrients releases from decaying organic matter.

The second interevent monitoring task was to collect solid materials that accumulated in the
sieve screens of the Type 2 baffle boxes (Rockledge and Sarasota) and to provide subsample
splits to different laboratories for nitrogen and phosphorus analyses using wet chemistry and
composting analytical methods. Three separate samples of solid material accumulated in the
Rockledge sieve screens were collected. Each sample was subdivided into three subsamples, which were shipped to three separate laboratories for analyses. The three laboratories that received solid material subsamples were A&L Great Lakes Laboratories, Inc. (A&L), Ft. Wayne, IN (water and compost methods); Columbia Analytical Services, Inc. (Columbia), Jacksonville, FL (water methods); and the Institute of Food and Agricultural Sciences Analytical Services Laboratories (IFAS), Environmental Water Quality Laboratory, University of Florida, Gainesville, FL (water methods).

A primary question investigated was the appropriateness of using water and wastewater test methods for the sediments and biosolids captured in the baffle box screens and chambers. An alternative to water based methods was to use analytical methods from the solid waste and agricultural industries. A&L used test procedures from Standard Methods for the Examination of Water and Wastewater and Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (Table 29). In addition, A&L used Test Methods for the Examination of Composting and Compost, as shown in Table 30. Columbia used Methods of Chemical Analysis of Water and Waste analytical procedures.

On the sample date the sieve screen in the Sarasota baffle box contained negligible quantities of solid material so sample collection was not possible. The Rockledge sieve screen materials contained highly visible macroscopic plant matter and also small organic and non-organic sediment material.
Results of analyses of the solid materials removed from the Rockledge sieve screen are presented in Tables 29 and 30. Analytical results were provided by two laboratories (A & D and Columbia). The third laboratory (IFAS) was in possession of the samples for over four months and finally reported that nutrient analyses could not be performed due to the unique characteristics of the sample matrix and technical issues associated with sample processing.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rockledge</th>
<th>Sarasota</th>
<th>Lincoln</th>
<th>Parkway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1300</td>
<td>1700</td>
<td>0730</td>
<td>0930</td>
</tr>
<tr>
<td>Temperature, C</td>
<td>19.4</td>
<td>21.40</td>
<td>21.5</td>
<td>21.70</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
<td>7.0</td>
<td>7.1</td>
<td>7.5</td>
</tr>
<tr>
<td>Alkalinity, mg/L as CaCO$_3$</td>
<td>73</td>
<td>144</td>
<td>44</td>
<td>125</td>
</tr>
<tr>
<td>Dissolved Oxygen, mg/L</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
<td>4.8</td>
</tr>
<tr>
<td>ORP, mV</td>
<td>-306</td>
<td>-357</td>
<td>117</td>
<td>138</td>
</tr>
<tr>
<td>Total suspended solids, mg/L</td>
<td>8.5</td>
<td>8.3</td>
<td>12</td>
<td>5.0</td>
</tr>
<tr>
<td>Carboneceous biochemical oxygen demand, five day, mg/L</td>
<td>10</td>
<td>28</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Chemical oxygen demand, mg/L</td>
<td>91</td>
<td>120</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>Total nitrogen, mg/L</td>
<td>0.03</td>
<td>0.03</td>
<td>0.10</td>
<td>0.97</td>
</tr>
<tr>
<td>Total kjeldahl nitrogen, mg/L</td>
<td>2.2</td>
<td>3.9</td>
<td>0.95</td>
<td>0.65</td>
</tr>
<tr>
<td>Organic nitrogen, mg/L</td>
<td>-0.25</td>
<td>-1.20</td>
<td>-0.14</td>
<td>-0.02</td>
</tr>
<tr>
<td>Ammonia nitrogen, mg/L</td>
<td>.25</td>
<td>1.20</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td>(Nitrate+nitrite) nitrogen, mg/L</td>
<td>0.03</td>
<td>0.03</td>
<td>0.10</td>
<td>0.97</td>
</tr>
<tr>
<td>Total phosphorus, mg/L</td>
<td>.89</td>
<td>1.40</td>
<td>0.13</td>
<td>0.57</td>
</tr>
<tr>
<td>Organic phosphorus, mg/L</td>
<td>0.29</td>
<td>0.30</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>Orthophosphorus, mg/L</td>
<td>0.60</td>
<td>1.1</td>
<td>0.029</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 28 - Average water column values of field parameters
Note that A&L used a volatile solids method to estimate organic matter in the solids while Columbia used a total organic carbon analysis.

For the same reported analyte, the percent error between A&L and Columbia results was calculated as the absolute difference in the reported A&L and Columbia results divided by the absolute value of the A&L result, multiplied by 100 (Table 29). For wet chemistry analyses, the average percent error in the total solids analyses reported by the two laboratories was 0.73% (n=3) with a range of -13.2 to +7.4%. For total kjeldahl nitrogen, the average percent error was +14.5% (n=3) and with a range of -1.8 to +48.4%. TKN results in Columbia Subsample 1 was particularly lower than other TKN values and was likely due to difficulties in processing of the subsample prior to digestion. The average percent error for total phosphorus was +29.3% (n=3) and with a range of +26.3 to +33.8%. The variation in the two reported results was significant for both nitrogen and phosphorus. The different results could have a significant effect on calculations of nutrient removal in the material captured on sieve screens of Type 2 baffle boxes. Inspection of the water method results for TP (Table 29) indicates that results were relatively consistent among the three subsamples for both A&L (mean = 1500, range = 1481 to 1524) and Columbia (mean = 1060, range = 980 to 1100). Mean TP reported by A&L was 41% higher than Columbia, however, indicating that interlaboratory variability for these types of samples can be significant.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parameter</th>
<th>A&L</th>
<th>Columbia</th>
<th>A&L Method</th>
<th>Columbia Method</th>
<th>Percent Error<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Solids, %</td>
<td>24.84</td>
<td>23</td>
<td>SM (20th) 2540G</td>
<td>160.3MOD</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Volatile Solids, %</td>
<td>89</td>
<td>-</td>
<td>SM (20th) 2540G</td>
<td>SM-4500 N(org)B & NH</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen, mg/kg</td>
<td>16,659</td>
<td>8,600</td>
<td>SM-4500 N(org)B & NH</td>
<td>351.2</td>
<td>48.4</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus, mg/kg</td>
<td>1,481</td>
<td>980</td>
<td>SW846-6010B</td>
<td>365.1</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td>Total organic carbon, mg/kg</td>
<td>-</td>
<td>10,000</td>
<td>9060M</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Total Solids, %</td>
<td>19.42</td>
<td>22</td>
<td>SM (20th) 2540G</td>
<td>160.3MOD</td>
<td>-13.3</td>
</tr>
<tr>
<td></td>
<td>Volatile Solids, %</td>
<td>90</td>
<td>-</td>
<td>SM (20th) 2540G</td>
<td>SM-4500 N(org)B & NH</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen, mg/kg</td>
<td>17,482</td>
<td>18,000</td>
<td>SM-4500 N(org)B & NH</td>
<td>351.2</td>
<td>-3.0</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus, mg/kg</td>
<td>1,524</td>
<td>1,100</td>
<td>SW846-6010B</td>
<td>365.1</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>Total organic carbon, mg/kg</td>
<td>-</td>
<td>15,000</td>
<td>9060M</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Total Solids, %</td>
<td>20.67</td>
<td>19</td>
<td>SM (20th) 2540G</td>
<td>160.3MOD</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Volatile Solids, %</td>
<td>89</td>
<td>-</td>
<td>SM (20th) 2540G</td>
<td>SM-4500 N(org)B & NH</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen, mg/kg</td>
<td>18,670</td>
<td>19,000</td>
<td>SM-4500 N(org)B & NH</td>
<td>351.2</td>
<td>-1.8</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus, mg/kg</td>
<td>1,495</td>
<td>1,100</td>
<td>SW846-6010B</td>
<td>365.1</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>Total organic carbon, mg/kg</td>
<td>-</td>
<td>11,000</td>
<td>9060M</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

¹ (A&L Result - Columbia Result)/A&L Result x 100

Table 29 - Water analyses method results for Rockledge sieve screen subsamples
Table 30 shows analytical results that were obtained for the three subsamples using Test Methods for Evaluation of Compost and Composting (TMECC) analytical procedures performed by A&L Laboratories. TMECC results were compared to A&L water analyses results by making appropriate unit conversions to compare water analysis results with TMECC results. TMECC % Organic Matter was 72 to 95% (mean = 83%) of water analysis volatile solids. TMECC % Total Nitrogen was 93 to 118% (mean = 112%) of water analysis Total Kjeldahl Nitrogen. TMECC % Total Phosphorus was 97 to 109% (mean = 102%) of water analysis Total Phosphorus. These results suggest that TMECC composting analytical methods may be applicable to analyses of sieve screen material analyses. Further work is required to verify this result and gain confidence in the methods. The units for water column methods are expressed in solids concentrations of mg/kg, while solids methods units are given as “percent” of a parameter. The differences in units between the two methods explains why there are blank values in Table 29. The appropriateness of using calculations that combine water based analytical methods and units from the water column with solids based analytical methods and units for gross solids is uncertain.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parameter</th>
<th>A&L</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Nitrogen, %</td>
<td>0.49</td>
<td>TMECC 04.02-D</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus, %</td>
<td>0.04</td>
<td>TMECC 04.03-A</td>
</tr>
<tr>
<td></td>
<td>Organic matter by LOI @ 550C, %</td>
<td>15.87</td>
<td>TMECC 05.07-A</td>
</tr>
<tr>
<td>2</td>
<td>Total Nitrogen, %</td>
<td>0.42</td>
<td>TMECC 04.02-D</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus, %</td>
<td>0.03</td>
<td>TMECC 04.03-A</td>
</tr>
<tr>
<td></td>
<td>Organic matter by LOI @ 550C, %</td>
<td>14.35</td>
<td>TMECC 05.07-A</td>
</tr>
<tr>
<td>3</td>
<td>Total Nitrogen, %</td>
<td>0.36</td>
<td>TMECC 04.02-D</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus, %</td>
<td>0.03</td>
<td>TMECC 04.03-A</td>
</tr>
<tr>
<td></td>
<td>Organic matter by LOI @ 550C, %</td>
<td>17.62</td>
<td>TMECC 05.07-A</td>
</tr>
</tbody>
</table>

Table 30 - Compost analyses method results for Rockledge sieve screen subsamples

Additional sampling was conducted on 10/5/2009. Three samples were collected of materials that had accumulated in the sieve screen of the Sarasota baffle box. Samples were shipped to the Columbia Analytical Laboratory for analyses of total solids, TKN, and TP. Results are shown in Table 31. Mean parameter values for TS, TKN, and TP were 26.7%, 11,767 mg/kg and 1006 mg/kg, respectively. The coefficient of variation for the three TS, TKN and TP samples were 0.13, 0.20 and 0.25, which indicates that the results were reasonable similar for the three samples. TKN from the Sarasota sieve screen material was generally about two
thirds that of the material collected from the Rockledge sieve screen, while Sarasota TP was to 67 to 95 % of the Rockledge TP depending on which laboratory data for Rockledge TP are used for comparison.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parameter</th>
<th>Columbia</th>
<th>Columbia Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Solids, %</td>
<td>30</td>
<td>160.3MOD</td>
</tr>
<tr>
<td>1</td>
<td>Total Kjeldahl Nitrogen, mg/kg</td>
<td>12,000</td>
<td>351.2</td>
</tr>
<tr>
<td>1</td>
<td>Total Phosphorus, mg/kg</td>
<td>860</td>
<td>365.1</td>
</tr>
<tr>
<td>2</td>
<td>Total Solids, %</td>
<td>27</td>
<td>160.3MOD</td>
</tr>
<tr>
<td>2</td>
<td>Total Kjeldahl Nitrogen, mg/kg</td>
<td>9,300</td>
<td>351.2</td>
</tr>
<tr>
<td>2</td>
<td>Total Phosphorus, mg/kg</td>
<td>860</td>
<td>365.1</td>
</tr>
<tr>
<td>3</td>
<td>Total Solids, %</td>
<td>23</td>
<td>160.3MOD</td>
</tr>
<tr>
<td>3</td>
<td>Total Kjeldahl Nitrogen, mg/kg</td>
<td>14,000</td>
<td>351.2</td>
</tr>
<tr>
<td>3</td>
<td>Total Phosphorus, mg/kg</td>
<td>1,300</td>
<td>365.1</td>
</tr>
</tbody>
</table>

Table 31 - Water analyses method results for Sarasota sieve screen samples

The results of the sieve screen analyses were mixed overall, with some consistent results and some inconsistencies. Five of the six Rockledge TKN were in reasonable agreement with each other; one TKN was significantly different from the two other TKN from the same lab and also significantly different from the subsamples supplied to the second lab. Rockledge TP values were in reasonable agreement for three samples for each lab, but consistently different between labs. Sample processing methodology may have had some influence on the discrepancy. Unfortunately, the third laboratory had reservations about a methodology and elected not to pursue analyses. Significant differences between Rockledge and Sarasota TKN and TP could reflect differences in the materials captured within the sieve screens and transformations of materials that occur in the captured material. For both nitrogen and phosphorus, reported nutrient values of sieve screen materials were subject to large differences for the small number of split samples analyzed. This result was not unexpected; it reaffirms the complexity of stormwater solids matrices and the need to focus more effort on them. A result which is encouraging is the relative agreement of total solids values for the two laboratories and the agreement of the composting methods for solids, nitrogen and phosphorus. The later suggests that composting or whole sample combustion methodologies, which do not employ sample digestion procedures, might be used in a standardized methodology for characterization of stormwater gross solids.
The scope of the interevent monitoring for sieve screen materials was highly limited due to budget restrictions. For analyses of solids collected in baffle boxes, and more generally for solid materials that are removed from stormwater management systems in Florida, a more comprehensive effort is needed to fully address the integrated tasks of collection, preparation, and analyses of solid materials captured in sieve screens and bottom sediments. The objective of this effort should be to develop a standardized protocol for sample collection, preservation, sample handling, and preparation, with the goal of providing protocols that can be applied with confidence by many entities and laboratories. The limited scope of the work provided valuable insight that can be used to formulate the needed methods development effort, which should as a minimum include a much greater number of split samples and analyses.

Conclusions and Recommendations

Total Maximum Daily Load (TMDL) mandates are challenging communities to reduce pollutants from stormwater runoff above and beyond standard permitting requirements associated with new development. The primary method used to reduce pollutants is by retrofitting older development with BMPs to clean runoff from those areas that do not have treatment practices. Retrofitting older areas with traditional treatment practices such as ponds is difficult due to lack of undeveloped land. The limited amount of undeveloped land in older developments turns stormwater practitioners to other tools in the BMP toolbox.

A common BMP used in ultra urban locations has been the baffle box. Early model (Type 1) baffle boxes were underground vault boxes with weirs set at the pipe inverts that trapped pollutants through the sedimentation unit process. The primary pollutants targeted by Type 1 baffle boxes were sediments, heavy metals, and PAHs associated with sediments that fell by gravity into water filled chambers. Removal of nutrient pollutants was minimal in Type 1 boxes.

Nutrient TMDLs are generally expressed as reductions of TN and TP. Nutrients can be found dissolved in the water column, bound to sediments, or part of the structural matrix of organic debris. The primary source of anthropogenic TN is dissolved fertilizer in the water column. A small amount of TN is associated with organic sediments. Organic debris leaches significant levels of TN and TP into water within 72 hours of submersion, England et.al. (2000). Approximately 30-40% of stormwater based TP is bound to sediment particles with the remainder being dissolved in the water column.

Development of TMDLs over the last few years has shown that nutrients were the primary pollutants causing environmental degradation in Florida. In response to the need to provide BMPs with nutrient removal capability, Suntree Technologies has developed proprietary Type 2 baffle boxes that added a horizontal screen above the water line of the vaults. This filtration unit process traps gross solids such as leaves, grass clippings, sediment, and trash during high flows when the hydraulic grade line rises above the screen level. After the water surface
recedes upon cessation of rain, gross solids trapped in the screens are kept above the water filled vaults with the design goal of letting the organic debris dry to prevent leaching of nutrients into the vaults. In addition, the screens enhance sedimentation of organic and inorganic sediments by physically blocking and filtering particles that are limited to velocity constraints of Stokes law for settling in Type 1 baffle box designs. The unit processes of sedimentation and filtration in a baffle box do not provide treatment of water column based TN and TP.

Sarasota County received funding from FDEP to monitor two Type 1 and two Type 2 baffle boxes to document pollutant removal effectiveness, primarily focused on the parameters TN and TP. The County contracted with GPI-SE to develop and manage the monitoring program. Field monitoring and data collection was subcontracted to Sutron Corporation for three baffle boxes in Rockledge and Stuart, and to PBSJ for one baffle box in Sarasota.

BMP site selection is critical and challenging for an effective field monitoring program. Pollutant loadings vary with every watershed and every rainfall event. A site must be chosen that allows the researcher to control as many of the pollutant loading variables as possible. A site must allow for proper setup and maintenance of equipment and collection of samples. Recommendations for site selection to give an affective baffle box monitoring program are:

- Minimize equipment requirements by using a baffle box with one influent pipe and one effluent pipe, each of which uses one autosampler. Additional pipes will require additional autosamplers and flow meters. More equipment leads to more malfunctions and lost storm sampling opportunities.
- There should be no base flows through the pipes or backwater or submersion from downstream waterbodies.
- There should be no bypass flows during large storms.
- BMPs in roadways should not be monitored. Technician vehicles will need to be parked next to the site for sampling and equipment maintenance. Access dictates a location outside of the pavement for safety reasons and to avoid lane closures.
- For rain gauges and solar panels to operate accurately there can be no tree coverage over the site.
- Theft proof enclosures should be used to house autosamplers, batteries, and solar panels. Adjacent property owners should be canvassed to ensure their cooperation with technicians accessing equipment at any hour.
- Testing for gross solids requires selecting a watershed with a high tree canopy coverage.
- When monitoring to compare multiple BMPs, each BMP watershed should be of similar land use in order to have similar pollutant loadings for each BMP.
- The interior of the BMPs should have sufficient clearance and access to enable a technician to install equipment and take samples.
- The sites should be within reasonable driving distance of technicians who will be making weekly visits to inspect and calibrate equipment. Automated sampling equipment that contacts technicians via modem or internet should be used to minimize
site visits for rainfalls that do not trip the autosampler. Many storms in Florida are below tripping criteria for rain intensity and duration.

- Roadways in the watershed should have curb and gutters. There should be no other upstream BMPs in the drainage basin, including roadside swales that will filter pollutants, especially gross solids, before they enter the BMP.

The monitoring approach that was developed and applied in this study measured water column pollutant removal performance based on flow composited water column autosamplers as well as masses that accumulated in the baffle box as gross solids. The monitoring approach demonstrated that the solids which accumulate in a baffle box must be included in an overall assessment of pollutant removal effectiveness of the baffle box. In some cases, mass removal in accumulated solids was significantly greater than water column mass removal. Use of a Derived Efficiency (DE) provided an index of pollutant reduction efficiency that incorporated accumulated solids and water column monitoring, resulting in a net positive retention of nitrogen and phosphorus. DE is a more useful indicator of baffle box treatment performance than water column EMC methods.

Field monitoring of four full scale baffle boxes resulted in the following findings:

- The average DE for non-dissolved stormwater solids removal was 43.6%, ranged from 2 to 83%, and was higher for Type 2 than Type 1 baffle boxes.
- The average DE for nitrogen removal was 9.8%, ranged from 0.03 to 28%, and was higher for Type 2 than Type 1 baffle boxes.
- The average DE for phosphorus removal was 8.9%, ranged from .06 to 19%, and was higher for Type 2 than Type 1 baffle boxes.
- Watershed characteristics and the presence of sieve screens significantly affected the differences in DE between the Type 2 and Type 1 baffle boxes.
- EMC removal efficiencies for total suspended solids averaged 8.5, 35.1, 12.3, and -38.5 %, respectively, for Rockledge, Sarasota, Lincoln, and Parkway baffle boxes.
- EMC removal efficiencies for total nitrogen averaged -11.3, 30.6, -8.3 and 5.6 %, respectively, for Rockledge, Sarasota, Lincoln, and Parkway baffle boxes.
- EMC removal efficiencies for total phosphorus averaged -8.2, 21.6, 1.5 and -15.3 %, respectively, for Rockledge, Sarasota, Lincoln, and Parkway baffle boxes.
- EMC removal efficiencies for fecal coliforms averaged -28, 13, -89 and -4.2 %, respectively, for Rockledge, Sarasota, Lincoln, and Parkway baffle boxes.
- Total polycyclic aromatic hydrocarbons ranged from non-detect to 15.5 mg/kg dry solids in materials collected from the baffle box bottom chambers.
- Total polycyclic aromatic hydrocarbons ranged from 20 to 53 mg/kg and 28 to 70 mg/kg in sieve screen materials greater and less than 1 mm, respectively.
When measured by the EMC method, Type 1 baffle boxes provided average reductions of 13.1%, -1.3%, -6.9%, and -46.8% for TSS, TN, TP, and fecal coliforms respectively. When using the DE methodology there were average mass removals of 19.9%, 0.5%, and 2.28% for Total non-dissolved solids, TN, and TP respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EMC</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>13.1%</td>
<td>n/a</td>
</tr>
<tr>
<td>Total non-dissolved solids</td>
<td>n/a</td>
<td>19.9%</td>
</tr>
<tr>
<td>TN</td>
<td>-1.3%</td>
<td>0.5%</td>
</tr>
<tr>
<td>TP</td>
<td>-6.9%</td>
<td>2.28%</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>-46.8%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 32 – Type 1 baffle box removal efficiency using EMC and DE methodology

Type 2 baffle boxes showed higher pollutant removal effectiveness than Type 1 baffle boxes, with average EMC removals 21.8% for TSS, 9.6% for TN, 6.7% for TP, and -118% for fecal coliforms. Using DE calculations the Type 2 baffle boxes averaged 67.2% TSS removal, 19% TN removal, and 15.5% TP removal.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EMC</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>21.8%</td>
<td>67.2%</td>
</tr>
<tr>
<td>TN</td>
<td>9.6%</td>
<td>19%</td>
</tr>
<tr>
<td>TP</td>
<td>6.7%</td>
<td>15.5%</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>-118%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 33 - Type 2 baffle box removal efficiency using EMC and DE methodology
The screens in Type 2 baffle boxes trapped organic debris that would not be filtered in Type 1 baffle boxes. In watersheds that have a significant amount of tree canopy coverage, Type 2 baffle boxes give a greater nutrient removal than Type 1 baffle boxes due to the ability to filter leaves. Grass clippings were not a significant source of organic debris at the four sites monitored, indicating that public education programs to train residents not to place grass clippings in streets appear to be successful. During the monitoring program residents were observed several times blowing grass clippings into the yards. Oak leaf and pine needle accumulations were the significant source of organic debris in these watersheds.

At three of the four baffle box locations, fecal coliform concentrations were observed to be 44% - 61% higher in the effluent than the influent. Baffle boxes and other vault type BMPs that store interevent water act as septic tanks, promoting bacteria growth and low DO in the nutrient laden water. If fecal coliform is a parameter of concern for a waterbody, use of a baffle box or any water storing vault box can lead to increased fecal coliform counts to waterbodies.

Pollutant loadings vary widely among watersheds. Pollutants are present in the water column, street sediments, and in organic debris. In the Rockledge watershed, masses from leaves and sediment were 53.4 times greater than water column solids masses. In the Sarasota watershed sampling failures did not allow an accurate comparison of water column and gross solids masses. In watersheds with significant tree coverage, selection of BMPs that remove leaves from stormwater runoff can reduce nutrient discharges. Selection of BMPs that keep leaves in a dry state will provide greater nutrient removal than BMPs that store leaves in a wet condition.

While Type 2 baffle boxes kept leaves out of the water filled vault, the accumulation of leaves in the baskets filtered sediment creating a semi-pervious liner that stored water for several days, enabling leaves to leach nutrients slowly into the vault. In addition, the inherent design of screens that enabled high flow bypass for flood reduction allowed significant masses of leaves to fall from the screens into the vault boxes. It is worthwhile to mention that without the screens almost all leaves would wash through the box and end up in the receiving water where they would leach their entire nutrient mass.

The ability of leaves to leach nutrients even from a Type 2 baffle box demonstrated the importance of cleaning BMPs. The Sarasota baffle box screen was observed to completely fill with leaves after a small rain event. Even with the limited documentation of leaf accumulations from the Sarasota baffle box, 3586 pounds of leaves and sediment were collected. At the Rockledge baffle box 1,378 pounds of debris were collected from the screens. In watersheds with high leaf falls, it is recommended that baffle box screens be cleaned after every rain event in order to maximize nutrient reduction and prevent nutrient leaching from Type 2 baffle boxes.
Baffle box performance could be improved if there was a way to pump or bleed off chamber water between storms. The nutrient leaching and bacterial growth problem would be eliminated. The trade off for such an improvement would be moving from a passive design to an active mechanical design with maintenance and costs for pumps, electricity, and trained personnel. Passive low maintenance technology has been taken about as far as possible. Further advances in pollutant treatment will require mechanical and/or chemical technology similar to the wastewater industry.

Another recommendation related to the maintenance of the baffle box is to set up a clean-out schedule based on the observed needs of the individual baffle boxes, rather than a set quarterly or monthly clean out schedule. Some of the baskets in the study filled completely after a single rain event. Better tracking of the amount of organic material removed from the boxes can also aid in directing more maintenance efforts towards boxes that need frequent clean outs. This will aid in optimizing effectiveness.

Based upon the findings of this report, the following criteria are recommended for use of Type 2 baffle boxes:

1. When pollutants targeted for reduction in the watershed are nutrient based,
2. When fecal coliform reduction within the watershed is not a goal,
3. When the streets in the watershed have curb and gutters,
4. When there are no upstream BMPs such as ponds, exfiltration trenches, swales, inlet traps, and
5. When tree canopy coverage in the watershed exceeds 25%.

In watersheds with curb and gutter, an alternative to the use of Type 2 baffle boxes is installing inlet traps at all inlets. These BMPs act as a form of source control by reducing the leaching potential from trapped organic debris. Allowing organic debris to dry in an inlet trap can act as a unit process as nutrients are released to the atmosphere (England, 2008.) A limitation of inlet traps is that they trap little sediment and have much smaller debris trapping capacity than a Type 2 baffle box. However, they have much smaller drainage basins than a baffle box typically installed at the end of a watershed. Inlet traps will also require more frequent maintenance than a baffle box. Maintenance of a baffle box requires an expensive vacuum truck, while cleaning an inlet trap can be accomplished with by hand or a small truck mounted vacuum pump. Inlet traps cost about $1,000 while baffle boxes will cost approximately $50,000 for installation and road reconstruction. Inlet traps trade off lower upfront cost with higher maintenance frequency than a baffle box.

Another alternative BMP that could be used to collect gross solids is street sweeping. This form of source control removes 100% of the pollutants associated with the mass of material removed, does not require expensive engineering and construction, and is promoted by FDEP with special credits toward reducing TMDL load allocations. The City of Pensacola’s Surface Water Quality Assessment (England, 2009) documents that the City’s once a week street sweeping program collects an average of 5,734,865 pounds of sediment and gross solids. Based upon testing of street sweeping material by the City, the collected mass equates to
2,265 lb/yr of TN and 720 lb/yr of TP removed from the streets. Using an annual street sweeping program cost of $185,000, TN annual removal costs are $82/lb and TP removal costs are $257/lb.

To improve the quantification accuracy of stormwater pollutant reductions by BMPs that accumulate gross solids, a comparison of laboratory protocols and sampling procedures was made to improve the methodologies to quantify solids that accumulate in those BMPs and characterize their pollutant concentrations. Based on the limited number of samples and disparity of results, a recommendation to use solids based analytical methods for gross solids could not be made. This issue requires further investigation.
References

U.S. Environmental Protection Agency (EPA) (2001). "Methods for the Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analysis." EPA-823-B-01-
PROJECT PHOTOGRAPHS (2005 – 2009)

*additional photographs submitted on disc to FDEP and Sarasota County
Rockledge Site Looking West Up Little John Lane from Baffle Box

Rockledge Baffle Box Looking East
Rockledge Baffle Box Looking South from Little John Land
At Inlet to Baffle Box

Runoff Entering Inlet Upstream of Rockledge Baffle Box
Organic Debris in Rockledge Baffle Box Screen

Organic Debris in Screen and Vault of Rockledge Baffle Box
Organic Debris Entering Rockledge Baffle Box – Note that Organics Can Bypass Screen during High Flows

Taking Samples of Vault Material at Rockledge Baffle Box – Note Mixture Of Liquid, Sediment, and Organic Material
Organic Debris in Rockledge Baffle Box
Sampling Equipment at Rockledge Baffle Box
Velocity Meter Downstream of Rockledge Baffle Box

Sampling Organics and Sediment in Screen of Rockledge Baffle Box
Gross Solids Sampling Equipment

Collecting Screen Debris in Rockledge Baffle Box
Measuring Sediment Depth at Rockledge Baffle Box

Vault Sampling Equipment
Sampling Vault Material

Autosamplers at Rockledge Baffle Box
Gross Solids Removal Bypass Tester

Gross Solids Bypass Tester – Note Sediment Testing Holes
Stuart-Parkway Site – Looking East From Baffle Box Location

Stuart – Parkway - Grated Inlet Upstream of Baffle Box
Autosampler at Stuart – Parkway Site

Autosampler at Sarasota Baffle Box
Rain Gauge at Sarasota Site
Spider Webs in Pipe Created Difficulty Calibrating Flowmeter

Land Use in Stuart – Lincoln Basin
Lake Discharge Upstream of Stuart – Lincoln Site Caused Base Flows in Baffle Box

Stuart – Lincoln Site Was In Parking Lot Adjacent to This Building
Stuart – Lincoln Site

Oriole box- Filled with wet leaves
Oriole box - Another view, filled with wet leaves
SAMPLE SUMMARY

LOG# 617356
Project ID: Sarasota Baffle Box

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Matrix</th>
<th>Date Collected</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>617356001</td>
<td>In 1</td>
<td>Aqueous Liquid</td>
<td>11/16/2006 10:00</td>
<td>11/17/2006 11:30</td>
</tr>
<tr>
<td>617356002</td>
<td>Out 2</td>
<td>Aqueous Liquid</td>
<td>11/16/2006 10:00</td>
<td>11/17/2006 11:30</td>
</tr>
<tr>
<td>617356003</td>
<td>Blank</td>
<td>Aqueous Liquid</td>
<td>11/16/2006 10:00</td>
<td>11/17/2006 11:30</td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS

Log#: 617356
Project ID: Sarasota Baffle Box

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
<th>Units</th>
<th>Report Limit</th>
<th>MDL</th>
<th>DF Prepared</th>
<th>By</th>
<th>Analyzed</th>
<th>By</th>
<th>Qual</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Desc: Ammonia by EPA 350.1 (W)</td>
<td>Ammonia</td>
<td>0.97 mg/L</td>
<td>0.020</td>
<td>1</td>
<td>12/01/06</td>
<td>SS</td>
<td>7664-41-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Desc: Phosphorus by EPA 365.1 [REF] (W)</td>
<td>Phosphorus</td>
<td>0.50 mg/L</td>
<td>0.020</td>
<td>1</td>
<td>11/22/06</td>
<td>ESC</td>
<td>7723-14-0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Desc: EPA 200.8 Metals (W)</td>
<td>Chromium</td>
<td>0.00091 mg/L</td>
<td>0.00003</td>
<td>0.000038</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-47-3</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0051 mg/L</td>
<td>0.00040</td>
<td>0.00020</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-50-8</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.025 mg/L</td>
<td>0.0019</td>
<td>0.00095</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-66-6</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>U mg/L</td>
<td>0.00050</td>
<td>0.000091</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-43-9</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS

LOG# 617356
Project ID: Sarasota Baffle Box

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Analysis Desc: Ammonia by EPA 350.1 (W)</th>
<th>Analytical Method: EPA 350.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ammonia</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>0.43 mg/L</td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>0.0020</td>
<td></td>
</tr>
<tr>
<td>Report Limit</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>7664-41-7</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Desc: Phosphorus by EPA 365.1 [REF] (W)
Analytical Method: EPA 365.1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>0.48 mg/L</td>
</tr>
<tr>
<td>Units</td>
<td>0.020</td>
</tr>
<tr>
<td>Report Limit</td>
<td>1</td>
</tr>
<tr>
<td>MDL</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td></td>
</tr>
<tr>
<td>Prepared</td>
<td></td>
</tr>
<tr>
<td>By</td>
<td></td>
</tr>
<tr>
<td>Analyzed</td>
<td></td>
</tr>
<tr>
<td>By</td>
<td></td>
</tr>
<tr>
<td>Qual</td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>7723-14-0</td>
</tr>
</tbody>
</table>

Analysis Desc: EPA 200.8 Metals (W)
Analytical Method: EPA 200.8 (Total)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Chromium</th>
<th>Copper</th>
<th>Zinc</th>
<th>Cadmium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>0.00098 mg/L</td>
<td>0.0045 mg/L</td>
<td>0.028 mg/L</td>
<td>U mg/L</td>
</tr>
<tr>
<td>Units</td>
<td>0.00050</td>
<td>0.00040</td>
<td>0.0019</td>
<td>0.00050</td>
</tr>
<tr>
<td>Report Limit</td>
<td>0.0000038</td>
<td>0.00020</td>
<td>0.00095</td>
<td>0.000091</td>
</tr>
<tr>
<td>MDL</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DF</td>
<td>11/17/06</td>
<td>11/17/06</td>
<td>11/17/06</td>
<td>11/17/06</td>
</tr>
<tr>
<td>Prepared</td>
<td>ZS</td>
<td>ZS</td>
<td>ZS</td>
<td>ZS</td>
</tr>
<tr>
<td>By</td>
<td>11/17/06</td>
<td>11/17/06</td>
<td>11/17/06</td>
<td>11/17/06</td>
</tr>
<tr>
<td>Analyzed</td>
<td>ZS</td>
<td>ZS</td>
<td>ZS</td>
<td>ZS</td>
</tr>
<tr>
<td>By</td>
<td>11/17/06</td>
<td>11/17/06</td>
<td>11/17/06</td>
<td>11/17/06</td>
</tr>
<tr>
<td>Qual</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CAS</td>
<td>7440-47-3</td>
<td>7440-50-8</td>
<td>7440-66-6</td>
<td>7440-43-9</td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS

LOG# 617356
Project ID: Sarasota Baffle Box

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
<th>Units</th>
<th>Report Limit</th>
<th>MDL</th>
<th>DF</th>
<th>Prepared</th>
<th>By</th>
<th>Analyzed</th>
<th>By</th>
<th>Qual</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia by EPA 350.1 (W)</td>
<td>Analytical Method: EPA 350.1</td>
<td>Ammonia</td>
<td>0.15 mg/L</td>
<td>0.020</td>
<td>1</td>
<td>12/01/06</td>
<td>SS</td>
<td>7664-41-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus by EPA 365.1 [REF] (W)</td>
<td>Analytical Method: EPA 365.1</td>
<td>Phosphorus</td>
<td>0.022 mg/L</td>
<td>0.020</td>
<td>1</td>
<td>11/22/06</td>
<td>ESC</td>
<td>1</td>
<td>7723-14-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA 200.8 Metals (W)</td>
<td>Analytical Method: EPA 200.8 (Total)</td>
<td>Chromium</td>
<td>U mg/L</td>
<td>0.00050</td>
<td>0.000038</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-47-3</td>
</tr>
<tr>
<td>Copper</td>
<td>U mg/L</td>
<td>0.00040</td>
<td>0.00020</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-50-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>U mg/L</td>
<td>0.0019</td>
<td>0.00095</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-66-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>U mg/L</td>
<td>0.00050</td>
<td>0.000091</td>
<td>1</td>
<td>11/17/06</td>
<td>ZS</td>
<td>11/17/06</td>
<td>ZS</td>
<td>7440-43-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS QUALIFIERS

LOG# 617356
Project ID: Sarasota Baffle Box

<table>
<thead>
<tr>
<th>PARAMETER QUALIFIERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Report Limit = MDL</td>
</tr>
</tbody>
</table>

SUBCONTRACTOR NELAC CERTIFICATION

| 617356 | ESC = E87487 |
Lab ID	Sample Description	Sample Source	Received Date/Time	Sample Date/Time
N0611311-01 | In 1 grab | Ground Water | 11/16/06 12:55 | 11/16/06 10:00 |

Analysis
- Fecal Coliform, MF
 - Method: 9222D
 - Results: TNTC
 - Qual: Z
 - Detection Limit: 1
 - Units: CFU/100ml
 - Analysis Date/Time: 11/16/06 13:45
 - Analyst: RG
 - Cert ID: E84380

- Nitrate+Nitrite-N
 - Method: 353.2
 - Results: 0.49
 - Qual: 0.01
 - Units: mg/L as N
 - Analysis Date/Time: 11/17/06 11:57
 - Analyst: SJ
 - Cert ID: E84380

- Nitrogen, Total Kjeldahl
 - Method: 351.2
 - Results: 3.02
 - Qual: 0.10
 - Units: mg/L as N
 - Analysis Date/Time: 11/29/06 17:07
 - Analyst: SJ
 - Cert ID: E84380

- Ortho-phosphate-P
 - Method: 365.2
 - Results: 0.436
 - Qual: 0.015
 - Units: mg/L as P
 - Analysis Date/Time: 11/17/06 11:30
 - Analyst: BY
 - Cert ID: E84380

- Total Suspended Solids
 - Method: 160.2
 - Results: 15.0
 - Qual: 0.6
 - Units: mg/L
 - Analysis Date/Time: 11/17/06 9:30
 - Analyst: BB
 - Cert ID: E84380

Lab ID	Sample Description	Sample Source	Received Date/Time	Sample Date/Time
N0611311-02 | Out 2 grab | Ground Water | 11/16/06 12:55 | 11/16/06 10:00 |

Analysis
- Fecal Coliform, MF
 - Method: 9222D
 - Results: TNTC
 - Qual: Z
 - Detection Limit: 1
 - Units: CFU/100ml
 - Analysis Date/Time: 11/16/06 13:45
 - Analyst: RG
 - Cert ID: E84380

- Nitrate+Nitrite-N
 - Method: 353.2
 - Results: 0.47
 - Qual: 0.01
 - Units: mg/L as N
 - Analysis Date/Time: 11/17/06 11:57
 - Analyst: SJ
 - Cert ID: E84380

- Nitrogen, Total Kjeldahl
 - Method: 351.2
 - Results: 2.13
 - Qual: 0.10
 - Units: mg/L as N
 - Analysis Date/Time: 11/29/06 17:07
 - Analyst: SJ
 - Cert ID: E84380

- Ortho-phosphate-P
 - Method: 365.2
 - Results: 0.479
 - Qual: 0.015
 - Units: mg/L as P
 - Analysis Date/Time: 11/17/06 11:30
 - Analyst: BY
 - Cert ID: E84380

- Total Suspended Solids
 - Method: 160.2
 - Results: 24.8
 - Qual: 0.6
 - Units: mg/L
 - Analysis Date/Time: 11/17/06 9:30
 - Analyst: BB
 - Cert ID: E84380

Lab ID	Sample Description	Sample Source	Received Date/Time	Sample Date/Time
N0611311-03 | Blank grab | DI Water | 11/16/06 12:55 | 11/16/06 10:00 |

Analysis
- Fecal Coliform, MF
 - Method: 9222D
 - Results: 1
 - Qual: U
 - Detection Limit: 1
 - Units: CFU/100ml
 - Analysis Date/Time: 11/16/06 13:45
 - Analyst: RG
 - Cert ID: E84380
Client Project: Sarasota Baffle Box
Lab Project: N0611311
Report Date: 12/04/06

Laboratory Results

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample Description</th>
<th>Sample Source</th>
<th>Received Date/Time</th>
<th>Sample Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0611311-03</td>
<td>Blank grab</td>
<td>DI Water</td>
<td>11/16/06 12:55</td>
<td>11/16/06 10:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Method</th>
<th>Results</th>
<th>Qual</th>
<th>Detection Limit</th>
<th>Units</th>
<th>Analysis Date/Time</th>
<th>Analyst</th>
<th>Cert ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate/Nitrite-N</td>
<td>353.2</td>
<td>0.01</td>
<td>U</td>
<td>0.01</td>
<td>mg/L as N</td>
<td>11/17/06 11:57</td>
<td>SJ</td>
<td>E84380</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>351.2</td>
<td>0.16</td>
<td>I</td>
<td>0.10</td>
<td>mg/L as N</td>
<td>11/29/06 17:07</td>
<td>SJ</td>
<td>E84380</td>
</tr>
<tr>
<td>Ortho-phosphate-P</td>
<td>365.2</td>
<td>0.015</td>
<td>U</td>
<td>0.015</td>
<td>mg/L as P</td>
<td>11/17/06 11:30</td>
<td>BY</td>
<td>E84380</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>160.2</td>
<td>0.6</td>
<td>U</td>
<td>0.6</td>
<td>mg/L</td>
<td>11/17/06 9:30</td>
<td>BB</td>
<td>E84380</td>
</tr>
</tbody>
</table>

Approved by:
Kathrine Bartkowski/Lab Supervisor
Andrew Konopacki/Lab Supervisor

Test Results meet all the requirements of the NELAC standards.
Chain of Custody Record

Company Name: PBS & J

Address: 2803 Fruitville Rd., Suite 130

City: Sarasota **State:** FL **Zip:** 34237

Sampling Site Address: Baffle Box

Attn: Fax/Email: jkwinter@pbsj.com

LAB ANALYSIS

<table>
<thead>
<tr>
<th>Sample Label</th>
<th>Collected Date</th>
<th>Collected Time</th>
<th>Matrix Code</th>
<th># of Cont.</th>
<th>TKN</th>
<th>TSS</th>
<th>Col.</th>
<th>OP</th>
<th>No. x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04/11/06</td>
<td>10:00</td>
<td>GW</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>04/11/06</td>
<td>10:00</td>
<td>GW</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>04/11/06</td>
<td>10:00</td>
<td>DL</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Filtered (Y/N): N

Integrity OK (Y/N): N

Comments

- 01 A B C D
- 02 A B C D
- 03 A B C D

QA/QC level with report

None 1 2 3

T.A.T. Request: FDEP

Standard: SFWMD

Rush: Date Required

Temp Control: 54°C

Jupiter Environmental Laboratories, Inc.
150 Old Dixie Highway, Jupiter, FL 33458
(561) 575-0030 • Fax (561) 575-4118 • clientservices@jupiterlabs.com

C.O.C.# 27883
<table>
<thead>
<tr>
<th>Method / ANALYTE</th>
<th>Stations or wells</th>
<th># of</th>
<th>Water Soil processed</th>
<th>Total or dissolved</th>
<th>Preservation (circle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEN / NO. 44</td>
<td>W</td>
<td>5</td>
<td>S Y N</td>
<td></td>
<td>CSNBHZ</td>
</tr>
<tr>
<td>CP</td>
<td>W</td>
<td>5</td>
<td>S Y N</td>
<td></td>
<td>CSNBHZ</td>
</tr>
<tr>
<td>TOS</td>
<td>W</td>
<td>5</td>
<td>S Y N</td>
<td></td>
<td>CSNBHZ</td>
</tr>
<tr>
<td>Fec. Calif.</td>
<td>W</td>
<td>5</td>
<td>S Y N</td>
<td></td>
<td>CSNBHZ</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td>S Y N</td>
<td>135 ml</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td>S Y N</td>
<td>135 ml</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td>S Y N</td>
<td>135 ml</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td>S Y N</td>
<td>8 oz</td>
<td>P</td>
</tr>
</tbody>
</table>

NOTES: Bag as individual wells. Number bags: 5.

With Attached Labels

Order prepared by:

Kit prepared by:

Tara M. Bardi 2006
Lab Project Summary

Lab Project #: N0702192
Client: Jupiter Environmental Laboratories, Inc.
150 S. Old Dixie Hwy
Phone: 1-561-575-0030
Fax: 1-561-575-4118
E-mail: edd@gate.net
Client Project Name: Sarasota Baffle Box
Laboratory Contact: Tami Bright

QUALIFIER DEFINITIONS

B: Results based upon colony counts outside the acceptable range.
I: The reported value is between the laboratory MDL and the laboratory PQL.
J3: The reported value failed to meet the established quality control criteria.
J4: The sample matrix interfered with the ability to make an accurate determination.
J5: The data is questionable because of improper lab or field protocols.
K: Off scale low, actual value is less than the value given.
L: Off scale high, actual value is known to be greater than the value given.
Q: Sample held beyond acceptable holding time.
U: The compound was analyzed for, but not detected.
V: The analyte was detected in both the sample and the associated method blank.
Y: The sample was unpreserved or improperly preserved.
Z: Too many colonies present (TNTC).
* Exceeds acceptable drinking water limits, per FAC 62-550.
** This is an uncertified result.
HACH results are uncertified.

A statement of estimated uncertainty of results is available upon request.
Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.
Sanders Laboratories follows DEP standard operating procedures for field sampling.
Laboratory PQL's are set at 4 times the laboratory MDL's.
Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of $25.00 per report. Reports older than 1 year are available for a fee of $50.00 per report. Copies will be provided within 1 week of the time of the request.
Analytical Test Report

Benchmark EnviroAnalytical Inc.

Submission Number: 7100855

Project Name: ORIOLE DR. BAFFLE BOX PROJECT

Date Received: 10/29/2007

Time Received: 1210

Sample 1

Sample Number: 1

Sample Date: 10/29/2007

Sample Time: 0816

Sample Description: S B B In

Sample Method: Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>79.8</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>100.2</td>
<td>10/29/2007</td>
<td>15:00</td>
<td>CB</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.8</td>
<td>200.7</td>
<td>10/31/2007</td>
<td>13:05</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>4.8 L</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>10/31/2007</td>
<td>13:05</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>68.1</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.5</td>
<td>200.7</td>
<td>10/31/2007</td>
<td>13:05</td>
<td>JG</td>
</tr>
<tr>
<td>COPPER</td>
<td>12.3</td>
<td>UG/L</td>
<td>0.340</td>
<td>1.364</td>
<td>220.2</td>
<td>11/05/2007</td>
<td>12:00</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.090</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>350.2</td>
<td>11/06/2007</td>
<td>10:30</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL KIELDAHL NITROGEN</td>
<td>1.60</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>11/06/2007</td>
<td>15:00</td>
<td>TN</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>1.87</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>11/05/2007</td>
<td>15:00</td>
<td>TN/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>0.072</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>10/30/2007</td>
<td>09:45</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.118</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>353.3</td>
<td>10/30/2007</td>
<td>17:29</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.458</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>355.3</td>
<td>10/31/2007</td>
<td>09:30</td>
<td>YW</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>73000</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>10/29/2007</td>
<td>12:25</td>
<td>JLJ</td>
</tr>
</tbody>
</table>

Sample 2

Sample Number: 2

Sample Date: 10/29/2007

Sample Time: 0816

Sample Description: S B B Out

Sample Method: Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

7100855 PAGE 1 OF 3
BENCHMARK
EnviroAnalytical Inc.

NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Date</th>
<th>Time</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>MG/L</td>
<td>1.80</td>
<td>0.570</td>
<td>2.28</td>
<td>160.2</td>
<td>10/29/2007</td>
<td>15:00</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>UG/L</td>
<td>0.9</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>10/31/2007</td>
<td>13:05</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>UG/L</td>
<td>2.0</td>
<td>8.0</td>
<td>8.0</td>
<td>200.7</td>
<td>10/31/2007</td>
<td>13:05</td>
</tr>
<tr>
<td>ZINC</td>
<td>UG/L</td>
<td>7.50</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>10/31/2007</td>
<td>13:05</td>
</tr>
<tr>
<td>COPPER</td>
<td>UG/L</td>
<td>2.50</td>
<td>0.346</td>
<td>1.384</td>
<td>220.2</td>
<td>11/05/2007</td>
<td>12:00</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>MG/L</td>
<td>0.049</td>
<td>0.005</td>
<td>0.020</td>
<td>350.2</td>
<td>11/06/2007</td>
<td>10:30</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>MG/L</td>
<td>0.415</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>11/05/2007</td>
<td>15:00</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>MG/L</td>
<td>0.495</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>11/05/2007</td>
<td>15:00</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>MG/L</td>
<td>0.080</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>10/30/2007</td>
<td>09:45</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>MG/L</td>
<td>0.116</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/30/2007</td>
<td>17:29</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>MG/L</td>
<td>0.206</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/31/2007</td>
<td>09:30</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>#/100 ML</td>
<td>71000</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>10/29/2007</td>
<td>12:25</td>
</tr>
</tbody>
</table>

Dale D. Dixon / Laboratory Director
Radica Koutselas / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

- A = Value reported is an average of two or more determinations.
- B = Results based upon colony counts outside the acceptable range.
- H = Value based on field kit determination. Results may not be accurate.
- I = Reported value is between the laboratory MDL and the PQL.
- J1 = Est. value surrogate recovery limits exceeded.
- J2 = Est. value. No quality control criteria exists for component.
- J3 = Est. value quality control criteria for precision or accuracy not met.
- J4 = Est. value. Sample matrix interference suspected.
- JS = Est. value. Date questionable due to improper lab or field protocols
- K = Off-scale low. Value is known to be < the value reported.
- L = Off-scale high. Value is known to be > the value reported.

- N = Presumptive evidence of presence of material.
- O = Sampled, but analysis lost or not performed.
- Q = Sample held beyond accepted hold time.
- T = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.
- U = Analyte analyzed but not detected at the value indicated.
- V = Analyte detected in sample and method blank.
- Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.
- I = Data deviate from historically established concentration ranges.
- ? = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.
- * = Not reported due to interference.

NOTES:

- PQL = 4xMDL.
- MBAS calculated as LAS; molecular weight = 348.
- X = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986.
<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS (A)</th>
<th>TKN</th>
<th>NO₂-NO₃</th>
<th>NH₃</th>
<th>T-N</th>
<th>T-P</th>
<th>o-P (Field-Filtered)</th>
<th>Cd</th>
<th>Cr</th>
<th>Zn (200.7)</th>
<th>Cu (220.2)</th>
<th>Fecal Coliform (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 x 2 Quart Plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 x 100mL Sterile Plastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NaThio</td>
</tr>
<tr>
<td>SBB IN</td>
<td>Comp</td>
<td>08:16</td>
<td>1:4</td>
<td>H₂SO₄/</td>
<td>pH < 2</td>
<td></td>
<td></td>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBB out</td>
<td>Comp</td>
<td>08:16</td>
<td>1:4</td>
<td>H₂SO₄/</td>
<td>pH < 2</td>
<td></td>
<td></td>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions:
1. Each bottle has a label identifying sample ID, pre-measured preservative contained in the bottle, sample type, client ID, and parameters for analysis.
2. All bottles not containing preservative may be rinsed and appropriate sample prior to collection.
3. The client is responsible for documentation and sourcing the sampling event. Please note all relevant events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7/10/20</td>
<td>12:05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Test Report

These results meet NELAC standards.

Submission Number: 7120575

Sample Information
- **Sample Number:** 1
- **Sample Date:** 12/21/2007
- **Sample Time:** 0600
- **Sample Description:** Baffle - In
- **Sample Method:** Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.8</td>
<td>200.7</td>
<td>12/27/2007</td>
<td>11:26</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>2.50 I</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>12/27/2007</td>
<td>11:26</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>105</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>12/27/2007</td>
<td>11:26</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>1.95</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>12/24/2007</td>
<td>12:00</td>
<td>TN</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>2.31</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>12/24/2007</td>
<td>12:00</td>
<td>TN/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>0.355</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>12/21/2007</td>
<td>16:00</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.456</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>12/21/2007</td>
<td>16:18</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>1.02</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>12/28/2007</td>
<td>09:30</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>138</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.260</td>
<td>SM2540D</td>
<td>12/21/2007</td>
<td>15:00</td>
<td>BH</td>
</tr>
<tr>
<td>COPPER</td>
<td>29.3</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>12/28/2007</td>
<td>10:58</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.383</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>12/28/2007</td>
<td>11:00</td>
<td>YW</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>200000 L</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>12/21/2007</td>
<td>13:30</td>
<td>CUS</td>
</tr>
</tbody>
</table>

Submission Number: 7120575

Sample Information
- **Sample Number:** 2
- **Sample Date:** 12/21/2007
- **Sample Time:** 0600
- **Sample Description:** Baffle - Out
- **Sample Method:** Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BENCHMARK
EnviroAnalytical Inc.

NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Substance</th>
<th>Value</th>
<th>Unit</th>
<th>Value</th>
<th>Date</th>
<th>Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>12/27/2007</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>2 U</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>12/27/2007</td>
</tr>
<tr>
<td>ZINC</td>
<td>75.0</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>12/27/2007</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>1.66</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>12/24/2007</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>1.97</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>12/24/2007</td>
</tr>
<tr>
<td>NITRATE=NITRITE</td>
<td>0.312</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>12/21/2007</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.346</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>12/21/2007</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.777</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>363</td>
<td>12/28/2007</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>81.6</td>
<td>MG/L</td>
<td>1</td>
<td>4</td>
<td>SM2540G</td>
<td>12/21/2007</td>
</tr>
<tr>
<td>COPPER</td>
<td>17.0</td>
<td>UG/L</td>
<td>0.340</td>
<td>1.394</td>
<td>SM3113B</td>
<td>12/28/2007</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.326</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>12/28/2007</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>63000</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>12/21/2007</td>
</tr>
</tbody>
</table>

Dale Dixon / Laboratory Director
Radica Knutselas / QC Officer
12/31/2007 Date

DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.
B = Results based upon colony counts outside the acceptable range.
H = Value based on field kit determination. Results may not be accurate.
I = Reported value is between the laboratory MQL and the PQL.
J1 = Est. value surrogate recovery limits exceeded.
J2 = Est. value. No quality control criteria exists for component.
J3 = Est. value. Quality control criteria for precision or accuracy not met.
J4 = Est. value. Sample matrix interference suspected.
J5 = Est. value. Data questionable due to improper lab or field protocols
K = Off-scale low. Value is known to be < the value reported.
L = Off-scale high. Value is known to be > the value reported
N = Presumptive evidence of presence of material.
O = Sampled, but analysis lost or not performed.
Q = Sample held beyond accepted hold time.
T = Value reported is < MQL. Reported for informational purposes only and shall not be used in statistical analysis.
U = Analyst analyzed but not detected at the value indicated.
V = Analyst detected in sample and method blank.
Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.
I = Data deviate from historically established concentration ranges.
? = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.
* = Not reported due to interference.

NOTES:

PQL = 4xMQL.
MBAS calculated as LAS; molecular weight = 348.
X = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

7120575 PAGE 2 OF 3
Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS (A)</th>
<th>TKN (B)</th>
<th>NO₃-N (C)</th>
<th>NO₂-N (D)</th>
<th>o-P (Lab-Filtered) (E)</th>
<th>Cd (F)</th>
<th>Cr (G)</th>
<th>Zn (H)</th>
<th>Cu (I)</th>
<th>Facal Coliform (MF) (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAFFLE - IN</td>
<td>Comp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-DEC-07</td>
<td></td>
<td></td>
<td></td>
<td>1:4 H₂SO₄ pH<2 o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NaThio</td>
</tr>
<tr>
<td>BAFFLE - OUT</td>
<td>Comp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-DEC-07</td>
<td></td>
<td></td>
<td></td>
<td>1:4 HNO₃ pH<2 o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Instructions:
1. Sample must be refrigerated or stored at 4°C (39.2°F) after collection.
2. Each bottle has a label identifying sample ID, premeasured preservative contained in the bottle, sample type, client ID, and parameters for analysis.
3. The following information should be added to each bottle label after collection with permanent marker ink: date and time of collection, sampler's name or initials, and any field number or ID.
4. All bottles not containing preservative may be rinsed with appropriate sample prior to collection.

Laboratory Sample Acceptability:
pH: 6-7

Chain of Custody Form Details:

<table>
<thead>
<tr>
<th>Collector</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allan Willis</td>
<td>21-DEC-07</td>
<td>11:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relinquished by:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signatures:

- Sample signed by: [Signature]
- Received by: [Signature]
- Date: 3/23/08 10:00
Analytical Test Report

Benchmark EnviroAnalytical Inc.

Nelac Certification #: E84167

Analytical Test Report

These Results Meet Nelac Standards

Submission Number: 8060648

Project Name: ORIOLE DR. BAFFLE BOX PROJECT

Date Received: 06/23/2008

Time Received: 0815

Robert Wotthe

Submission Number 8060648

Sample Number: 1

Sample Date: 06/21/2008

Sample Time: 1436

Sample Description: BAFFLE - IN

Sample Method: Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.8</td>
<td>200.7</td>
<td>06/24/2008</td>
<td>11:22</td>
<td>JG</td>
</tr>
<tr>
<td>Chromium</td>
<td>3.20 I</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>06/24/2008</td>
<td>11:22</td>
<td>JG</td>
</tr>
<tr>
<td>Zinc</td>
<td>63.1</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>06/24/2008</td>
<td>11:22</td>
<td>JG</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>2.49</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>06/20/2008</td>
<td>10:00</td>
<td>MWC</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>2.62</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>06/20/2008</td>
<td>10:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>Nitrate-Nitrite</td>
<td>0.125</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>06/28/2008</td>
<td>10:30</td>
<td>CB</td>
</tr>
<tr>
<td>Ortho Phosphorus</td>
<td>0.198</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>06/23/2008</td>
<td>10:02</td>
<td>YW</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>0.283</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>06/27/2008</td>
<td>09:00</td>
<td>YW</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>130</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>06/23/2008</td>
<td>14:45</td>
<td>SJB</td>
</tr>
<tr>
<td>Copper</td>
<td>12.4</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>06/25/2008</td>
<td>09:47</td>
<td>JG</td>
</tr>
<tr>
<td>Ammonia Nitrogen</td>
<td>0.019 I</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>08/25/2008</td>
<td>11:00</td>
<td>YW</td>
</tr>
</tbody>
</table>

Submission Number 8060648

Sample Number: 2

Sample Date: 06/21/2008

Sample Time: 1436

Sample Description: BAFFLE - OUT

Sample Method: Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.8</td>
<td>200.7</td>
<td>06/24/2008</td>
<td>11:22</td>
<td>JG</td>
</tr>
</tbody>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8060648 PAGE 1 OF 3
BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHROMIUM</td>
<td>3.10</td>
<td>ug/L</td>
<td>06/24/2008</td>
<td>11:22</td>
</tr>
<tr>
<td>ZINC</td>
<td>56.0</td>
<td>ug/L</td>
<td>06/24/2008</td>
<td>11:22</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>2.08</td>
<td>mg/L</td>
<td>06/28/2008</td>
<td>10:00</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>2.22</td>
<td>mg/L</td>
<td>06/28/2008</td>
<td>10:00</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>0.135</td>
<td>mg/L</td>
<td>09/25/2008</td>
<td>10:30</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.222</td>
<td>mg/L</td>
<td>09/23/2008</td>
<td>10:02</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.286</td>
<td>mg/L</td>
<td>09/27/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>51.2</td>
<td>mg/L</td>
<td>09/23/2008</td>
<td>14:45</td>
</tr>
<tr>
<td>COPPER</td>
<td>11.3</td>
<td>ug/L</td>
<td>06/25/2008</td>
<td>09:47</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.035</td>
<td>mg/L</td>
<td>06/25/2008</td>
<td>11:00</td>
</tr>
</tbody>
</table>

Dale D. Dixon / Laboratory Director

Radica Koutselas / QC Officer

06/30/2008

DATA QUALIFIERS THAT MAY APPLY:

- **A** = Value reported is an average of two or more determinations.
- **B** = Results based upon colony counts outside the acceptable range.
- **H** = Value based on field kit determination. Results may not be accurate.
- **I** = Reported value is between the laboratory MDL and the PQL.
- **J1** = Est. value surrogate recovery limits exceeded.
- **J2** = Est. value. No quality control criteria exists for component.
- **J3** = Est. value quality control criteria for precision or accuracy not met.
- **J4** = Est. value. Sample matrix interferences suspected.
- **J5** = Est. value. Data questionable due to improper lab or field protocols.
- **K** = Off-scale low. Value is known to be < the value reported.
- **L** = Off-scale high. Value is known to be > the value reported.

NOTES:

- **PQL** = 4xMDL.
- **MBAS** calculated as LAS; molecular weight = 348.
- **X** = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986.
Client: PBS & J
5300 West Cypress Street, Suite 200
Tampa, FL 33607-1712
(813) 281-8357 Attn: Robert D. Woithe, Ph.D.
(813) 287-1745 (fax)
RDWoithe@pbsj.com

Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS (A)</th>
<th>TKN (B)</th>
<th>NO₃-NO₂-N (C)</th>
<th>o-P (Field-Filtered) (D)</th>
<th>Cd (E)</th>
<th>Cr (F)</th>
<th>Zn (200.7) (G)</th>
<th>Cu (200-1) (H)</th>
<th>Fecal Coliform (MF) (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baffle - IN</td>
<td>Comp</td>
<td>21-JUNE-09</td>
<td>14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baffle - OUT</td>
<td>Comp</td>
<td>21-JUNE-09</td>
<td>14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp</td>
<td></td>
</tr>
<tr>
<td>Comp</td>
<td></td>
</tr>
</tbody>
</table>

Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).

1. Each bottle has a label identifying sample ID, premeasured preservative contained in the bottle, sample type, client ID, and parameters for analysis.
2. The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sampler's name or initials, and any field number or ID.
3. All bottles not containing preservative may be rinsed with appropriate sample prior to collection.

The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Date:</th>
<th>Time:</th>
<th>Received By:</th>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HILAL WILLIS</td>
<td>22-JUNE-09</td>
<td>11:30</td>
<td></td>
<td>6/22/08</td>
<td>11:00</td>
</tr>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td>R. Woithe</td>
<td>6/23/08</td>
<td>8:15</td>
<td></td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Test Report

These results meet NELAC standards.

Submission Number: 8070190

Project Name: Oriole Dr. Baffle Box Project

Date Received: 07/07/2008

Time Received: 1545

Sample Information

Sample Number: 1
Sample Description: In
Sample Date: 07/06/2008
Sample Method: Composite
Sample Time: 1804

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>07/06/2008</td>
<td>13:07</td>
<td>JG</td>
</tr>
<tr>
<td>Chromium</td>
<td>8.40</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>07/06/2008</td>
<td>13:07</td>
<td>JG</td>
</tr>
<tr>
<td>Zinc</td>
<td>146</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>07/06/2008</td>
<td>13:07</td>
<td>JG</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>6.69</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>07/06/2008</td>
<td>10:00</td>
<td>MWC</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>6.79</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>07/06/2008</td>
<td>10:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>0.104</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>07/06/2008</td>
<td>10:30</td>
<td>CB</td>
</tr>
<tr>
<td>Ortho Phosphorus</td>
<td>0.220</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>355.3</td>
<td>07/06/2008</td>
<td>18:48</td>
<td>YW</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>0.995</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>356.3</td>
<td>07/10/2008</td>
<td>09:15</td>
<td>YW</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>238</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>07/11/2008</td>
<td>08:30</td>
<td>CB</td>
</tr>
<tr>
<td>Copper</td>
<td>30.6</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>07/09/2008</td>
<td>13:31</td>
<td>JG</td>
</tr>
<tr>
<td>Ammonia Nitrogen</td>
<td>0.037</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>07/10/2008</td>
<td>11:30</td>
<td>YW</td>
</tr>
</tbody>
</table>

Submission Number: 8070190

Sample Information

Sample Number: 2
Sample Description: Out
Sample Date: 07/06/2008
Sample Method: Composite
Sample Time: 1804

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>07/06/2008</td>
<td>13:07</td>
<td>JG</td>
</tr>
</tbody>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061
NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Date</th>
<th>Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHROMIUM</td>
<td>UG/L</td>
<td>5.20</td>
<td>8</td>
<td>200.7</td>
<td>07/08/2008</td>
<td>13:07</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>UG/L</td>
<td>92.1</td>
<td>5.6</td>
<td>200.7</td>
<td>07/08/2008</td>
<td>13:07</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>MG/L</td>
<td>3.95</td>
<td>0.20</td>
<td>351.2</td>
<td>07/09/2008</td>
<td>10:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>MG/L</td>
<td>4.07</td>
<td>0.20</td>
<td>353+351</td>
<td>07/09/2008</td>
<td>10:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>MG/L</td>
<td>0.118</td>
<td>0.016</td>
<td>353.2</td>
<td>07/08/2008</td>
<td>10:30</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>MG/L</td>
<td>0.258</td>
<td>0.008</td>
<td>365.3</td>
<td>07/08/2008</td>
<td>16:49</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>MG/L</td>
<td>0.714</td>
<td>0.008</td>
<td>365.3</td>
<td>07/10/2008</td>
<td>09:15</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>MG/L</td>
<td>129</td>
<td>2.280</td>
<td>SM2540D</td>
<td>07/11/2008</td>
<td>08:30</td>
<td>CB</td>
</tr>
<tr>
<td>COPPER</td>
<td>UG/L</td>
<td>18.0</td>
<td>1.384</td>
<td>SM3113B</td>
<td>07/09/2008</td>
<td>13:31</td>
<td>YW</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>MG/L</td>
<td>0.008</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>07/10/2008</td>
<td>11:30</td>
<td>YW</td>
</tr>
</tbody>
</table>

Rodica Koutselas

07/15/2008

Dale D. Dixon / Laboratory Director
Radica Koutselas / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

- **A** = Value reported is an average of two or more determinations.
- **B** = Results based upon colony counts outside the acceptable range.
- **H** = Value based on field kit determination. Results may not be accurate.
- **I** = Reported value is between the laboratory MDL and the PQL.
- **J1** = Est. value surrogate recovery limit exceeded.
- **J2** = Est. value. No quality control criteria exists for component.
- **J3** = Est. value quality control criteria for precision or accuracy not met.
- **J4** = Est. value. Sample matrix interference suspected.
- **J5** = Est. value. Data questionable due to improper lab or field protocols.
- **K** = Off-scale low. Value is known to be < the value reported.
- **L** = Off-scale high. Value is known to be > the value reported.
- **N** = Presumptive evidence of presence of material.
- **O** = Sampled, but analysis lost or not performed.
- **Q** = Sample held beyond accepted hold time.
- **T** = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.
- **U** = Analyte analyte not detected at the value indicated.
- **V** = Analyte detected in sample and method blank.
- **Y** = Analysis performed on an improperly preserved sample. Data may be inaccurate.
- **Z** = Too many colonies were present (TNTC). The numeric value represents the filtration volume.
- **I** = Data deviate from historically established concentration ranges.
- **?** = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.
- *** = Not reported due to interference.**

NOTES:

- **PQL** = 4xMDL.
- **MBAS** calculated as LAS; molecular weight = 348.
- **X** = Value exceeds MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986.
Chain of Custody Form: Oriole Dr. Baffle Box Project

Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS</th>
<th>TKN</th>
<th>NO$_3$-NO$_2$</th>
<th>NH$_3$</th>
<th>T-N</th>
<th>T-P</th>
<th>o-P (Field-Filtered)</th>
<th>Cd</th>
<th>Cr</th>
<th>Zn (200.7)</th>
<th>Cu (200.7)</th>
<th>Fe</th>
<th>Fe</th>
<th>Coliform (MF)</th>
<th>Laboratory Sample #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td></td>
<td>(C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x 2 Quart Plastic</td>
<td>1 x 1 Quart Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x 100mL Sterile Plastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>1:4 H$_2$SO$_4$</td>
<td>pH<2</td>
<td>Plain</td>
<td>1:4 HNO$_3$</td>
<td>pH<2</td>
<td>NaThio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Collector</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hunter Ulness</td>
<td>7/6/08</td>
<td>1:40 PM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hunter Ulness</td>
<td>7/7/08</td>
<td>1:45 PM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hunter Ulness</td>
<td>7/7/08</td>
<td>1:45 PM</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Carlos Pellean</td>
<td>7/7/08</td>
<td>1:45 PM</td>
<td></td>
</tr>
</tbody>
</table>

Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).

Instructions:
1. Each bottle has a label identifying sample ID, premixed preservative contained in the bottle, sample type, client ID, and parameters for analysis.
2. The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sampler's name or initials, and any field number or ID.
3. The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.
ANALYTICAL TEST REPORT

These results meet NELAC standards

Submission Number: 8080130

Project Name: ORIOLE DR, BAFFLE BOX PROJECT

Date Received: 08/05/2008

Time Received: 1330

Sample Number: 1
Sample Description: B-IN
Sample Method: Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.5</td>
<td>200.7</td>
<td>08/08/2008</td>
<td>02:55</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>3.10 I</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>08/07/2008</td>
<td>09:53</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>32.0</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>08/08/2008</td>
<td>09:55</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>1.48</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>08/16/2008</td>
<td>09:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>1.54</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+551</td>
<td>08/15/2008</td>
<td>09:05</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>0.057</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>352.2</td>
<td>08/09/2008</td>
<td>09:30</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.188</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>305.3</td>
<td>08/05/2008</td>
<td>16:15</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.298</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/11/2008</td>
<td>10:05</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>28.8</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>08/11/2008</td>
<td>08:30</td>
<td>CB</td>
</tr>
<tr>
<td>COPPER</td>
<td>9.88</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>08/12/2008</td>
<td>18:45</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.096</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>08/12/2008</td>
<td>11:00</td>
<td>YW</td>
</tr>
</tbody>
</table>

Sample Number: 2
Sample Description: B-OUT
Sample Method: Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>08/06/2008</td>
<td>09:55</td>
<td>JG</td>
</tr>
</tbody>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8080130 PAGE 1 OF 3
NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th>LOQ</th>
<th>Method</th>
<th>Date</th>
<th>Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>UG/L</td>
<td>2.20 I</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>08/07/2008</td>
<td>09:53</td>
</tr>
<tr>
<td>Zinc</td>
<td>UG/L</td>
<td>23.7</td>
<td>1.4</td>
<td>5.8</td>
<td>200.7</td>
<td>08/06/2008</td>
<td>09:55</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>MG/L</td>
<td>1.08</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>08/19/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>MG/L</td>
<td>1.15</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>08/19/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>Nitrate+Nitrite</td>
<td>MG/L</td>
<td>0.065</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>08/06/2008</td>
<td>09:30</td>
</tr>
<tr>
<td>Ortho Phosphorus</td>
<td>MG/L</td>
<td>0.176</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/05/2008</td>
<td>16:15</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>MG/L</td>
<td>0.306</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/11/2008</td>
<td>10:05</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>MG/L</td>
<td>13.8</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>08/11/2008</td>
<td>08:30</td>
</tr>
<tr>
<td>Copper</td>
<td>UG/L</td>
<td>5.41</td>
<td>0.348</td>
<td>1.384</td>
<td>SM3113B</td>
<td>08/11/2008</td>
<td>16:46</td>
</tr>
<tr>
<td>Ammonia Nitrogen</td>
<td>MG/L</td>
<td>0.048</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NHC</td>
<td>08/12/2008</td>
<td>11:00</td>
</tr>
</tbody>
</table>

08/18/2008

Dale D. Dixon / Laboratory Director
Radica Koutselias / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.

B = Results based upon colony counts outside the acceptable range.

H = Value based on field kit determination. Results may not be accurate.

I = Reported value is between the laboratory MDL and the PQL.

J1 = Est. value surrogate recovery limits exceeded.

J2 = Est. value. No quality control criteria exists for component.

J3 = Est. value quality control criteria for precision or accuracy not met.

J4 = Est. value. Sample matrix interference suspected.

J5 = Est. value. Data questionable due to improper lab or field protocols

K = Off-scale low. Value is known to be < the value reported.

L = Off-scale high. Value is known to be > the value reported

N = Presumptive evidence of presence of material.

O = Sampled, but analysis lost or not performed.

Q = Sample held beyond accepted hold time.

T = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.

U = Analyte analyzed but not detected at the value indicated.

V = Analyte detected in sample and method blank

Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.

Z = Too many colonies were present (TNTC). The numeric value represents the filtration volume.

I = Data deviate from historically established concentration ranges.

? = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.

*= Not reported due to interference.

NOTES:

PQL = 4xMDL.

MSAS calculated as LAS; molecular weight = 346.

X = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986
Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS</th>
<th>TKN</th>
<th>NO₂-NO₃</th>
<th>NH₃</th>
<th>T-N</th>
<th>o-P (Field Filtered)</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Zn (200.7)</th>
<th>Fecal Coliform (MPN)</th>
<th>Recal Coliform (CFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td>(D)</td>
<td>(E)</td>
<td>(F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-IN</td>
<td>Comp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-8-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:11</td>
<td></td>
</tr>
<tr>
<td>B-OUT</td>
<td>Comp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-8-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:11</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).

Instructions:
1. Each bottle has a label identifying Sample ID, premixed preservative contained in the bottle, sample type, client ID, and parameters for analysis.
2. The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sample's name or id, and any field number or ID.
3. The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-8-08</td>
<td>10:20</td>
<td>John Doe</td>
<td>8-5-08</td>
<td>10:20</td>
</tr>
<tr>
<td>2</td>
<td>8-5-08</td>
<td>12:10</td>
<td>Jane Smith</td>
<td>8-5-08</td>
<td>12:10</td>
</tr>
<tr>
<td>3</td>
<td>8-5-08</td>
<td>13:30</td>
<td>Wayne Smith</td>
<td>8-5-08</td>
<td>13:30</td>
</tr>
<tr>
<td>4</td>
<td>8-5-08</td>
<td>13:30</td>
<td>Carlos Perez</td>
<td>8-5-08</td>
<td>13:30</td>
</tr>
</tbody>
</table>

Laboratory Sample Acceptability:

- Sample Acceptable: Yes
- Sample Rejected: No
- Sample Rejected: Yes
- Sample Rejected: Yes
ANALYTICAL TEST REPORT

These results meet NELAC standards

Submission Number: 8080292

Project Name: ORIOLE DR. BAFFLE BOX PROJECT

Date Received: 08/09/2008

Time Received: 1120

Robert D. Woithe

Submission Number 8080292

Sample Number: 1
Sample Description: BAFFLE BOX IN
Sample Date: 08/08/2008
Sample Method: Composite
Sample Time: 2004

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>1.20 I</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>08/14/2008</td>
<td>09:11</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>13.3</td>
<td>UG/L</td>
<td>2</td>
<td>0</td>
<td>200.7</td>
<td>08/14/2008</td>
<td>09:11</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>205</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>08/14/2008</td>
<td>08:11</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>4.46</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>09/15/2008</td>
<td>09:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>4.48</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>09/15/2008</td>
<td>09:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>0.019</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>09/12/2008</td>
<td>11:00</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.177</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/10/2006</td>
<td>11:50</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.795</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/12/2008</td>
<td>09:50</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>196</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.260</td>
<td>SM2540D</td>
<td>08/11/2008</td>
<td>17:00</td>
<td>CB</td>
</tr>
<tr>
<td>COPPER</td>
<td>41.3</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>09/19/2008</td>
<td>10:55</td>
<td>JL</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.087</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>08/15/2008</td>
<td>15:30</td>
<td>JL</td>
</tr>
</tbody>
</table>

Submission Number 8080292

Sample Number: 2
Sample Description: BAFFLE BOX OUT
Sample Date: 08/08/2008
Sample Method: Composite
Sample Time: 2004

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>08/14/2008</td>
<td>09:11</td>
<td>JG</td>
</tr>
</tbody>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8080292 PAGE 1 OF 3
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Date</th>
<th>Time</th>
<th>initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHROMIUM</td>
<td>ug/L</td>
<td>6.60</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>09:11</td>
</tr>
<tr>
<td>ZINC</td>
<td>ug/L</td>
<td>90.6</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>09:11</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>mg/L</td>
<td>3.00</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>08/15/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>mg/L</td>
<td>3.07</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>08/15/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>mg/L</td>
<td>0.074</td>
<td>0.004</td>
<td>0.016</td>
<td>352.2</td>
<td>08/12/2008</td>
<td>11:00</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>mg/L</td>
<td>0.136</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/10/2008</td>
<td>11:56</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>mg/L</td>
<td>0.456</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/12/2008</td>
<td>08:50</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>mg/L</td>
<td>122</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>08/11/2008</td>
<td>17:00</td>
</tr>
<tr>
<td>COPPER</td>
<td>ug/L</td>
<td>19.2</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>08/19/2008</td>
<td>10:55</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>mg/L</td>
<td>0.084</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>08/15/2008</td>
<td>15:30</td>
</tr>
</tbody>
</table>

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986
Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS ((A))</th>
<th>TKN ((B))</th>
<th>NO(_3)-NO(_2) ((C))</th>
<th>o-P Field Filtered ((D))</th>
<th>Cd ((E))</th>
<th>Cr ((F))</th>
<th>Zn ((G))</th>
<th>Cu ((H))</th>
<th>Final Coliform (MF)</th>
<th>Laboratory Submission #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5080292</td>
</tr>
</tbody>
</table>

1 x 2 Quart Plastic
1 x 1 Quart Plastic
1 x ½ Pint Plastic
1 x ½ Pint Plastic
1 x 100mL Sterile Plastic

<table>
<thead>
<tr>
<th>Laboratory Sample #</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Sample ID: BAFFLE BOX IN
Comp 2004 8-AUG-2005

Sample ID: BAFFLE BOX OUT
Comp 2004 8-AUG-2005

Instructions:
- Each bottle has a label identifying sample ID, preservative contained in the bottle, sample type, client ID, and parameters for analysis.
- The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sampler’s name or initials, and any field number or ID.
- The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector: Drew Prince</th>
<th>Date: 09-AUG-2005</th>
<th>Time: 1120</th>
<th>Received By: Dale Ojima</th>
<th>Date: 08-09-05</th>
<th>Time: 1120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
<tr>
<td>Relinquished by:</td>
<td>Date:</td>
<td>Time:</td>
<td>Received By:</td>
<td>Date:</td>
<td>Time:</td>
</tr>
</tbody>
</table>

Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).
ANALYTICAL TEST REPORT

These results meet NELAC standards

Submission Number: 8080304

Project Name: ORIOLE DR. BAFFLE BOX PROJECT

Date Received: 08/09/2008

Time Received: 1355

Robert D. Woithe

Sample Number: 1
Sample Description: BAFFLE BOX OUT
Sample Date: 08/09/2008
Sample Time: 1253

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.0</td>
<td>200.7</td>
<td>08/14/2008</td>
<td>09:11</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>2 U</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>09:11</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>25.6</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>09:11</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>0.923</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>08/10/2008</td>
<td>09:00</td>
<td>MVC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>1.08</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>352+351</td>
<td>09/16/2008</td>
<td>09:00</td>
<td>MVC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>0.156</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>08/12/2008</td>
<td>11:00</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>0.090</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>08/10/2008</td>
<td>11:50</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.183</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/13/2008</td>
<td>08:50</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>19.2 Q</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>25400D</td>
<td>08/21/2008</td>
<td>11:00</td>
<td>CB</td>
</tr>
<tr>
<td>COPPER</td>
<td>5.66</td>
<td>UG/L</td>
<td>0.345</td>
<td>1.384</td>
<td>SM3113B</td>
<td>09/19/2008</td>
<td>10:55</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.032</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>08/15/2008</td>
<td>15:30</td>
<td>JL</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>20000 Z</td>
<td>#/100 ML</td>
<td>100</td>
<td>400</td>
<td>SM9222D</td>
<td>08/09/2008</td>
<td>14:25</td>
<td>JG/CUS</td>
</tr>
</tbody>
</table>

Sample Number: 2
Sample Description: BAFFLE BOX IN
Sample Date: 08/09/2008
Sample Method: Composite

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8080304 PAGE 1 OF 3
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Code</th>
<th>Value</th>
<th>Method</th>
<th>Date</th>
<th>Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>UG/L</td>
<td>U</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>09:11</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>UG/L</td>
<td>U</td>
<td>2.50</td>
<td>1</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>08:11</td>
</tr>
<tr>
<td>ZINC</td>
<td>UG/L</td>
<td>U</td>
<td>46.3</td>
<td>1.4</td>
<td>200.7</td>
<td>09/14/2008</td>
<td>08:11</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>MG/L</td>
<td>M</td>
<td>1.68</td>
<td>0.05</td>
<td>351.2</td>
<td>09/15/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>MG/L</td>
<td>M</td>
<td>1.73</td>
<td>0.05</td>
<td>351+351</td>
<td>09/15/2008</td>
<td>09:00</td>
</tr>
<tr>
<td>NITRATE+NITRITE</td>
<td>MG/L</td>
<td>M</td>
<td>0.048</td>
<td>0.004</td>
<td>353.2</td>
<td>09/12/2008</td>
<td>11:00</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS</td>
<td>MG/L</td>
<td>M</td>
<td>0.095</td>
<td>0.002</td>
<td>365.3</td>
<td>09/10/2008</td>
<td>11:56</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>MG/L</td>
<td>M</td>
<td>0.278</td>
<td>0.002</td>
<td>365.3</td>
<td>09/13/2008</td>
<td>08:50</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>Q</td>
<td></td>
<td>65.6</td>
<td>0.570</td>
<td>2,280</td>
<td>09/21/2008</td>
<td>11:00</td>
</tr>
<tr>
<td>COPPER</td>
<td>UG/L</td>
<td>M</td>
<td>9.95</td>
<td>0.345</td>
<td>1.384</td>
<td>09/19/2008</td>
<td>10:55</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>MG/L</td>
<td>M</td>
<td>0.037</td>
<td>0.005</td>
<td>0.020</td>
<td>09/15/2008</td>
<td>15:30</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>Z/100ML</td>
<td></td>
<td>20000</td>
<td>100</td>
<td>400</td>
<td>09/09/2008</td>
<td>14:25</td>
</tr>
</tbody>
</table>

DATA QUALIFIERS THAT MAY APPLY:

- **A** = Value reported is an average of two or more determinations.
- **B** = Results based upon colony counts outside the acceptable range.
- **H** = Value based on field kill determination. Results may not be accurate.
- **I** = Reported value is between the laboratory MDL and the PQL.
- **J1** = Est. value surrogate recovery limits exceeded.
- **J2** = Est. value. No quality control criteria exists for component.
- **J3** = Est. value quality criteria for precision or accuracy not met.
- **J4** = Est. value. Sample matrix interference suspected.
- **J5** = Est. value. Data questionable due to improper lab or field protocols.
- **K** = Off-scale low. Value is known to be < the value reported.
- **L** = Off-scale high. Value is known to be > the value reported.

NOTES:

- **PQL** = 4xMDL.
- MBAS calculated as LAS; molecular weight = 348.
- **X** = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986.
Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS (A)</th>
<th>TKN</th>
<th>NO₂-NO₃</th>
<th>NH₃</th>
<th>T-N</th>
<th>T-P</th>
<th>o-P (Field-Filtered) (B)</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu (SM3138) (C)</th>
<th>Zn (200.7) (D)</th>
<th>Fecal Coliform (MF) (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 x 2 Quart Plastic</td>
<td>1 x 1 Quart Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x 100mL Sterile Plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>1:4 H₂SO₄ pH<2.0</td>
<td>Plain</td>
<td>1:4 HNO₃ pH<2.0</td>
<td>NaTHlo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baffle Box OUT
9: Aug - 2008
Comp 1253
Laboratory Sample #: 1

Baffle Box IN
9: Aug - 2008
Comp 1253
Laboratory Sample #: 2

Collector:
Date: 9: Aug - 2008
Time: 13:50
Received By:
BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

ANALYTICAL TEST REPORT

These results meet NELAC standards

Submission Number:

8090343

P B S & J

5300 West Cypress Street, Suite 200

Tampa, FL 33607-1712

Robert D. Woithe

Sample Number: 1

Sample Description: BAFFLE BOX OUT

Sample Method: Composite

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>09/12/2008</td>
<td>10:09</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>2.60</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>09/12/2008</td>
<td>10:09</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>23.1</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>09/12/2008</td>
<td>10:09</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>2.86</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351</td>
<td>09/17/2008</td>
<td>10:30</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>2.88</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351</td>
<td>09/17/2008</td>
<td>10:30</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE=NITRITE AS N</td>
<td>0.024</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>09/10/2008</td>
<td>15:00</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>0.102</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/10/2008</td>
<td>17:19</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>0.302</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/11/2008</td>
<td>14:30</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>45.4</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>09/12/2008</td>
<td>08:30</td>
<td>CB</td>
</tr>
<tr>
<td>COPPER</td>
<td>5.71</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>09/15/2008</td>
<td>10:14</td>
<td>JL</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.028</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>09/12/2008</td>
<td>15:44</td>
<td>JL</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>20000 CJ3Z</td>
<td>#/100 ML</td>
<td>100</td>
<td>400</td>
<td>SM9222D</td>
<td>09/10/2008</td>
<td>15:15</td>
<td>CUS</td>
</tr>
</tbody>
</table>

Sample Number: 2

Sample Description: BAFFLE BOX IN

Sample Method: Composite

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8090343 PAGE 1 OF 3
BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Unit</th>
<th>Value 2</th>
<th>Unit</th>
<th>Date</th>
<th>Time</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>09/12/2008</td>
<td>10:09</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>3.10</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>09/12/2008</td>
<td>10:09</td>
</tr>
<tr>
<td>ZINC</td>
<td>56.7</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>09/12/2008</td>
<td>10:09</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>6.02</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>09/17/2008</td>
<td>10:30</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>6.02</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>09/17/2008</td>
<td>10:30</td>
</tr>
<tr>
<td>NITRATE+NITRITE AS N</td>
<td>0.004 U</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.010</td>
<td>353.2</td>
<td>09/10/2008</td>
<td>15:00</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>0.311</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/10/2008</td>
<td>17:19</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>0.741</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/11/2008</td>
<td>14:30</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>134</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>09/12/2008</td>
<td>08:30</td>
</tr>
<tr>
<td>COPPER</td>
<td>17.0</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>09/19/2008</td>
<td>10:14</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.065</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>09/12/2008</td>
<td>15:44</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>20000</td>
<td>CJ3Z</td>
<td>#/100 ML</td>
<td>100</td>
<td>400</td>
<td>09/10/2008</td>
<td>15:15</td>
</tr>
</tbody>
</table>

Data Qualifiers that May Apply:

- A = Value reported is an average of two or more determinations.
- B = Results based upon colony counts outside the acceptable range.
- H = Value based on field kit determination. Results may not be accurate.
- I = Reported value is between the laboratory MDL and the PQL.
- J1 = Est. value: surrogate recovery limits exceeded.
- J2 = Est. value: No quality control criteria exists for component.
- J3 = Est. value: Quality control criteria for precision or accuracy not met.
- J4 = Est. value: Sample matrix interference suspected.
- J5 = Est. value: Data questionable due to improper lab or field protocol.
- K = Off-scale low. Value is known to be < the value reported.
- L = Off-scale high. Value is known to be > the value reported.

Notes:

- MDL = 4xMDL
- MBAS calculated as LAS; molecular weight = 349.
- X = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986.

Results relate only to the samples.

Dale D. Dixon / Laboratory Director
Radica Koutselas / QC Officer

09/19/2008

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8090343 PAGE 2 OF 3
Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS</th>
<th>TKN</th>
<th>NO₃-NO₂</th>
<th>NH₄</th>
<th>T-N</th>
<th>T-P</th>
<th>o-P (Field-Filtered)</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu (SMM138)</th>
<th>Zn (200.7)</th>
<th>Fecal Coliform (MF)</th>
<th>Laboratory Submission #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td></td>
<td>(C)</td>
<td></td>
<td></td>
<td></td>
<td>(D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x 2 Quart Plastic</td>
<td>1 x 1 Quart Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x 100mL Sterile Plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>Plain</td>
<td>1.4 H₂SO₄ pH<2.0</td>
<td>1.4 HNO₃ pH<2.0</td>
<td>NaThio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | 4TH OF SEPT 17 25 EST | 4- SEPT 2008 17 25 EST | 1 | 2 | |

Instruments:
1. Each bottle has a label identifying sample ID, presharved preservative contained in the bottle, sample type, client ID, and parameters for analysis. The following information should be added to each bottle label after collection with permanant black ink: date and time of collection, sampler's name or initials, and any field number or ID.
2. All bottles not containing preservative may be rinsed with appropriate sample prior to collection.
3. The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DREW PRINCE</td>
<td>9/10/06</td>
<td>1005</td>
<td>Melinda Merchant</td>
<td>9/10/06</td>
<td>1005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/10/06</td>
<td>8/20</td>
<td>Wayne Van Dammen</td>
<td>9/10/06</td>
<td>1210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/10/08</td>
<td>1730</td>
<td>Wayne Van Dammen</td>
<td>9/10/08</td>
<td>1730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/10/08</td>
<td>8/20</td>
<td>Oman M. deBak</td>
<td>9/10/08</td>
<td>1730</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL TEST REPORT

Submission Number: 8090938

Project Name: ORIOLE DR. BAFFLE BOX PROJECT

Date Received: 09/30/2008

Time Received: 1115

Sample 1

Sample Number: 1
Sample Description: Baffle In
Sample Date: 09/30/2008
Sample Method: Grab
Sample Time: 0239

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.8</td>
<td>200.7</td>
<td>10/02/2008</td>
<td>09:53</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>3.00 I</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>10/02/2008</td>
<td>09:53</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>30.5</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>10/02/2008</td>
<td>09:53</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>1.19</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>10/08/2008</td>
<td>11:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>1.31</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>10/08/2008</td>
<td>11:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE AS N</td>
<td>0.119</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>10/02/2008</td>
<td>10:30</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>0.219</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>09/30/2008</td>
<td>16:27</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>0.356</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/03/2008</td>
<td>14:20</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>45.6</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>10/01/2008</td>
<td>10:00</td>
<td>AC</td>
</tr>
<tr>
<td>COPPER</td>
<td>6.09</td>
<td>UG/L</td>
<td>0.946</td>
<td>1.384</td>
<td>SM3113B</td>
<td>10/01/2008</td>
<td>14:07</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.147</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>10/09/2008</td>
<td>16:01</td>
<td>YW</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>27000 C</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>09/30/2008</td>
<td>13:00</td>
<td>CUS</td>
</tr>
</tbody>
</table>

Sample 2

Sample Number: 2
Sample Description: Baffle Out
Sample Date: 09/30/2008
Sample Method: Grab
Sample Time: 0500

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

standard report
BENCHMARK
EnviroAnalytical Inc.

NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Date</th>
<th>Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>2 U</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>2 U</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
</tr>
<tr>
<td>ZINC</td>
<td>9.30</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>0.714</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>0.823</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>355.3</td>
</tr>
<tr>
<td>NITRATE+NITRITE AS N</td>
<td>0.109</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>0.209</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>0.280</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>5.20</td>
<td>MG/L</td>
<td>1</td>
<td>4</td>
<td>SM2540G</td>
</tr>
<tr>
<td>COPPER</td>
<td>4.35</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.126</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>29000 C</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
</tr>
</tbody>
</table>

Dale D. Dixon / Laboratory Director
Radica Koutselas / QC Officer

10/10/2008

DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.
B = Results based upon colony counts outside the acceptable range.
H = Value based on field kit determination. Results may not be accurate.
I = Reported value is between the laboratory MDL and the PQL.
J1 = Est. value surrogate recovery limits exceeded.
J2 = Est. value. No quality control criteria exists for component.
J3 = Est. value quality control criteria for precision or accuracy not met.
J4 = Est. value. Sample matrix interference suspected.
J5 = Est. value. Data questionable due to improper lab or field protocols
K = Off-scale low. Value is known to be < the value reported.
L = Off-scale high. Value is known to be > the value reported.

NOTES:

PQL = 4MDL.
MBAS calculated as LAS; molecular weight = 348.
X = Value exceed MCL.

For questions and comments regarding these results, please contact Katharine Dixon at (941) 723-9986

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

8090938 PAGE 2 OF 3
Chain of Custody Form: Oriole Dr. Baffle Box Project
Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS</th>
<th>TKN, NO₃₋NO₂, NH₃, T-N, T-P</th>
<th>o-P (Field-Filtered)</th>
<th>Cd, Cr, Cu (BM1138)</th>
<th>Zn (200.7)</th>
<th>Fecal Coliform (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td>(D)</td>
<td>(E)</td>
<td>(F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x 2 Quart Plastic</td>
<td>1 x 1 Quart Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x 100mL Sterile Plastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>1:4 H₂SO₄ pH<2</td>
<td>Plain</td>
<td>1:4 HNO₃ pH<2</td>
<td>NaThio</td>
<td></td>
</tr>
</tbody>
</table>

LABORATORY SUBMISSION #:

8090.988

LABORATORY SAMPLE #

1

SAMPLE

- **ABBLE IN**
 - Comp
 - 30-SEPT-2008
 - 039 (EST)

- **ABBLE OUT**
 - Comp
 - 30-SEPT-2008
 - 0500 (EST)

- Comp

- Comp

- Comp

INSTRUCTIONS:

Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).

1. Each bottle has a label identifying sample ID, premeasured preservative contained in the bottle, sample type, client ID, and parameters for analysis.

2. The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sample's name or initials, and any field number or ID.

3. All samples not containing preservative may be mixed with appropriate sample prior to collection.

4. The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector: DREW PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 30-SEPT-2008</td>
</tr>
<tr>
<td>Time: 1145</td>
</tr>
<tr>
<td>Received By:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Time:</td>
</tr>
<tr>
<td>Received By:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Time:</td>
</tr>
<tr>
<td>Received By:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Time:</td>
</tr>
<tr>
<td>Received By:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 09-28-08</td>
</tr>
<tr>
<td>Time: 1145</td>
</tr>
<tr>
<td>Received By:</td>
</tr>
</tbody>
</table>
Analytical Test Report

Submission Number: 8100192
Service: ORIOLE DR. BAFFLE BOX PROJECT
Date Received: 10/06/2008
Time Received: 1645

Point of Contact:

Robert D. Woithe

Submission Details

<table>
<thead>
<tr>
<th>Submission Number</th>
<th>8100192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number:</td>
<td>1</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>B-IN</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>10/06/2008</td>
</tr>
<tr>
<td>Sample Method:</td>
<td>Composite</td>
</tr>
<tr>
<td>Sample Time:</td>
<td>1431</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.9 U</td>
<td>ug/l</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>10/06/2008</td>
<td>10:04</td>
<td>JG</td>
</tr>
<tr>
<td>Chromium</td>
<td>5.80 I</td>
<td>ug/l</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>10/06/2008</td>
<td>10:04</td>
<td>JG</td>
</tr>
<tr>
<td>Zinc</td>
<td>94.7</td>
<td>ug/l</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>10/06/2008</td>
<td>10:04</td>
<td>JG</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>2.30</td>
<td>mg/l</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>10/06/2008</td>
<td>11:00</td>
<td>MWC</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>2.30</td>
<td>mg/l</td>
<td>0.05</td>
<td>0.20</td>
<td>353±351</td>
<td>10/06/2008</td>
<td>11:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>Nitrate+Nitrite as N</td>
<td>0.004 U</td>
<td>mg/l</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>10/06/2008</td>
<td>16:55</td>
<td>CB</td>
</tr>
<tr>
<td>Ortho Phosphorus as P</td>
<td>0.164</td>
<td>mg/l</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/08/2008</td>
<td>09:27</td>
<td>YW</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.496</td>
<td>mg/l</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/10/2008</td>
<td>15:44</td>
<td>YW</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>57.0</td>
<td>mg/l</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>10/08/2008</td>
<td>12:00</td>
<td>AC</td>
</tr>
<tr>
<td>Copper</td>
<td>15.4</td>
<td>ug/l</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>10/10/2008</td>
<td>10:43</td>
<td>JG</td>
</tr>
<tr>
<td>Ammonia Nitrogen</td>
<td>0.308</td>
<td>mg/l</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>10/09/2008</td>
<td>15:30</td>
<td>YW</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>49,000</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM0222D</td>
<td>10/06/2008</td>
<td>16:55</td>
<td>CUS</td>
</tr>
</tbody>
</table>

Submission Details

<table>
<thead>
<tr>
<th>Submission Number</th>
<th>8100192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number:</td>
<td>2</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>B-OUT</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>10/06/2008</td>
</tr>
<tr>
<td>Sample Method:</td>
<td>Composite</td>
</tr>
<tr>
<td>Sample Time:</td>
<td>1421</td>
</tr>
</tbody>
</table>

BENCHMARK EnviroAnalytical Inc.
Address: 5300 West Cypress Street, Suite 200
City: Tampa, FL 33607-1712
Phone: (941) 723-9986
Fax: (941) 723-6061
1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061
8100192 PAGE 1 OF 3
<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Date</th>
<th>Time</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>10/09/2008</td>
<td>10:04</td>
<td>JG</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>UG/L</td>
<td>4.10</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>10/09/2008</td>
<td>10:04</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>UG/L</td>
<td>38.2</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>10/09/2008</td>
<td>10:04</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KIELDAHL NITROGEN</td>
<td>MG/L</td>
<td>1.65</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>10/16/2008</td>
<td>11:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>MG/L</td>
<td>1.65</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>10/15/2008</td>
<td>11:00</td>
<td>MWC/ CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE AS N</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>10/09/2008</td>
<td>16:55</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>MG/L</td>
<td>0.170</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/09/2008</td>
<td>09:27</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>MG/L</td>
<td>0.362</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>10/10/2008</td>
<td>15:44</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td></td>
<td>41.2</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>10/09/2008</td>
<td>12:00</td>
<td>AC</td>
</tr>
<tr>
<td>COPPER</td>
<td>UG/L</td>
<td>7.84</td>
<td>0.346</td>
<td>1.394</td>
<td>SM3113B</td>
<td>10/10/2008</td>
<td>10:43</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>MG/L</td>
<td>0.213</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>10/09/2008</td>
<td>15:30</td>
<td>YW</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>#/100 ML</td>
<td>44000</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>10/09/2008</td>
<td>16:55</td>
<td>CUS</td>
</tr>
</tbody>
</table>

Dale D. Dixon / Laboratory Director
Radica Koutselas / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.
B = Results based upon colony counts outside the acceptable range.
H = Value based on field test determination. Results may not be accurate.
I = Reported value is between the laboratory MDL and the PQL.
J1 = Est. value surrogate recovery limits exceeded.
J2 = Est. value. No quality control criteria exists for component.
J3 = Est. value quality control criteria for precision or accuracy not met.
J4 = Est. value. Sample matrix interference suspected.
JS = Est. value. Data questionable due to improper lab or field protocols.
K = Off-scale low. Value is known to be < the value reported.
L = Off-scale high. Value is known to be > the value reported.
N = Presumptive evidence of presence of material.
O = Sampled, but analysis lost or not performed.
Q = Sample held beyond accepted hold time.
T = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.
U = Analyte analyzed but not detected at the value indicated.
V = Analyte detected in sample and method blank.
Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.
Z = Too many colonies were present (TNTC). The numeric value represents the filtration volume.
I = Data deviate from historically established concentration ranges.
? = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or Absence of the analyte cannot be determined from the data.
* = Not reported due to interference.

NOTES:

PQL = 4xMDL.

MBAS calculated as LAS; molecular weight = 348.

X = Value exceed MCL.

For questions and comments regarding these results, please contact Bettina Bellfuss at (941) 723-9986

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061
Chain of Custody Form: Oriole Dr. Baffle Box Project

Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS~ (A)</th>
<th>TKN NO₃-NO₂ (B)</th>
<th>o-P (Field-Filtered) (C)</th>
<th>Cd Cr Cu (EM31138) (D)</th>
<th>Fecal Coliform (MF) (E)</th>
<th>Laboratory Sample #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 x ½ Quart Plastic</td>
<td>1 x 1 Quart Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x ½ Pint Plastic</td>
<td>1 x 100mL Sterile Plastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>1:4 H₂SO₄ pH<2 °</td>
<td>Plain</td>
<td>1:4 HNO₃ pH<2 °</td>
<td>NaThio</td>
<td></td>
</tr>
</tbody>
</table>

Baffle Box IN
- Comp: 10/6/2008
- Comp: 1431

Baffle Box OUT
- Comp: 10/6/2008
- Comp: 1421

Instructions:
1. Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).
2. Each bottle has a label identifying sample ID, premeasured preservative contained in the bottle, sample type, client ID, and parameters for analysis.
3. The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sampler's name or initials, and any field number or ID.
4. All bottles not containing preservative may be rinsed with appropriate sample prior to collection.
5. The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Date:</th>
<th>Time:</th>
<th>Received By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drew Prince</td>
<td>10/6/2008</td>
<td>1645</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BENCHMARK EnviroAnalytical Inc.

NELAC Certification # E84167

ANALYTICAL TEST REPORT
These results meet NELAC Standards

Submission Number: 9010403

P B S & J
5300 West Cypress Street, Suite 200
Tampa, Fl 33607-1712

Project Name: ORIOLE DR. BAFFLE BOX PROJECT
Date Received: 01/13/2009
Time Received: 1700

Robert D. Woithe

Sample Information

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Description</th>
<th>Sample Date</th>
<th>Sample Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In</td>
<td>01/13/2009</td>
<td>Grab</td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
<td>01/13/2009</td>
<td>Grab</td>
</tr>
</tbody>
</table>

Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>01/22/2009</td>
<td>11:50</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>3.60 I</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>01/22/2009</td>
<td>11:50</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>72.5</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>01/22/2009</td>
<td>11:50</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>7.05</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>01/20/2009</td>
<td>10:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>7.20</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>01/20/2009</td>
<td>10:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE AS N</td>
<td>0.154</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>01/14/2009</td>
<td>11:00</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>0.266</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>355.3</td>
<td>01/14/2009</td>
<td>10:52</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>0.750</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>EPA365.3</td>
<td>01/15/2009</td>
<td>14:40</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>143</td>
<td>mg/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>01/19/2009</td>
<td>15:00</td>
<td>AC</td>
</tr>
<tr>
<td>COPPER</td>
<td>15.9</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>01/21/2009</td>
<td>09:51</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.296</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>01/16/2009</td>
<td>15:30</td>
<td>YW</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>21,000</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>01/13/2009</td>
<td>17:00</td>
<td>CUS</td>
</tr>
</tbody>
</table>

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

standard report

9010403 PAGE 1 OF 4
BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>MDL</th>
<th>PQL</th>
<th>Procedure</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADMIUM</td>
<td>0.9 U</td>
<td>UG/L</td>
<td>0.9</td>
<td>3.6</td>
<td>200.7</td>
<td>01/22/2009</td>
<td>11:50</td>
<td>JG</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>7.60 l</td>
<td>UG/L</td>
<td>2</td>
<td>8</td>
<td>200.7</td>
<td>01/22/2009</td>
<td>11:50</td>
<td>JG</td>
</tr>
<tr>
<td>ZINC</td>
<td>140</td>
<td>UG/L</td>
<td>1.4</td>
<td>5.6</td>
<td>200.7</td>
<td>01/22/2009</td>
<td>11:50</td>
<td>JG</td>
</tr>
<tr>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>4.91</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>351.2</td>
<td>01/20/2009</td>
<td>10:00</td>
<td>MWC</td>
</tr>
<tr>
<td>TOTAL NITROGEN</td>
<td>5.10</td>
<td>MG/L</td>
<td>0.05</td>
<td>0.20</td>
<td>353+351</td>
<td>01/20/2009</td>
<td>10:00</td>
<td>MWC/CB</td>
</tr>
<tr>
<td>NITRATE+NITRITE AS N</td>
<td>0.190</td>
<td>MG/L</td>
<td>0.004</td>
<td>0.016</td>
<td>353.2</td>
<td>01/14/2009</td>
<td>11:00</td>
<td>CB</td>
</tr>
<tr>
<td>ORTHO PHOSPHORUS AS P</td>
<td>0.277</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>365.3</td>
<td>01/14/2009</td>
<td>16:52</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS AS P</td>
<td>0.744</td>
<td>MG/L</td>
<td>0.002</td>
<td>0.008</td>
<td>EPA365.3</td>
<td>01/16/2009</td>
<td>14:40</td>
<td>YW</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>198</td>
<td>MG/L</td>
<td>0.570</td>
<td>2.280</td>
<td>SM2540D</td>
<td>01/19/2009</td>
<td>15:00</td>
<td>AC</td>
</tr>
<tr>
<td>COPPER</td>
<td>29.2</td>
<td>UG/L</td>
<td>0.346</td>
<td>1.384</td>
<td>SM3113B</td>
<td>01/21/2009</td>
<td>09:51</td>
<td>JG</td>
</tr>
<tr>
<td>AMMONIA NITROGEN</td>
<td>0.313</td>
<td>MG/L</td>
<td>0.005</td>
<td>0.020</td>
<td>SM4500-NH3C</td>
<td>01/16/2009</td>
<td>15:30</td>
<td>YW</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>25000</td>
<td>#/100 ML</td>
<td>1000</td>
<td>4000</td>
<td>SM9222D</td>
<td>01/13/2009</td>
<td>17:00</td>
<td>CUS</td>
</tr>
</tbody>
</table>

Submission Number: 9010403

Sample Number: 3
Sample Description: Dup
Sample Date: 01/13/2009
Sample Method: Grab
Sample Time: N/A

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061
DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.
B = Results based on colony counts outside the acceptable range.
H = Value based on field kit determination. Results may not be accurate.
I = Reported value is between the laboratory MDL and the PQL.
J1 = Est. value surrogate recovery limits exceeded.
J2 = Est. value. No quality control criteria exists for component.
J3 = Est. value quality control criteria for precision or accuracy not met.
J4 = Est. value. Sample matrix interference suspected.
J5 = Est. value. Data questionable due to improper lab or field protocols.
K = Off-scale low. Value is known to be < the value reported.
L = Off-scale high. Value is known to be > the value reported.

NOTES:
PQL = 4xMDL.
MBAS calculated as LAS; molecular weight = 348.
X = Value exceed MCL.

N = Presumptive evidence of presence of material.
O = Sampled, but analysis lost or not performed.
Q = Sample held beyond accepted hold time.
T = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.
U = Analyte analyzed but not detected at the value indicated.
V = Analyte detected in sample and method blank.
Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.
Z = Too many colonies were present (TNTC). The numeric value represents the filtration volume.
I = Data deviates from historically established concentration ranges.
? = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.
* = Not reported due to interference.

NOTES:

For questions and comments regarding these results, please contact Bettina Bailluss at (941) 723-9986
Chain of Custody Form: Oriole Dr. Baffle Box Project

Method of discharge: SW

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Type</th>
<th>TSS (A)</th>
<th>TKN (B)</th>
<th>NO₃-N (C)</th>
<th>NO₂-N (D)</th>
<th>p-P (Field-Filtered) (E)</th>
<th>Cd Cr Cu (F)</th>
<th>Fecal Coliform (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Laboratory Submission #: 12**
- **Laboratory Sample #: 9010403**

<table>
<thead>
<tr>
<th></th>
<th>Quantity</th>
<th>Container Type</th>
<th>pH</th>
<th></th>
<th></th>
<th>1:4 H₂SO₄</th>
<th>1:4 HNO₃</th>
<th>NaThio</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>1 x 2 Quart Plastic</td>
<td>1:4 H₂SO₄</td>
<td>pH<2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out</td>
<td>1 x 2 Quart Plastic</td>
<td>1:4 H₂SO₄</td>
<td>pH<2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dup</td>
<td>1 x 1/2 Pint Plastic</td>
<td>1:4 H₂SO₄</td>
<td>pH<2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample must be refrigerated or stored in wet ice after collection. The maximum temperature during storage should be 4°C (39.2°F).

Instructions:
1. Each bottle has a label identifying sample ID, premeasured preservative contained in the bottle, sample type, client ID, and parameters for analysis.
2. The following information should be added to each bottle label after collection with permanent black ink: date and time of collection, sampler's name or initials, and any field number or ID.
3. All blanks not containing preservative may be rinsed with appropriate sample prior to collection.

The client is responsible for documentation of the sampling event. Please note special sampling events on the sample custody form.

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Date:</th>
<th>Time:</th>
<th>Received By:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Date:</th>
<th>Time:</th>
<th>Received By:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-13-09</td>
<td>1300</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Laboratory Sample Acceptability Temperature: 10°C ± 2°C |
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Rockledge Baffle Box [2027322]
Received: 3/16/07 10:50

Dear Siaka Kone,

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual, and have been determined to meet the standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual. The associated Quality Control parameters have been evaluated and meet all Method, Compliance and Standards criteria unless otherwise noted on a Quality Control Summary Page.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #s:
E96080, E83509, E85370, E84418
Effective 07/01/06 through 06/30/07

Analytical results herein reflect the values obtained from tests performed on samples as received by the laboratory unless otherwise indicated.

Should you have any questions, please contact HBEL at (772) 465-2400, Ext. 285 and reference the HBEL Workorder ID [Number], or via e-mail at HBEL@HBOI.EDU.

Respectfully submitted,

Cindy Cromer
HBEL, Inc. Director

Don Hash
HBEL, Inc. Project Manager

Eric Charest
HBEL, Inc. Q.A. Manager

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Sample Cross Reference Table

<table>
<thead>
<tr>
<th>HBEL Sample Number</th>
<th>Client Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027322001</td>
<td>Rock-Up grab</td>
</tr>
<tr>
<td>2027322002</td>
<td>Rock-Dn grab</td>
</tr>
</tbody>
</table>

Analytical Hits (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample Number</th>
<th>Parameter</th>
<th>Method</th>
<th>Result</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027322001</td>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>38</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>0.0034</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>EPA 200.7</td>
<td>0.010</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>0.064</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>EPA 350.1</td>
<td>0.55</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>3.6</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>4.7</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>1.0</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>0.93</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus as P</td>
<td>EPA 365.4</td>
<td>1.3</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>17000</td>
<td>MPN/100mL</td>
</tr>
<tr>
<td>2027322002</td>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>EPA 200.7</td>
<td>0.0077</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>0.038</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>EPA 350.1</td>
<td>0.77</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>3.5</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>4.2</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>0.67</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>1.0</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus as P</td>
<td>EPA 365.4</td>
<td>1.4</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>160000</td>
<td>MPN/100mL</td>
</tr>
</tbody>
</table>

Method Narratives (If Applicable)

Quality Control Summary
Nitrate/Nitrite as N

Accuracy - Outside acceptance limits in the LCS.

Accuracy demonstrated with other QC samples.
Certificate of Analysis

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Sample ID: Rock-Up grab
Matrix: Environmental Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Method</th>
<th>Laboratory</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>EPA 180.2</td>
<td>WCGE27235</td>
<td>03/16/07 17:00 TCL</td>
<td>38</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/26/07 10:09</td>
<td>03/27/07 12:06 DM</td>
<td>0.00070 U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/26/07 10:09</td>
<td>03/27/07 12:06 DM</td>
<td>0.0034</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/26/07 10:09</td>
<td>03/27/07 12:06 DM</td>
<td>0.010</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/26/07 10:09</td>
<td>03/27/07 12:06 DM</td>
<td>0.064</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>EPA 351.2</td>
<td>AUTO15455</td>
<td>03/19/07 14:42 JL</td>
<td>0.55</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>AUTO15469</td>
<td>03/21/07 17:26 DM</td>
<td>3.6</td>
<td>mg/L</td>
<td>0.22</td>
<td>0.88</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>CALC5383</td>
<td>03/29/07 12:44 DH</td>
<td>4.7</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>AUTO15471</td>
<td>03/23/07 11:29 DM</td>
<td>1.0</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>AUTO15449</td>
<td>03/16/07 12:38 JL</td>
<td>0.93</td>
<td>mg/L</td>
<td>0.019</td>
<td>0.076</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>EPA 365.4</td>
<td>AUTO15466</td>
<td>03/21/07 17:25 DM</td>
<td>1.3</td>
<td>mg/L</td>
<td>0.058</td>
<td>0.23</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>MICR11735</td>
<td>03/16/07 12:05 GS</td>
<td>17000</td>
<td>MPN/100mL</td>
<td>2.0</td>
<td>2.0</td>
<td>E96080</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result Qualifiers:
- **U** = Not Detected
- **I** = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit

Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Method</th>
<th>Batch</th>
<th>Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Lab ID</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>WCGE27235</td>
<td>03/16/07 17:00 TCL</td>
<td>14</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/25/07 10:09</td>
<td>03/27/07 13:10 DM</td>
<td>0.00070 U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
</tr>
<tr>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/25/07 10:09</td>
<td>03/27/07 13:10 DM</td>
<td>0.0018 U</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
</tr>
<tr>
<td>Copper</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/25/07 10:09</td>
<td>03/27/07 13:10 DM</td>
<td>0.0077</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
</tr>
<tr>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>META8342</td>
<td>03/25/07 10:09</td>
<td>03/27/07 13:10 DM</td>
<td>0.0381 I</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>EPA 350.1</td>
<td>AUTO15455</td>
<td>03/19/07 14:42 JL</td>
<td>0.77</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>AUTO15469</td>
<td>03/21/07 11:20</td>
<td>03/21/07 17:27 DM</td>
<td>3.5</td>
<td>mg/L</td>
<td>0.22</td>
<td>0.88</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>CALC5383</td>
<td>03/26/07 12:44 DH</td>
<td>4.2</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>AUTO15471</td>
<td>03/23/07 11:30</td>
<td>0.67</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>AUTO15449</td>
<td>03/16/07 12:38 JL</td>
<td>1.0</td>
<td>mg/L</td>
<td>0.019</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>EPA 365.4</td>
<td>AUTO15466</td>
<td>03/21/07 11:20</td>
<td>03/21/07 17:26 DM</td>
<td>1.4</td>
<td>mg/L</td>
<td>0.058</td>
<td>0.23</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>MIRC11735</td>
<td>03/16/07 12:30 GS</td>
<td>160000</td>
<td>MPN/100mL</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit

Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.
Company: Sutron
Address: 6903 Vista Pkwy N., #5 WPB, FL Zip: 33411
Phone: 561-697-8151 Fax: 561-697-8153
Client Contact: Forrest Jay
Project Name: Rockledge Baffle Box
Sample By: Joe Stolo

LAB # 202-1320

Standard Laboratory Turn Around Time
- Temperature
- Custody Seals
- pH

Preservatives
- HNO3
- H2SO4
- Na2SO3

Analysis Requested
- A
- B
- C
- D
- E
- F
- TSS
- Cu
- Zn
- NO3
- NH3
- NT
- TP
- FCM
- ED
- I
- MF
- PO4

Comments

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION DATE</th>
<th>COLLECTION TIME</th>
<th>MATRIX</th>
<th>SAMPLE TYPE</th>
<th>SAMPLE DESCRIPTION</th>
<th>AS WILL APPEAR ON REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>3-16-0820</td>
<td>G</td>
<td>SW</td>
<td>5</td>
<td>Rock - UP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3-16-0850</td>
<td>G</td>
<td>SW</td>
<td>5</td>
<td>Rock - DN</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory not responsible for omitted information

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER

CHAIN PAGE 1 of 1
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank/Result</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 160.2</td>
<td>Total Suspended Solids</td>
<td>331766</td>
<td>WCGE27235</td>
<td>Result ND</td>
<td>0.7 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Suspended Solids</td>
<td>331767</td>
<td>WCGE27235</td>
<td>Precision 1.6</td>
<td>0</td>
<td>0.7 mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Suspended Solids</td>
<td>331768</td>
<td>WCGE27235</td>
<td>Accuracy 99</td>
<td>85</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>EPA 200.7</td>
<td>Cadmium</td>
<td>332340</td>
<td>META8342</td>
<td>Result ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>332341</td>
<td>META8342</td>
<td>Accuracy 97</td>
<td>85</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>332342</td>
<td>META8342</td>
<td>Accuracy 95</td>
<td>70</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>332343</td>
<td>META8342</td>
<td>Accuracy 97</td>
<td>70</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>332344</td>
<td>META8342</td>
<td>Precision 2.1</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>332340</td>
<td>META8342</td>
<td>Result ND</td>
<td>0.0018 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>332341</td>
<td>META8342</td>
<td>Accuracy 100</td>
<td>85</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>332342</td>
<td>META8342</td>
<td>Accuracy 97</td>
<td>77.3</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>332343</td>
<td>META8342</td>
<td>Accuracy 99</td>
<td>77.3</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>332344</td>
<td>META8342</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>332340</td>
<td>META8342</td>
<td>Result ND</td>
<td>0.0014 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>332341</td>
<td>META8342</td>
<td>Accuracy 101</td>
<td>85</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>332342</td>
<td>META8342</td>
<td>Accuracy 100</td>
<td>80.1</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>332343</td>
<td>META8342</td>
<td>Accuracy 102</td>
<td>80.1</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>332344</td>
<td>META8342</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>332340</td>
<td>META8342</td>
<td>Result ND</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>332341</td>
<td>META8342</td>
<td>Accuracy 104</td>
<td>85</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>332342</td>
<td>META8342</td>
<td>Accuracy 100</td>
<td>70</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>332343</td>
<td>META8342</td>
<td>Accuracy 102</td>
<td>70</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>332344</td>
<td>META8342</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>EPA 350.1</td>
<td>Ammonia, as N</td>
<td>331893</td>
<td>AUTO15455</td>
<td>Result ND</td>
<td>0.0090 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>331894</td>
<td>AUTO15455</td>
<td>Accuracy 102</td>
<td>90</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>331895</td>
<td>AUTO15455</td>
<td>Accuracy 102</td>
<td>90</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>331896</td>
<td>AUTO15455</td>
<td>Precision 0</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>331897</td>
<td>AUTO15455</td>
<td>Accuracy 106</td>
<td>90</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>EPA 351.2</td>
<td>Total Kjeldahl Nitrogen</td>
<td>332144</td>
<td>AUTO15469</td>
<td>Result ND</td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>332145</td>
<td>AUTO15469</td>
<td>Accuracy 97</td>
<td>90</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>332146</td>
<td>AUTO15469</td>
<td>Accuracy 124</td>
<td>90</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Sample Type</td>
<td>Analyte</td>
<td>Sample Number</td>
<td>Laboratory Number</td>
<td>Method Blank</td>
<td>% Acceptance Criteria</td>
<td>Detection Limit</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>332147</td>
<td>AUTO15469</td>
<td>Accuracy</td>
<td>140</td>
<td>90 110</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>332147</td>
<td>AUTO15469</td>
<td>Precision</td>
<td>12</td>
<td>0 20</td>
<td></td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>332278</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>98</td>
<td>90 110</td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>332279</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>99</td>
<td>90 110</td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>332279</td>
<td>AUTO15471</td>
<td>Precision</td>
<td>1</td>
<td>0 20</td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>331769</td>
<td>AUTO15449</td>
<td>Result ND</td>
<td>0</td>
<td>0.0019 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>331770</td>
<td>AUTO15449</td>
<td>Accuracy</td>
<td>98</td>
<td>90 110</td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>331771</td>
<td>AUTO15449</td>
<td>Accuracy</td>
<td>99</td>
<td>90 110</td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>331771</td>
<td>AUTO15449</td>
<td>Precision</td>
<td>1</td>
<td>0 20</td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>331772</td>
<td>AUTO15449</td>
<td>Accuracy</td>
<td>96</td>
<td>90 110</td>
</tr>
</tbody>
</table>

EPA 365.4

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>332144</td>
<td>AUTO15466</td>
<td>Result ND</td>
<td>0</td>
<td>0.012 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>332145</td>
<td>AUTO15466</td>
<td>Accuracy</td>
<td>104</td>
<td>72 132</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>332146</td>
<td>AUTO15466</td>
<td>Accuracy</td>
<td>108</td>
<td>72 132</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>332147</td>
<td>AUTO15466</td>
<td>Accuracy</td>
<td>109</td>
<td>72 132</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>332147</td>
<td>AUTO15466</td>
<td>Precision</td>
<td>0.92</td>
<td>0 20</td>
</tr>
</tbody>
</table>

Nitrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>332276</td>
<td>AUTO15471</td>
<td>Result ND</td>
<td>0</td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>332277</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>85</td>
<td>90 110</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>332280</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>106</td>
<td>90 110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>332281</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>103</td>
<td>90 110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>332281</td>
<td>AUTO15471</td>
<td>Precision</td>
<td>2.9</td>
<td>0 20</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>332282</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>97</td>
<td>90 110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>332283</td>
<td>AUTO15471</td>
<td>Accuracy</td>
<td>97</td>
<td>90 110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>332283</td>
<td>AUTO15471</td>
<td>Precision</td>
<td>0</td>
<td>0 20</td>
</tr>
</tbody>
</table>

SM9221 E

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>332274</td>
<td>MICR11735</td>
<td>Result ND</td>
<td>0</td>
<td>2.0 MPN/1</td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>332275</td>
<td>MICR11735</td>
<td>Accuracy</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Quality Control Report

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 3/16/07 10:50
[2027322]
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 4/11/07 14:35
[2027537]

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.‘s (HBEL) Quality Systems Manual, and have been determined to meet the standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual. The associated Quality Control parameters have been evaluated and meet all Method, Compliance and Standards criteria unless otherwise noted on a Quality Control Summary Page.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:
E96080, E83509, E85370, E84418
Effective 07/01/06 through 06/30/07

Analytical results herein reflect the values obtained from tests performed on samples as received by the laboratory unless otherwise indicated.

Should you have any questions, please contact HBEL at (772) 465-2400, Ext. 285 and reference the HBEL Workorder ID [Number], or via e-mail at HBEL@HBOI.EDU.

Respectfully submitted,

Cindy Cromer
HBEL, Inc. Director

Don Hash
HBEL, Inc. Project Manager

Eric Charest
HBEL, Inc. Q.A. Manager

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.

Printed: 4/25/07
Project Summary

Analytical Hits/Method Narratives

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 4/11/07 14:35

Sample Cross Reference Table

<table>
<thead>
<tr>
<th>HBEL Sample Number</th>
<th>Client Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027537001</td>
<td>Lincoln DN composite</td>
</tr>
<tr>
<td>2027537002</td>
<td>Lincoln UP composite</td>
</tr>
</tbody>
</table>

Analytical Hits (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample Number</th>
<th>Sample ID</th>
<th>Parameter</th>
<th>Method</th>
<th>Result</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027537001</td>
<td>Lincoln DN composite</td>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>47</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>0.0034</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper</td>
<td>EPA 200.7</td>
<td>0.019</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>0.084</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia, as N</td>
<td>EPA 350.1</td>
<td>0.17</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>0.82</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>1.1</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>0.25</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>0.036</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Phosphorus as P</td>
<td>EPA 365.1</td>
<td>0.14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>1100</td>
<td>MPN/100mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HBEL Sample Number</th>
<th>Sample ID</th>
<th>Parameter</th>
<th>Method</th>
<th>Result</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027537002</td>
<td>Lincoln UP composite</td>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>51</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>0.0034</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper</td>
<td>EPA 200.7</td>
<td>0.017</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>0.082</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia, as N</td>
<td>EPA 350.1</td>
<td>0.17</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>0.62</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>0.88</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>0.25</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>0.025</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Phosphorus as P</td>
<td>EPA 365.1</td>
<td>0.13</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>1700</td>
<td>MPN/100mL</td>
</tr>
</tbody>
</table>

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample Number</th>
<th>Sample ID</th>
<th>Analytical Method</th>
<th>Description</th>
</tr>
</thead>
</table>

Quality Control Summary

Method Batch Analyte Analytical Issue

Printed: 4/25/07
CERTIFICATE OF ANALYSIS

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Sample ID: Lincoln DN composite
Matrix: Environmental Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Method</th>
<th>Laboratory</th>
<th>Prep</th>
<th>Date/Time</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>WCGE27378</td>
<td></td>
<td></td>
<td>04/12/07 17:00 TCL</td>
<td></td>
<td></td>
<td>47</td>
<td>mg/L</td>
<td>1.4</td>
<td>5.6</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td></td>
<td>04/20/07 10:27</td>
<td>04/23/07 15:39 DM</td>
<td></td>
<td></td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.00028</td>
</tr>
<tr>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td></td>
<td>04/20/07 10:27</td>
<td>04/23/07 15:39 DM</td>
<td></td>
<td></td>
<td>0.00341</td>
<td>U</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.00072</td>
</tr>
<tr>
<td>Copper</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td></td>
<td>04/20/07 10:27</td>
<td>04/23/07 15:39 DM</td>
<td></td>
<td></td>
<td>0.019</td>
<td>U</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.00066</td>
</tr>
<tr>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td></td>
<td>04/20/07 10:27</td>
<td>04/23/07 15:39 DM</td>
<td></td>
<td></td>
<td>0.084</td>
<td>U</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>EPA 350.1</td>
<td>AUTO15533</td>
<td></td>
<td>04/16/07 17:15</td>
<td>17:15 JL</td>
<td></td>
<td></td>
<td>0.17</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>AUTO15530</td>
<td></td>
<td>04/13/07 9:10</td>
<td>04/13/07 18:08 DM</td>
<td></td>
<td></td>
<td>0.82</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>CALC5372</td>
<td></td>
<td>04/18/07 9:27</td>
<td>9:27 DH</td>
<td></td>
<td></td>
<td>1.1</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>AUTO15537</td>
<td></td>
<td>04/17/07 16:20</td>
<td>16:20</td>
<td></td>
<td></td>
<td>0.25</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>AUTO15519</td>
<td></td>
<td>04/12/07 13:48</td>
<td>13:48 JL</td>
<td></td>
<td></td>
<td>0.036</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>EPA 365.1</td>
<td>AUTO15557</td>
<td></td>
<td>04/23/07 13:00</td>
<td>12:13 JL</td>
<td></td>
<td></td>
<td>0.14</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>MICR18111</td>
<td></td>
<td>04/11/07 16:47</td>
<td>16:47 GS</td>
<td></td>
<td></td>
<td>1100</td>
<td>MPN/100mL</td>
<td>20</td>
<td>20</td>
<td>E96080</td>
</tr>
</tbody>
</table>

Result Qualifiers:
- U = Not Detected
- I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit

Applicable Florida Department of Environmental Protection Qualifiers defined below.
Statement of Estimated Uncertainty available upon request.
Certificate of Analysis

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Sample ID: Lincoln UP composite
Matrix: Environmental Water
Laboratory ID: 2027537002
Sampled: 04/10/07 17:44
Received: 04/11/07 14:35

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Method</th>
<th>Laboratory</th>
<th>Prep</th>
<th>Analyzed</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>EPA 160.2</td>
<td>WCGE27378</td>
<td>04/12/07 17:00 TCL</td>
<td>51</td>
<td>mg/L</td>
<td>1.4</td>
<td>5.6</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td>04/20/07 10:27</td>
<td>0.00070 U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td>04/20/07 10:27</td>
<td>0.00341</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td>04/20/07 10:27</td>
<td>0.017</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>EPA 200.7</td>
<td>META8374</td>
<td>04/20/07 10:27</td>
<td>0.082</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>EPA 350.1</td>
<td>AUTO15533</td>
<td>04/16/07 17:15 JL</td>
<td>0.17</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>AUTO15530</td>
<td>04/13/07 16:09 DM</td>
<td>0.62</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>EPA 351.2</td>
<td>CALS3572</td>
<td>04/18/07 9:27 DH</td>
<td>0.88</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>EPA 353.2</td>
<td>AUTO15537</td>
<td>04/17/07 16:21 DM</td>
<td>0.25</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>EPA 365.1</td>
<td>AUTO15519</td>
<td>04/12/07 13:48 JL</td>
<td>0.025</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>EPA 365.1</td>
<td>AUTO15557</td>
<td>04/23/07 13:00</td>
<td>0.13</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>SM9221 E</td>
<td>MCR11811</td>
<td>04/11/07 17:00 GS</td>
<td>1700</td>
<td>MPN/100mL</td>
<td>20</td>
<td>20</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result Qualifiers:
U = Not Detected
I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
Applicable Florida Department of Environmental Protection Qualifiers defined below.
Statement of Estimated Uncertainty available upon request.
Company: Sutron
Address: 6903 Vista Pky N #5
WPB, FL zip: 33411
Phone: 561-697-8151 Fax: 561-697-8153
Client Contact: Forrest Jay
Project Name: Lincoln Baffle Box
Sampled By: Joe Stalo

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION DATE</th>
<th>COLLECTION TIME</th>
<th>Sample Type</th>
<th>MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>4-10</td>
<td>1744</td>
<td>C</td>
<td>SW</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** SAMPLE DESCRIPTION **
As Will Appear On Report

** LAB # 2007577 **

** ANALYSES REQUESTED **

** PRESERVATIVE **

** Preservation Key **
H=Hydrochloric Acid P=Phosphoric Acid
N=Nitric Acid S=Sulfuric Acid ST=Sodium Thiosulfate
SH=Sodium Hydroxide U=Unpreserved

** COMMENTS **

* Sample Type: G=Grab C=Composite
** Matrix: S=Solid SL=Sludge DW=Drinking Water GW=Ground Water SW=Surface Water WW=Wastewater M=Marine

** CHAIN PAGE 1 of 1 **
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 4/11/07 14:35

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria Lower</th>
<th>Acceptance Criteria Upper</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>333593</td>
<td>WCGE27378</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.7 mg/L</td>
<td></td>
</tr>
<tr>
<td>DCP</td>
<td>Total Suspended Solids</td>
<td>333594</td>
<td>WCGE27378</td>
<td>Precision</td>
<td>1.7</td>
<td>0</td>
<td>10</td>
<td>202749005</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>333595</td>
<td>WCGE27378</td>
<td>Accuracy</td>
<td>105</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP</td>
<td>Total Suspended Solids</td>
<td>333596</td>
<td>WCGE27378</td>
<td>Precision</td>
<td>2.4</td>
<td>0</td>
<td>10</td>
<td>202749007</td>
<td></td>
</tr>
<tr>
<td>EPA 160.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>334354</td>
<td>META8374</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.00070 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>334355</td>
<td>META8374</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>334356</td>
<td>META8374</td>
<td>Accuracy</td>
<td>97</td>
<td>70</td>
<td>114</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>334357</td>
<td>META8374</td>
<td>Accuracy</td>
<td>96</td>
<td>70</td>
<td>114</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>334358</td>
<td>META8374</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>334354</td>
<td>META8374</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.0018 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>334355</td>
<td>META8374</td>
<td>Accuracy</td>
<td>101</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>334356</td>
<td>META8374</td>
<td>Accuracy</td>
<td>97</td>
<td>77.3</td>
<td>113</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>334357</td>
<td>META8374</td>
<td>Accuracy</td>
<td>96</td>
<td>77.3</td>
<td>113</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>334358</td>
<td>META8374</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>334354</td>
<td>META8374</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.0014 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>334355</td>
<td>META8374</td>
<td>Accuracy</td>
<td>105</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>334356</td>
<td>META8374</td>
<td>Accuracy</td>
<td>102</td>
<td>80.1</td>
<td>121</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>334357</td>
<td>META8374</td>
<td>Accuracy</td>
<td>101</td>
<td>80.1</td>
<td>121</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>334358</td>
<td>META8374</td>
<td>Precision</td>
<td>0.99</td>
<td>0</td>
<td>20</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>334354</td>
<td>META8374</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>334355</td>
<td>META8374</td>
<td>Accuracy</td>
<td>104</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>334356</td>
<td>META8374</td>
<td>Accuracy</td>
<td>101</td>
<td>70</td>
<td>130</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>334357</td>
<td>META8374</td>
<td>Accuracy</td>
<td>100</td>
<td>70</td>
<td>130</td>
<td>2027577001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>334358</td>
<td>META8374</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2027577001</td>
<td></td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria Lower</th>
<th>Acceptance Criteria Upper</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>333907</td>
<td>AUTO15533</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.0090 mg/L</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>333908</td>
<td>AUTO15533</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td>2305877002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>333909</td>
<td>AUTO15533</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2305877002</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>333909</td>
<td>AUTO15533</td>
<td>Precision</td>
<td>0.99</td>
<td>0</td>
<td>20</td>
<td>2305877002</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>333910</td>
<td>AUTO15533</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 4/11/07 14:35

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower - Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>333911</td>
<td>AUTO15533</td>
<td>Accuracy</td>
<td>103</td>
<td>90 - 110</td>
<td>2305878002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>333912</td>
<td>AUTO15533</td>
<td>Accuracy</td>
<td>103</td>
<td>90 - 110</td>
<td>2305878002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>333912</td>
<td>AUTO15533</td>
<td>Precision</td>
<td>0</td>
<td>0 - 20</td>
<td>2305878002</td>
<td></td>
</tr>
</tbody>
</table>

EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower - Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>333603</td>
<td>AUTO15530</td>
<td>Result ND</td>
<td></td>
<td>0.045 mg/L</td>
<td>2027524001</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>333604</td>
<td>AUTO15530</td>
<td>Accuracy</td>
<td>100</td>
<td>90 - 110</td>
<td>2027524001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>333605</td>
<td>AUTO15530</td>
<td>Accuracy</td>
<td>8.3</td>
<td>90 - 110</td>
<td>2027524001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>333606</td>
<td>AUTO15530</td>
<td>Accuracy</td>
<td>-2.6</td>
<td>90 - 110</td>
<td>2027524001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>333606</td>
<td>AUTO15530</td>
<td>Precision</td>
<td>382</td>
<td>0 - 20</td>
<td>2027524001</td>
<td></td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower - Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>334032</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>91</td>
<td>90 - 110</td>
<td>2027477002</td>
<td></td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334033</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>95</td>
<td>90 - 110</td>
<td>2027477002</td>
<td></td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334033</td>
<td>AUTO15537</td>
<td>Precision</td>
<td>4.3</td>
<td>0 - 20</td>
<td>2027477002</td>
<td></td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower - Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>333607</td>
<td>AUTO15519</td>
<td>Result ND</td>
<td></td>
<td>0.0019 mg/L</td>
<td>2027537001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>333608</td>
<td>AUTO15519</td>
<td>Accuracy</td>
<td>94</td>
<td>90 - 110</td>
<td>2027537001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>333609</td>
<td>AUTO15519</td>
<td>Accuracy</td>
<td>93</td>
<td>90 - 110</td>
<td>2027537001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>333609</td>
<td>AUTO15519</td>
<td>Precision</td>
<td>1.1</td>
<td>0 - 20</td>
<td>2027537001</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>333610</td>
<td>AUTO15519</td>
<td>Accuracy</td>
<td>97</td>
<td>90 - 110</td>
<td>2027537001</td>
<td></td>
</tr>
</tbody>
</table>

Nitrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower - Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>334024</td>
<td>AUTO15537</td>
<td>Result ND</td>
<td></td>
<td>0.0075 mg/L</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>334025</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>90</td>
<td>90 - 110</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>334026</td>
<td>AUTO15537</td>
<td>Result ND</td>
<td></td>
<td>0.0075 mg/L</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>334027</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>99</td>
<td>90 - 110</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>334028</td>
<td>AUTO15537</td>
<td>Result ND</td>
<td></td>
<td>0.0075 mg/L</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>334029</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>102</td>
<td>90 - 110</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>334034</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>102</td>
<td>90 - 110</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334035</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>100</td>
<td>90 - 110</td>
<td>2027471002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334035</td>
<td>AUTO15537</td>
<td>Precision</td>
<td>2</td>
<td>0 - 20</td>
<td>2027490001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>334036</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>97</td>
<td>90 - 110</td>
<td>2027490001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334037</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>98</td>
<td>90 - 110</td>
<td>2027490001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>334038</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>76</td>
<td>90 - 110</td>
<td>2027585002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334039</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>78</td>
<td>90 - 110</td>
<td>2027585002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>334039</td>
<td>AUTO15537</td>
<td>Precision</td>
<td>2.6</td>
<td>0 - 20</td>
<td>2027585002</td>
<td></td>
</tr>
</tbody>
</table>
Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 4/11/07 14:35

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>334040</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>88</td>
<td>90 / 110</td>
<td>2027531001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>334041</td>
<td>AUTO15537</td>
<td>Accuracy</td>
<td>89</td>
<td>90 / 110</td>
<td>2027531001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>334041</td>
<td>AUTO15537</td>
<td>Precision</td>
<td>1.1</td>
<td>0 / 20</td>
<td>2027531001</td>
<td></td>
</tr>
</tbody>
</table>

SM9221 E

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Result</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>334346</td>
<td>MICR11811</td>
<td>ND</td>
<td></td>
<td>2.0 MPN/1</td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>334347</td>
<td>MICR11811</td>
<td>ND</td>
<td>100 / 100</td>
<td></td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Result</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>334499</td>
<td>AUTO15557</td>
<td>ND</td>
<td>110 / 110</td>
<td>0.0012 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>334500</td>
<td>AUTO15557</td>
<td>ND</td>
<td>96 / 110</td>
<td>2027530001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>334501</td>
<td>AUTO15557</td>
<td>ND</td>
<td>98 / 110</td>
<td>2027530001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>334502</td>
<td>AUTO15557</td>
<td>ND</td>
<td>2.1 / 20</td>
<td>2027530001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>334502</td>
<td>AUTO15557</td>
<td>ND</td>
<td>2.1 / 20</td>
<td>2027530001</td>
</tr>
</tbody>
</table>
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Lincoln Baffle Box [2027805]
Received: 5/14/07 13:30

Dear Siaka Kone,

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.’s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s:
E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Quality Control Summary

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/14/07 13:30

<table>
<thead>
<tr>
<th>Number</th>
<th>Sample ID</th>
<th>Analytical Method</th>
<th>Description</th>
</tr>
</thead>
</table>

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Analytical Issue</th>
</tr>
</thead>
</table>

5600 US 1 North
Fort Pierce, FL 34946
FDOH # E96080

4155 St. Johns Pkwy, Suite 1300
Sanford, FL 32771
FDOH # E83509

307 Coolidge Avenue
Lehigh Acres, FL 33936
FDOH # E85370

16331 Cortez Blvd.
Brooksville, FL 34601
FDOH # E84418

Printed: 5/30/07
Laboratory ID: 2027805001

Sample ID: Lincoln DN Event composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>62</td>
<td>mg/L</td>
<td>1.7</td>
<td>6.8</td>
<td>EPA 160.2</td>
<td>WCGE27574</td>
<td>05/15/07 17:00</td>
<td>TCL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:05</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0049</td>
<td>I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:05</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.021</td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:05</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.11</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:05</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.20</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15615</td>
<td>05/17/07 18:29</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>1.3</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15625</td>
<td>05/16/07 9:40</td>
<td>05/16/07 18:08</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.7</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5399</td>
<td>05/30/07 8:40</td>
<td>DH</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.45</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15655</td>
<td>05/29/07 13:49</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.058</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15609</td>
<td>05/15/07 10:57</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.22</td>
<td></td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td>AUTO15653</td>
<td>05/23/07 11:00</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>100 I</td>
<td>CFU/100mL</td>
<td>100</td>
<td>100</td>
<td>SM9222 D</td>
<td>MICR11875</td>
<td>05/14/07 15:25</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory ID: 2027805002

Sample ID: Lincoln UP Event composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>68</td>
<td>mg/L</td>
<td>1.7</td>
<td>6.8</td>
<td>EPA 160.2</td>
<td>WCGE27574</td>
<td>05/15/07 17:00</td>
<td>TCL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:11</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0028</td>
<td>I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:11</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.016</td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:11</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.086</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>05/18/07 16:11</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.14</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15615</td>
<td>05/17/07 18:29</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>1.2</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15625</td>
<td>05/16/07 9:40</td>
<td>05/16/07 18:09</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.5</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5399</td>
<td>05/30/07 8:41</td>
<td>DH</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.32</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15655</td>
<td>05/29/07 13:50</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.054</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15609</td>
<td>05/15/07 10:57</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.20</td>
<td></td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td>AUTO15653</td>
<td>05/23/07 11:00</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>100 I</td>
<td>CFU/100mL</td>
<td>100</td>
<td>100</td>
<td>SM9222 D</td>
<td>MICR11875</td>
<td>05/14/07 15:25</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

1. **Result Qualifiers:**
 - U = Not Detected
 - I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
 - B = Results based upon colony counts outside of the acceptable range.

Certificate of Analysis

Client: SUTRON

Workorder ID: Lincoln Baffle Box

Sample ID: Lincoln DN Event composite

Matrix: Water

Sampled: 05/13/07 21:26

Received: 05/14/07 13:30

Results reported on Wet Weight Basis

Sample ID: Lincoln UP Event composite

Matrix: Water

Sampled: 05/13/07 22:18

Received: 05/14/07 13:30

Results reported on Wet Weight Basis
Company: Sutron
Address: 6903 Vista Parkway N Suite 5
West Palm Beach, Zip: 33411
Phone: (561) 262-6140
Fax:
Client Contact: Forrest Jay
Project Name: Lincoln Baffle Box
Sampled By: Manuel Sendon

Chain-of-Custody

Method(s) of Shipment:
- **Self**

Laboratory Information

- **Laboratory not responsible for omitted information**
- **FDOH #: E98080**
- **FDOH #: 85370**
- **FDOH #: E83509**
- **FDOH #: E84418**
- **5600 U.S. 1 North**
- **307 Coolidge Avenue**
- **Fort Pierce, FL 34946**
- **Fort Pierce, FL 34946**
- **Lehigh Acres, FL 33936**
- **4155 St. Johns Pkwy.**
- **16331 Cortez Blvd.**
- **Suite 1300**
- **Brooksville, FL 34601**
- **Sanford, FL 32771**

Sample Information

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION</th>
<th>SAMPLE DESCRIPTION</th>
<th>As Will Appear On Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>5/16/07 12:16</td>
<td>C 5 Lincoln DN Event</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>02</td>
<td>5/16/07 12:16</td>
<td>C 5 Lincoln UP Event</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

Notes
- **Preservative**
 - **H**: Hydrochloric Acid
 - **P**: Phosphoric Acid
 - **N**: Nitric Acid
 - **ST**: Sodium
 - **S**: Sulfuric Acid
 - **Thiosulfate**
 - **SH**: Sodium Hydroxide
 - **U**: Unpreserved

Comments

Comments

RELINQUISHED BY: Manuel Sendon
DATE/TIME: 5/14/07 1330

RECEIVED BY:
DATE/TIME:

RECEIVED FOR HBEL CUSTODY BY:
DATE/TIME: 5/14/07 1700

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/14/07 13:30

EPA 160.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>336205</td>
<td>WCGE27574</td>
<td>Result</td>
<td>ND</td>
<td>0.7 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>336206</td>
<td>WCGE27574</td>
<td>Precision</td>
<td>2.1</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>336207</td>
<td>WCGE27574</td>
<td>Accuracy</td>
<td>101</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>336208</td>
<td>WCGE27574</td>
<td>Precision</td>
<td>2.2</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 200.7

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>97</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>97</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>102</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>100</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.0014 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>102</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>0.99</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>105</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>103</td>
<td>70</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>103</td>
<td>70</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte, as N</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>336415</td>
<td>AUTO15615</td>
<td>Result</td>
<td>ND</td>
<td>0.0090 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>336416</td>
<td>AUTO15615</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>336417</td>
<td>AUTO15615</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>336417</td>
<td>AUTO15615</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>336418</td>
<td>AUTO15615</td>
<td>Accuracy</td>
<td>97</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>336419</td>
<td>AUTO15615</td>
<td>Accuracy</td>
<td>97</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>336420</td>
<td>AUTO15615</td>
<td>Accuracy</td>
<td>97</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>336420</td>
<td>AUTO15615</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Printed: 5/30/07
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/14/07 13:30

EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336246</td>
<td>AUTO15625</td>
<td>Result ND</td>
<td></td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336247</td>
<td>AUTO15625</td>
<td>Accuracy 101</td>
<td>90</td>
<td>110</td>
<td>2027798001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336248</td>
<td>AUTO15625</td>
<td>Accuracy 107</td>
<td>90</td>
<td>110</td>
<td>2027798001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336249</td>
<td>AUTO15625</td>
<td>Accuracy 115</td>
<td>90</td>
<td>110</td>
<td>2027798001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336249</td>
<td>AUTO15625</td>
<td>Precision 7.2</td>
<td>0</td>
<td>20</td>
<td>2027798001</td>
<td></td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>337139</td>
<td>AUTO15655</td>
<td>Accuracy 101</td>
<td>90</td>
<td>110</td>
<td>2027851002</td>
<td></td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337140</td>
<td>AUTO15655</td>
<td>Accuracy 100</td>
<td>90</td>
<td>110</td>
<td>2027851002</td>
<td></td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337140</td>
<td>AUTO15655</td>
<td>Precision 1</td>
<td>0</td>
<td>20</td>
<td>2027851002</td>
<td></td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>336201</td>
<td>AUTO15609</td>
<td>Result ND</td>
<td></td>
<td>0.0019 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>336202</td>
<td>AUTO15609</td>
<td>Accuracy 96</td>
<td>90</td>
<td>110</td>
<td>2027805001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>336203</td>
<td>AUTO15609</td>
<td>Accuracy 96</td>
<td>90</td>
<td>110</td>
<td>2027805001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>336203</td>
<td>AUTO15609</td>
<td>Precision 0</td>
<td>0</td>
<td>20</td>
<td>2027805001</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>336204</td>
<td>AUTO15609</td>
<td>Accuracy 101</td>
<td>90</td>
<td>110</td>
<td>2027805001</td>
<td></td>
</tr>
</tbody>
</table>

Nitrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>337133</td>
<td>AUTO15655</td>
<td>Result ND</td>
<td></td>
<td>0.0075 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>337134</td>
<td>AUTO15655</td>
<td>Accuracy 101</td>
<td>90</td>
<td>110</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>337135</td>
<td>AUTO15655</td>
<td>Result ND</td>
<td></td>
<td>0.0075 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>337136</td>
<td>AUTO15655</td>
<td>Accuracy 96</td>
<td>90</td>
<td>110</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337141</td>
<td>AUTO15655</td>
<td>Accuracy 104</td>
<td>90</td>
<td>110</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337142</td>
<td>AUTO15655</td>
<td>Accuracy 101</td>
<td>90</td>
<td>110</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337142</td>
<td>AUTO15655</td>
<td>Precision 2.9</td>
<td>0</td>
<td>20</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337143</td>
<td>AUTO15655</td>
<td>Accuracy 99</td>
<td>90</td>
<td>110</td>
<td>2128721001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337144</td>
<td>AUTO15655</td>
<td>Accuracy 100</td>
<td>90</td>
<td>110</td>
<td>2128721001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337144</td>
<td>AUTO15655</td>
<td>Precision 1</td>
<td>0</td>
<td>20</td>
<td>2027932002</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337145</td>
<td>AUTO15655</td>
<td>Accuracy 98</td>
<td>90</td>
<td>110</td>
<td>2128721001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337146</td>
<td>AUTO15655</td>
<td>Accuracy 100</td>
<td>90</td>
<td>110</td>
<td>2027932002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337146</td>
<td>AUTO15655</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td>2027932002</td>
<td></td>
</tr>
</tbody>
</table>

SM9222 D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336272</td>
<td>MICR11875</td>
<td>Result ND</td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336273</td>
<td>MICR11875</td>
<td>Result ND</td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336274</td>
<td>MICR11875</td>
<td>Result ND</td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>336275</td>
<td>MICR11875</td>
<td>Accuracy 100</td>
<td>1</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Printed: 5/30/07
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/14/07 13:30

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336276</td>
<td>MICR11875</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336277</td>
<td>MICR11875</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

| Sample Type | Analyte | Laboratory Sample Number | Laboratory Batch Number | Method Blank | % Recovery | Acceptance Criteria | Lower Limit | Upper Limit | Detection Limit
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>336820</td>
<td>AUTO15653</td>
<td>Result</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td></td>
<td>0.0012 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>336821</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2027805001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>336822</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2027805001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336823</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2128696005</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>336824</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2128696005</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336825</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2128696005</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336825</td>
<td>AUTO15653</td>
<td>Precision</td>
<td>3.9</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2128696005</td>
</tr>
</tbody>
</table>
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Lincoln Baffle Box [2027813]
Received: 5/15/07 13:00

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.’s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:
E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample</th>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Analytical Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Sample ID</td>
<td>Analytical Method</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Control Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Analytical Issue</th>
</tr>
</thead>
</table>

[027813]
Certificate of Analysis

Client: SUTRON
Workorder ID: Lincoln Baffle Box

Laboratory ID: 2027813001
Sample ID: Lincoln Down #3 composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>26</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGE27574</td>
<td>05/15/07 17:00</td>
<td>TCL</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td>0.00070</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td>0.0029I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>0.013</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>0.075</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8408</td>
<td>05/16/07 9:07</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td></td>
<td>0.035I</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO16515</td>
<td>05/17/07 8:29</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td></td>
<td>0.55</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO16625</td>
<td>05/16/07 9:40</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td>1.0</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5399</td>
<td>05/16/07 9:07</td>
<td>DH</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td></td>
<td>0.44</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO16655</td>
<td>05/29/07 13:51</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td></td>
<td>0.022</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO16613</td>
<td>05/16/07 9:27</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>B</td>
<td>0.12</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td>AUTO16605</td>
<td>05/23/07 11:00</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td></td>
<td>1000I</td>
<td>CFU/100mL</td>
<td>1000</td>
<td>1000</td>
<td>SM222D</td>
<td>MICR11878</td>
<td>05/15/07 15:05</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

Laboratory ID: 2027813002
Sample ID: Lincoln Up #3 composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>57</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGE27574</td>
<td>05/15/07 17:00</td>
<td>TCL</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td>0.00070</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td>0.0021I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>0.013</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>0.19</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td></td>
<td>0.058</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO16515</td>
<td>05/17/07 8:29</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td></td>
<td>0.62</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO16625</td>
<td>05/16/07 9:40</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td>0.72</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5399</td>
<td>05/16/07 9:07</td>
<td>DH</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td></td>
<td>0.093</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO16655</td>
<td>05/29/07 13:51</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td></td>
<td>0.022</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO16613</td>
<td>05/16/07 9:27</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>B</td>
<td>0.12</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td>AUTO16605</td>
<td>05/23/07 11:00</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td></td>
<td>2000I</td>
<td>CFU/100mL</td>
<td>1000</td>
<td>1000</td>
<td>SM222D</td>
<td>MICR11878</td>
<td>05/15/07 15:05</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

1. Result Qualifiers: U = Not Detected
 I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

B = Results based upon colony counts outside of the acceptable range.
Company: Silion
Address: 6903 Vista Parkway North Suite #5
WBB, FL Zip: 33411
Phone: 561 697 8151 Fax:
Client Contact: Forrest Jay
Project Name: Battle Box - Lincoln
Sampled By: Forrest Jay

Sample Collection

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>DATE</th>
<th>TIME</th>
<th>Sample Type</th>
<th>MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>5/14/07</td>
<td>22:25</td>
<td>C SW S</td>
<td>Lincoln Down #3</td>
</tr>
<tr>
<td>002</td>
<td>5/14/07</td>
<td>22:25</td>
<td>C SW S</td>
<td>Lincoln Up #3</td>
</tr>
</tbody>
</table>

Sample Description

As Will Appear On Report

RELIQUISHED BY
DATE/TIME 5/15/07 13:00
RECEIVED BY
DATE/TIME

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER

CHAIN PAGE 1 of 1
EPA 160.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>336205</td>
<td>WCGE27574</td>
<td>Result</td>
<td>ND</td>
<td>0.7 mg/L</td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>336206</td>
<td>WCGE27574</td>
<td>Precision</td>
<td>2.1</td>
<td>0.10</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>336207</td>
<td>WCGE27574</td>
<td>Accuracy</td>
<td>101</td>
<td>115</td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>336208</td>
<td>WCGE27574</td>
<td>Precision</td>
<td>2.2</td>
<td>0.10</td>
</tr>
</tbody>
</table>

EPA 200.7

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.00070 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>97</td>
<td>114</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>97</td>
<td>114</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.0018 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>113</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>100</td>
<td>113</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.0014 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>102</td>
<td>121</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>101</td>
<td>121</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>0.99</td>
<td>20</td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>336258</td>
<td>META8408</td>
<td>Result</td>
<td>ND</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>336259</td>
<td>META8408</td>
<td>Accuracy</td>
<td>105</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>336260</td>
<td>META8408</td>
<td>Accuracy</td>
<td>103</td>
<td>130</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>336261</td>
<td>META8408</td>
<td>Accuracy</td>
<td>103</td>
<td>130</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>336261</td>
<td>META8408</td>
<td>Precision</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>336692</td>
<td>META8415</td>
<td>Result</td>
<td>ND</td>
<td>0.00070 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy</td>
<td>97</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy</td>
<td>99</td>
<td>114</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy</td>
<td>97</td>
<td>114</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>336695</td>
<td>META8415</td>
<td>Precision</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>336692</td>
<td>META8415</td>
<td>Result</td>
<td>ND</td>
<td>0.0018 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy</td>
<td>99</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy</td>
<td>101</td>
<td>113</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy</td>
<td>99</td>
<td>113</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>336695</td>
<td>META8415</td>
<td>Precision</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Analyte</td>
<td>Sample Number</td>
<td>Laboratory Batch Number</td>
<td>Method Blank</td>
<td>% Acceptance Criteria</td>
<td>Detection Limit</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>336692</td>
<td>META8415</td>
<td>Result ND</td>
<td>0.0014 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>85 115</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy 100</td>
<td>80.1 121</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>80.1 121</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>336696</td>
<td>META8415</td>
<td>Precision 1</td>
<td>0 20</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>336692</td>
<td>META8415</td>
<td>Result ND</td>
<td>0.010 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy 101</td>
<td>85 115</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy 103</td>
<td>70 130</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy 102</td>
<td>70 130</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>336696</td>
<td>META8415</td>
<td>Precision 0.98</td>
<td>0 20</td>
<td></td>
</tr>
</tbody>
</table>

EPA 350.1

MB	Ammonia, as N	336415	AUTO15615	Result ND	0.0090 mg/L		
MS	Ammonia, as N	336416	AUTO15615	Accuracy 99	90 110		2305931001
MSD	Ammonia, as N	336417	AUTO15615	Accuracy 99	90 110		2305931001
LCD	Ammonia, as N	336418	AUTO15615	Precision 0	0 20		2305931001
MS	Ammonia, as N	336419	AUTO15615	Accuracy 97	90 110		2305942001
MSD	Ammonia, as N	336420	AUTO15615	Accuracy 97	90 110		2305942001
MSD	Ammonia, as N	336420	AUTO15615	Precision 0	0 20		2305942001

EPA 351.2

MB	Total Kjeldahl Nitrogen	336246	AUTO15625	Result ND	0.045 mg/L		
LCS	Total Kjeldahl Nitrogen	336247	AUTO15625	Accuracy 101	90 110		2027798001
MS	Total Kjeldahl Nitrogen	336248	AUTO15625	Accuracy 107	90 110		2027798001
MSD	Total Kjeldahl Nitrogen	336249	AUTO15625	Accuracy 115	90 110		2027798001
MSD	Total Kjeldahl Nitrogen	336249	AUTO15625	Precision 7.2	0 20		2027798001

EPA 353.2

MMS	Nitrate/Nitrite as N	337139	AUTO15655	Accuracy 101	90 110		2027851002
MMSD	Nitrate/Nitrite as N	337140	AUTO15655	Accuracy 100	90 110		2027851002
MMSD	Nitrate/Nitrite as N	337140	AUTO15655	Precision 1	0 20		2027851002

EPA 365.1

MB	Orthophosphate as P	336268	AUTO15613	Result ND	0.0019 mg/L		
MS	Orthophosphate as P	336269	AUTO15613	Accuracy 99	90 110		2027813001
MSD	Orthophosphate as P	336270	AUTO15613	Accuracy 99	90 110		2027813001
MSD	Orthophosphate as P	336270	AUTO15613	Precision 0	0 20		2027813001
LCS	Orthophosphate as P	336271	AUTO15613	Accuracy 101	90 110		2027813001
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/15/07 13:00

Nitrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>337133</td>
<td>AUTO15655</td>
<td>Result ND</td>
<td>0.0075 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>337134</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>101 90 110</td>
<td>0.0075 mg/L</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>337135</td>
<td>AUTO15655</td>
<td>Result ND</td>
<td>0.0075 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>337136</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>96 90 110</td>
<td>0.0075 mg/L</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337141</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>104 90 110</td>
<td></td>
<td>2027805002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337142</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>101 90 110</td>
<td></td>
<td>2027805002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337142</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>2.9 0 20</td>
<td></td>
<td>2027805002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337143</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>99 90 110</td>
<td></td>
<td>2027932002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337144</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>100 90 110</td>
<td></td>
<td>2027932002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337144</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>1 0 20</td>
<td></td>
<td>2027932002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337145</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>98 90 110</td>
<td></td>
<td>2027932002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337146</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>100 90 110</td>
<td></td>
<td>2027932002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337146</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>2 0 20</td>
<td></td>
<td>2027932002</td>
</tr>
</tbody>
</table>

SM9222 D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336310</td>
<td>MICR11878</td>
<td>Result ND</td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336311</td>
<td>MICR11878</td>
<td>Result ND</td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>336312</td>
<td>MICR11878</td>
<td>Accuracy</td>
<td>100 1 2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte as P</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>336820</td>
<td>AUTO15653</td>
<td>Result ND</td>
<td>0.0012 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>336821</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>105 90 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>336822</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>99 90 110</td>
<td></td>
<td>2027805001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336823</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>98 90 110</td>
<td></td>
<td>2027805001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336823</td>
<td>AUTO15653</td>
<td>Precision</td>
<td>1 0 20</td>
<td></td>
<td>2027805001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336824</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>105 90 110</td>
<td></td>
<td>2128696005</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336825</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>101 90 110</td>
<td></td>
<td>2128696005</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336825</td>
<td>AUTO15653</td>
<td>Precision</td>
<td>3.9 0 20</td>
<td></td>
<td>2128696005</td>
</tr>
</tbody>
</table>
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Parkway Baffle Box
Received: 5/15/07 13:00
[2027814]

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:
E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Quality Control Summary

Client: SUTRON
Workorder ID: Parkway Baffle Box
Received: 5/15/07 13:00

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample</th>
<th>Number</th>
<th>Sample ID</th>
<th>Analytical Method</th>
<th>Description</th>
</tr>
</thead>
</table>

Quality Control Summary

| Method | HBEL Batch | Analyte | Analytical Issue |
|--------|------------|---------|-----------------|-------------|

Certificate of Analysis

Client: SUTRON
Workorder ID: Parkway Baffle Box

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>1</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyzed Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory ID: 2027814001</td>
<td></td>
</tr>
<tr>
<td>Sample ID: Parkway Downstream #1 composite</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>28</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGE27574</td>
<td>05/15/07 17:00</td>
<td>TCL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>05/24/07 15:49</td>
<td>DM</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0018</td>
<td>U</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>05/24/07 15:49</td>
<td>DM</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0063</td>
<td>U</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>05/24/07 15:49</td>
<td>DM</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.11</td>
<td>U</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8415</td>
<td>05/23/07 9:57</td>
<td>05/24/07 15:49</td>
<td>DM</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.077</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15615</td>
<td>05/17/07 18:29</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>1.2</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15625</td>
<td>05/16/07 9:40</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.6</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5399</td>
<td>05/29/07 13:52</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.34</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15655</td>
<td>05/16/07 9:27</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.21</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15613</td>
<td>05/23/07 11:00</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.43</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td>AUTO15653</td>
<td>05/23/07 11:00</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B 1000 U</td>
<td>CFU/100mL</td>
<td>1000</td>
<td>1000</td>
<td>SM9222 D</td>
<td>MICR11878</td>
<td>05/15/07 15:05</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory ID: 2027814002											
Sample ID: Parkway Upstream #1 composite											
Total Suspended Solids	21	mg/L	0.7	2.8	EPA 160.2	WCGE27574	05/15/07 17:00	TCL	E96080		
Cadmium	0.00070	U	mg/L	0.00070	0.0028	EPA 200.7	META8415	05/23/07 9:57	05/24/07 15:55	DM	E96080
Chromium	0.0018	U	mg/L	0.0018	0.0072	EPA 200.7	META8415	05/23/07 9:57	05/24/07 15:55	DM	E96080
Copper	0.0057	U	mg/L	0.0014	0.0056	EPA 200.7	META8415	05/23/07 9:57	05/24/07 15:55	DM	E96080
Zinc	0.033 I	U	mg/L	0.010	0.040	EPA 200.7	META8415	05/23/07 9:57	05/24/07 15:55	DM	E96080
Ammonia, as N	0.063	mg/L	0.0090	0.036	EPA 350.1	AUTO15615	05/17/07 18:29	JL	E96080		
Total Kjeldahl Nitrogen	1.1	mg/L	0.045	0.18	EPA 351.2	AUTO15625	05/16/07 9:40	DM	E96080		
Nitrate/Nitrite as N	0.33	mg/L	0.0075	0.030	EPA 353.2	AUTO15655	05/28/07 13:54	DM	E96080		
Orthophosphate as P	0.22	mg/L	0.0019	0.0076	EPA 365.1	AUTO15613	05/16/07 9:27	JL	E96080		
Total Phosphorus as P	0.41	mg/L	0.0012	0.0046	EPA 365.1	AUTO15653	05/23/07 11:00	JL	E96080		
Fecal Coliform	B 12000	CFU/100mL	1000	1000	SM9222 D	MICR11878	05/15/07 15:05	TR	E96080		

1. Result Qualifiers:
 - **U** = Not Detected
 - **I** = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
 - **B** = Results based upon colony counts outside of the acceptable range.

Applicable Florida Department of Environmental Protection Qualifiers defined below.
Statement of Estimated Uncertainty available upon request.

5600 US 1 North
Fort Pierce, FL 34946
FDOH # E96080

Printed: 5/30/07
Page 3 of 4
Company: Sutton
Address: 6903 Vista Parkway N
Phone: 561-697-8151
Email: jgay@Sutton.com
Client Contact: Forrest Jay
Project Name: Battle Box - Parkway
Sampled By: Forrest Jay

Chain-of-Custody and Agreement to Perform Services

- **Method(s) of Shipment:** Self
- **Temperature:**
- **For Lab Use Only:**
- **Lab #:** 2027814
- **Preservatives Requested:**
- **ANALYSES REQUESTED:**
- **PH:**
- **Custody Seals Checked:**
- **Temperature Checked:**
- **Turn Around Time:** Standard Laboratory
- **Sample Description:** As will appear on report
 - **COLLECTION DATE/TIME:**
 - **COLLECTION MATRIX:**
 - **Sample Type:** C
 - **CONTAINERS:**
 - **Sample Description:** Parkway Downstream #1
 - **Sample Description:** Parkway Upstream #1

Remarks:
- **RElinquished By:**
- **DATE/TIME:**
- **REceived By:**
- **DATE/TIME:**
- **CHAIN PAGE 1 of 1**

Laboratory not responsible for omitted information.
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 160.2</td>
<td>Total Suspended Solids</td>
<td>336205</td>
<td>WCGE27574</td>
<td>Result ND</td>
<td>0.7 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Suspended Solids</td>
<td>336206</td>
<td>WCGE27574</td>
<td>Precision 2.1</td>
<td>0 10</td>
<td>2027805001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Suspended Solids</td>
<td>336207</td>
<td>WCGE27574</td>
<td>Accuracy 101</td>
<td>85 115</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Suspended Solids</td>
<td>336208</td>
<td>WCGE27574</td>
<td>Precision 2.2</td>
<td>0 10</td>
<td>2027805002</td>
<td></td>
</tr>
<tr>
<td>EPA 200.7</td>
<td>Cadmium</td>
<td>336692</td>
<td>META8415</td>
<td>Result ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy 97</td>
<td>85 115</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>70 114</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy 97</td>
<td>70 114</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>336696</td>
<td>META8415</td>
<td>Precision 2</td>
<td>0 20</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>336692</td>
<td>META8415</td>
<td>Result ND</td>
<td>0.0018 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>85 115</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy 101</td>
<td>77.3 113</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>77.3 113</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>336696</td>
<td>META8415</td>
<td>Precision 2</td>
<td>0 20</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>336692</td>
<td>META8415</td>
<td>Result ND</td>
<td>0.0014 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>85 115</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy 100</td>
<td>80.1 121</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy 99</td>
<td>80.1 121</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>336696</td>
<td>META8415</td>
<td>Precision 1</td>
<td>0 20</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>336692</td>
<td>META8415</td>
<td>Result ND</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>336693</td>
<td>META8415</td>
<td>Accuracy 101</td>
<td>85 115</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>336694</td>
<td>META8415</td>
<td>Accuracy 103</td>
<td>70 130</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>336695</td>
<td>META8415</td>
<td>Accuracy 102</td>
<td>70 130</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>336696</td>
<td>META8415</td>
<td>Precision 0.98</td>
<td>0 20</td>
<td>20278690001</td>
<td></td>
</tr>
<tr>
<td>EPA 350.1</td>
<td>Ammonia, as N</td>
<td>336415</td>
<td>AUTO15615</td>
<td>Result ND</td>
<td>0.0090 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336416</td>
<td>AUTO15615</td>
<td>Accuracy 99</td>
<td>90 110</td>
<td>2305931001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336417</td>
<td>AUTO15615</td>
<td>Accuracy 99</td>
<td>90 110</td>
<td>2305931001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336417</td>
<td>AUTO15615</td>
<td>Precision 0</td>
<td>0 20</td>
<td>2305931001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336418</td>
<td>AUTO15615</td>
<td>Accuracy 97</td>
<td>90 110</td>
<td>2305942001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336419</td>
<td>AUTO15615</td>
<td>Accuracy 97</td>
<td>90 110</td>
<td>2305942001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336420</td>
<td>AUTO15615</td>
<td>Precision 0</td>
<td>0 20</td>
<td>2305942001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia, as N</td>
<td>336420</td>
<td>AUTO15615</td>
<td>Precision 0</td>
<td>0 20</td>
<td>2305942001</td>
<td></td>
</tr>
</tbody>
</table>

Printed: 5/30/07
FDOH # E96080
Central Florida
FDOH # E83509
Southwest Florida
FDOH # E85370
West Central Florida
FDOH # E84418
EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336246</td>
<td>AUTO15625</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336247</td>
<td>AUTO15625</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336248</td>
<td>AUTO15625</td>
<td>Accuracy</td>
<td>107</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336249</td>
<td>AUTO15625</td>
<td>Accuracy</td>
<td>115</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>336249</td>
<td>AUTO15625</td>
<td>Precision</td>
<td>7.2</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>337139</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337140</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337140</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>336268</td>
<td>AUTO15613</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>336269</td>
<td>AUTO15613</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>336270</td>
<td>AUTO15613</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>336270</td>
<td>AUTO15613</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>336271</td>
<td>AUTO15613</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
</tr>
</tbody>
</table>

Nutrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>337133</td>
<td>AUTO15655</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>337134</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>337135</td>
<td>AUTO15655</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>337136</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>96</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337141</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>104</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337142</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337142</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>2.9</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337143</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337144</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>337144</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337145</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337146</td>
<td>AUTO15655</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>337146</td>
<td>AUTO15655</td>
<td>Precision</td>
<td>2</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

SM9222 D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336310</td>
<td>MICR11878</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>336311</td>
<td>MICR11878</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>336312</td>
<td>MICR11878</td>
<td>Accuracy</td>
<td>100</td>
<td>1</td>
<td>2000</td>
</tr>
</tbody>
</table>

Printed: 5/30/07

Quality Control Report

Client: SUTRON

Workorder ID: Parkway Baffle Box

Received: 5/15/07 13:00

[2027814]
Quality Control Report

Client: SUTRON
Workorder ID: Parkway Baffle Box
Received: 5/15/07 13:00

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>Result</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>336820</td>
<td>AUTO15653</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.0012 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>336821</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>336822</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336823</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2027895001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336823</td>
<td>AUTO15653</td>
<td>Precision</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2128696005</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>336824</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336825</td>
<td>AUTO15653</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>336825</td>
<td>AUTO15653</td>
<td>Precision</td>
<td>3.9</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Lincoln Baffle Box [2027932]
Received: 5/25/07 11:50

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.’s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:

 E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.

5600 US 1 North 16331 Cortez Blvd. 307 Coolidge Avenue
Fort Pierce, FL 34946 Sanford, FL 32771 Lehigh Acres, FL 33936
FDOH # E96080 FDOH # E83509 FDOH # E85370

Printed: 6/7/07
Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Sample ID</td>
<td>Analytical Method</td>
</tr>
</tbody>
</table>

Quality Control Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Analytical Issue</th>
</tr>
</thead>
</table>

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/25/07 11:50

MB=Method Blank LCS=Laboratory Control Sample LCSD=Laboratory Control Sample Duplicate MS=Matrix Spike MSD=Matrix Spike Duplicate DUP=Sample Duplicate

5600 US 1 North
Fort Pierce, FL 34946
FDOH # E96080

4155 St. Johns Pkwy, Suite 1300
Sanford, FL 32771
FDOH # E83509

307 Coolidge Avenue
Lehigh Acres, FL 33936
FDOH # E85370

16331 Cortez Blvd.
Brooksville, FL 34601
FDOH # E84418

Printed: 6/7/07
Harbor Branch Environmental Laboratories, Inc.

Certificate of Analysis

[2027932]

Client: SUTRON
Workorder ID: Lincoln Baffle Box

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>1</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>18</td>
<td></td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0019 I</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.012</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.30</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.049</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.63</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.76</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.12</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.049</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 356.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.14</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 356.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B 1800</td>
<td></td>
<td></td>
<td>CFU/100mL</td>
<td>100</td>
<td>100</td>
<td>SM9222 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled: 05/24/07 21:49
Received: 05/25/07 11:50
Results reported on Wet Weight Basis

Laboratory ID: 2027932001
Sample ID: Lincoln UP grab
Matrix: Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>1</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>29</td>
<td></td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0029 I</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.018</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.12</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.074</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.94</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.1</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.15</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.045</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 356.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.16</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 356.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B 800</td>
<td></td>
<td></td>
<td>CFU/100mL</td>
<td>100</td>
<td>100</td>
<td>SM9222 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled: 05/24/07 21:49
Received: 05/25/07 11:50
Results reported on Wet Weight Basis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>1</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0019 I</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.012</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.30</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.049</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.63</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.76</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.12</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.049</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 356.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.14</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 356.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B 1800</td>
<td></td>
<td></td>
<td>CFU/100mL</td>
<td>100</td>
<td>100</td>
<td>SM9222 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled: 05/24/07 21:49
Received: 05/25/07 11:50
Results reported on Wet Weight Basis

1. **Result Qualifiers:**
 - U = Not Detected
 - I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit

Applicable Florida Department of Environmental Protection Qualifiers defined below.
Statement of Estimated Uncertainty available upon request.
B Results based upon colony counts outside of the acceptable range.
<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION DATE</th>
<th>COLLECTION TIME</th>
<th>Sample Type</th>
<th>Sample Type</th>
<th>SAMPLE DESCRIPTION</th>
<th>As Will Appear On Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>5-24</td>
<td>21:49</td>
<td>C</td>
<td>SW</td>
<td>Lincoln Up</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>5-24</td>
<td>21:49</td>
<td>C</td>
<td>SW</td>
<td>Lincoln Down</td>
<td></td>
</tr>
</tbody>
</table>

Sample Type: G=Grab, C=Composite
Matrix: S=Solid, SL=Sludge, DW=Drinking Water, GW=Ground Water, SW=Surface Water, WW=Wastewater, M=Marine
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Method</th>
<th>Result</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 160.2</td>
<td>Total Suspended Solids</td>
<td>336970</td>
<td>WCGE27626</td>
<td>Result</td>
<td>ND</td>
<td>0.7 mg/L</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>336971</td>
<td>WCGE27626</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>336972</td>
<td>WCGE27626</td>
<td>Accuracy</td>
<td>94</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>336973</td>
<td>WCGE27626</td>
<td>Precision</td>
<td>4.2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td>Cadmium</td>
<td>337443</td>
<td>META8426</td>
<td>Result</td>
<td>ND</td>
<td>0.00070 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>337444</td>
<td>META8426</td>
<td>Accuracy</td>
<td>96</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>337445</td>
<td>META8426</td>
<td>Accuracy</td>
<td>97</td>
<td>70</td>
<td>114</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>337446</td>
<td>META8426</td>
<td>Accuracy</td>
<td>97</td>
<td>70</td>
<td>114</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>337446</td>
<td>META8426</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>337444</td>
<td>META8426</td>
<td>Accuracy</td>
<td>97</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>337445</td>
<td>META8426</td>
<td>Accuracy</td>
<td>100</td>
<td>77.3</td>
<td>113</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>337446</td>
<td>META8426</td>
<td>Accuracy</td>
<td>100</td>
<td>77.3</td>
<td>113</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>337446</td>
<td>META8426</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>337443</td>
<td>META8426</td>
<td>Result</td>
<td>ND</td>
<td>0.0014 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>337444</td>
<td>META8426</td>
<td>Accuracy</td>
<td>98</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>337445</td>
<td>META8426</td>
<td>Accuracy</td>
<td>101</td>
<td>80.1</td>
<td>121</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>337446</td>
<td>META8426</td>
<td>Accuracy</td>
<td>101</td>
<td>80.1</td>
<td>121</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>337443</td>
<td>META8426</td>
<td>Result</td>
<td>ND</td>
<td>0.010 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>337444</td>
<td>META8426</td>
<td>Accuracy</td>
<td>100</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>337446</td>
<td>META8426</td>
<td>Accuracy</td>
<td>100</td>
<td>70</td>
<td>130</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>337446</td>
<td>META8426</td>
<td>Accuracy</td>
<td>99</td>
<td>70</td>
<td>130</td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte, as N</th>
<th>Sample Number</th>
<th>Laboratory Method</th>
<th>Result</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>337159</td>
<td>AUTO15656</td>
<td>Result</td>
<td>ND</td>
<td>0.0090 mg/L</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>337160</td>
<td>AUTO15656</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>337161</td>
<td>AUTO15656</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>337161</td>
<td>AUTO15656</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>337162</td>
<td>AUTO15656</td>
<td>Accuracy</td>
<td>97</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>337163</td>
<td>AUTO15656</td>
<td>Accuracy</td>
<td>103</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>337164</td>
<td>AUTO15656</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>337164</td>
<td>AUTO15656</td>
<td>Precision</td>
<td>2</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/25/07 11:50

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Batch Number</th>
<th>Method</th>
<th>Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>337550</td>
<td>AUTO15680</td>
<td>Result</td>
<td>ND</td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>337551</td>
<td>AUTO15680</td>
<td>Accuracy</td>
<td>110</td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>337552</td>
<td>AUTO15680</td>
<td>Accuracy</td>
<td>91</td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>337553</td>
<td>AUTO15680</td>
<td>Accuracy</td>
<td>107</td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>337553</td>
<td>AUTO15680</td>
<td>Precision</td>
<td>16</td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 353.2

MB	Nitrate/Nitrite as N	337139	AUTO15655	Accuracy	101	0.045 mg/L
MSD	Nitrate/Nitrite as N	337140	AUTO15655	Precision	1	0.045 mg/L
MSD	Nitrate/Nitrite as N	337140	AUTO15655	Precision	1	0.045 mg/L

EPA 365.1

MB	Orthophosphate as P	337041	AUTO15652	Result	ND	0.0019 mg/L
MS	Orthophosphate as P	337042	AUTO15652	Accuracy	100	0.0019 mg/L
MSD	Orthophosphate as P	337043	AUTO15652	Accuracy	100	0.0019 mg/L
MSD	Orthophosphate as P	337043	AUTO15652	Precision	0	0.0019 mg/L
LCS	Orthophosphate as P	337044	AUTO15652	Accuracy	101	0.0019 mg/L

Nitrate/Nitrite

MB	Nitrate/Nitrite as N	337133	AUTO15655	Result	ND	0.0075 mg/L
LCS	Nitrate/Nitrite as N	337134	AUTO15655	Accuracy	101	0.0075 mg/L
MB	Nitrate/Nitrite as N	337135	AUTO15655	Result	ND	0.0075 mg/L
LCS	Nitrate/Nitrite as N	337136	AUTO15655	Accuracy	96	0.0075 mg/L
MS	Nitrate/Nitrite as N	337141	AUTO15655	Accuracy	104	0.0075 mg/L
MSD	Nitrate/Nitrite as N	337142	AUTO15655	Precision	2.9	0.0075 mg/L
MS	Nitrate/Nitrite as N	337143	AUTO15655	Accuracy	99	0.0075 mg/L
MSD	Nitrate/Nitrite as N	337144	AUTO15655	Accuracy	100	0.0075 mg/L
MS	Nitrate/Nitrite as N	337144	AUTO15655	Precision	1	0.0075 mg/L
MSD	Nitrate/Nitrite as N	337145	AUTO15655	Accuracy	98	0.0075 mg/L
MSD	Nitrate/Nitrite as N	337146	AUTO15655	Accuracy	100	0.0075 mg/L
MSD	Nitrate/Nitrite as N	337146	AUTO15655	Precision	2	0.0075 mg/L

SM9222 D

MB	Fecal Coliform	337223	MICR11904	Result	ND	1.0 CFU/1
MB	Fecal Coliform	337224	MICR11904	Result	ND	1.0 CFU/1
LCS	Fecal Coliform	337225	MICR11904	Accuracy	100	1,000 CFU/1

Southeast Florida
FDHO # E96080

Central Florida
FDHO # E93909

Southwest Florida
FDHO # E95370

West Central Florida
FDHO # E84418

Printed: 8/7/07
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 5/25/07 11:50

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>337282</td>
<td>AUTO15664</td>
<td>Result</td>
<td>ND</td>
<td>0.0012 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>337283</td>
<td>AUTO15664</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td>2027932001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>337284</td>
<td>AUTO15664</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2027932001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>337285</td>
<td>AUTO15664</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2027932001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>337285</td>
<td>AUTO15664</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2027932001</td>
</tr>
</tbody>
</table>
Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #s:

E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee
Quality Control Summary

Client: SUTRON
Workorder ID: Lincoln Baffle Box Stormwater
Received: 7/24/07 11:55

Method Narratives (if Applicable)

Quality Control Summary

Method | HBEL Batch | Analyte | Analytical Issue
Certificate of Analysis

Client: SUTRON
Workorder ID: Lincoln Baffle Box Stormwater

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory ID:</td>
<td>2028397001</td>
<td></td>
</tr>
<tr>
<td>Sample ID:</td>
<td>Lincoln Up Composite</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>20</td>
<td>mg/L</td>
<td>0.7</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGER27903</td>
<td>07/25/07 13:30</td>
<td>TCL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>0.00070</td>
<td>0.00028</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/07 12:45</td>
<td>DM</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.00201</td>
<td>I</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/07 12:45</td>
<td>DM</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0093</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/07 12:45</td>
<td>DM</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.060</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/07 12:45</td>
<td>DM</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.055</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15792</td>
<td>07/24/07 13:31</td>
<td>JL</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.44</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15792</td>
<td>07/26/07 10:55</td>
<td>DM</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.81</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td>07/26/07 15:44</td>
<td>DH</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.36</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>08/07 12:30</td>
<td>DM</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.058</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 356.1</td>
<td>AUTO15780</td>
<td>07/24/07 16:30</td>
<td>JL</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.15</td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 356.1</td>
<td>AUTO15860</td>
<td>07/30/07 16:26</td>
<td>JL</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>29000</td>
<td>CFU/100mL</td>
<td>1000</td>
<td>1000</td>
<td>SM9222D</td>
<td>MCR12402</td>
<td>07/24/07 12:55</td>
<td>SP</td>
<td>E96080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory ID:	**2028397002**										
Sample ID:	**Lincoln Down Composite**										
Total Suspended Solids	19	mg/L	0.8	3.2	EPA 160.2	WCGER27903	07/25/07 13:30	TCL	E96080		
Cadmium	0.00070	U	0.0070	0.0028	EPA 200.7	META8512	08/07 12:45	DM	E96080		
Chromium	0.00191	I	0.0018	0.0072	EPA 200.7	META8512	08/07 12:45	DM	E96080		
Copper	0.0086	mg/L	0.0014	0.0056	EPA 200.7	META8512	08/07 12:45	DM	E96080		
Zinc	0.068	mg/L	0.010	0.040	EPA 200.7	META8512	08/07 12:45	DM	E96080		
Ammonia, as N	0.068	mg/L	0.0090	0.036	EPA 350.1	AUTO15792	07/27/07 13:21	JL	E96080		
Total Kjeldahl Nitrogen	0.49	mg/L	0.045	0.18	EPA 351.2	AUTO15792	07/26/07 10:55	DM	E96080		
Total Nitrogen	0.79	mg/L	0.048	0.19	EPA 351.2	CALC5434	07/26/07 15:45	DH	E96080		
Nitrate/Nitrite as N	0.30	mg/L	0.0075	0.030	EPA 353.2	AUTO15821	08/07 12:31	DM	E96080		
Orthophosphate as P	0.042	mg/L	0.0019	0.0076	EPA 356.1	AUTO15780	07/24/07 16:30	JL	E96080		
Total Phosphorus as P	0.14	mg/L	0.00090	0.0036	EPA 356.1	AUTO15860	07/30/07 16:26	JL	E96080		
Fecal Coliform	34000	CFU/100mL	1000	1000	SM9222D	MCR12402	07/24/07 12:55	SP	E96080		

*Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.
Company: Sutan
Address: 803 Vista Parkway North, Suite #5, Zip: 33411
Phone: 561-697-8151
Fax: 561-697-8152
Client Contact: Shaka King
Project Name: Battle Box
Sampled By: Forrest Jan

SAMPLE DESCRIPTION

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION DATE</th>
<th>COLLECTION TIME</th>
<th>Sample Type</th>
<th>MATRIX</th>
<th>CONTAINERS</th>
<th>Sample Description</th>
<th>ANALYSES REQUESTED</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>08001C</td>
<td>7/24/07</td>
<td>1:51</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td>Lincoln Dow</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>08001C</td>
<td>7/23/07</td>
<td>19:08</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td>Lincoln Up</td>
<td>1</td>
<td>I</td>
</tr>
</tbody>
</table>

* Sample Type: G=Grab, C=Composite
** Matrix: S=Solid, SL=Sludge, DW=Drinking Water, GW=Ground Water, SW=Surface Water, WW=Wastewater, M=Marine

PRESERVATIVE

<table>
<thead>
<tr>
<th>Preservation Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>H=Hydrochloric Acid</td>
</tr>
<tr>
<td>P=Phosphoric Acid</td>
</tr>
<tr>
<td>N=Nitric Acid</td>
</tr>
<tr>
<td>S=Sulfuric Acid</td>
</tr>
<tr>
<td>Th=Thiosulfate</td>
</tr>
<tr>
<td>SH=Sodium Hydroxide</td>
</tr>
<tr>
<td>U=Unpreserved</td>
</tr>
</tbody>
</table>

COMMENTS
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box Stormwater
Received: 7/24/07 11:55

EPA 160.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank % Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>340953</td>
<td>WCGE27903</td>
<td>Result ND</td>
<td>0.7 mg/L</td>
<td>202835001</td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>340954</td>
<td>WCGE27903</td>
<td>Precision 1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>340955</td>
<td>WCGE27903</td>
<td>Accuracy 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>340956</td>
<td>WCGE27903</td>
<td>Precision 2.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 200.7

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank % Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.00070 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.0018 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.0014 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>341867</td>
<td>META8512</td>
<td>Accuracy 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.010 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>341866</td>
<td>META8512</td>
<td>Precision 2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>341867</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank % Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341121</td>
<td>AUTO15792</td>
<td>Result ND</td>
<td>0.00090 mg/L</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341122</td>
<td>AUTO15792</td>
<td>Accuracy 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341123</td>
<td>AUTO15792</td>
<td>Accuracy 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341123</td>
<td>AUTO15792</td>
<td>Precision 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>341124</td>
<td>AUTO15792</td>
<td>Accuracy 98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Printed: 8/13/07

Southeast Florida: FDOH # E90980
Central Florida: FDOH # E83599
Southwest Florida: FDOH # E85370
West Central Florida: FDOH # E84418
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box Stormwater
Received: 7/24/07 11:55

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower</th>
<th>Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341125</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341126</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341126</td>
<td>AUTO15792</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028411001</td>
</tr>
</tbody>
</table>

EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower</th>
<th>Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341047</td>
<td>AUTO15799</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341048</td>
<td>AUTO15799</td>
<td>Accuracy</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341049</td>
<td>AUTO15799</td>
<td>Accuracy</td>
<td>81</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341050</td>
<td>AUTO15799</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341050</td>
<td>AUTO15799</td>
<td>Precision</td>
<td>1.2</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028411001</td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower</th>
<th>Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>341897</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>78</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028462001</td>
</tr>
<tr>
<td>MMSS</td>
<td>Nitrate/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028462001</td>
</tr>
<tr>
<td>MMSSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2.5</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028462001</td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower</th>
<th>Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>340900</td>
<td>AUTO15780</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>340901</td>
<td>AUTO15780</td>
<td>Accuracy</td>
<td>95</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>340902</td>
<td>AUTO15780</td>
<td>Accuracy</td>
<td>96</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>340902</td>
<td>AUTO15780</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>340903</td>
<td>AUTO15780</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
</tbody>
</table>

Nitrate/Nitrate

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower</th>
<th>Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341889</td>
<td>AUTO15821</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>341890</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>91</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341891</td>
<td>AUTO15821</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>341892</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>92</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341893</td>
<td>AUTO15821</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>341894</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341895</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341900</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>97</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341900</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028339001</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341901</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>92</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028412007</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341902</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>90</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028412007</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341902</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2.2</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028412007</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341903</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028421001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341904</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028421001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341904</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028421001</td>
</tr>
</tbody>
</table>

Southeast Florida
FDOH # E906080
Printed: 8/13/07

Central Florida
FDOH # E83509

Southwest Florida
FDOH # E85370

West Central Florida
FDOH # E84418
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341905</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90 - 110</td>
<td></td>
<td>2028479001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341906</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>101</td>
<td>90 - 110</td>
<td></td>
<td>2028479001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341906</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>1</td>
<td>0 - 20</td>
<td></td>
<td>2028479001</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341907</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>105</td>
<td>90 - 110</td>
<td></td>
<td>2028507002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341908</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>106</td>
<td>90 - 110</td>
<td></td>
<td>2028507002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341908</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>0.9</td>
<td>0 - 20</td>
<td></td>
<td>2028507002</td>
</tr>
</tbody>
</table>

SM9222 D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>Result</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>340993</td>
<td>MICR12042</td>
<td>Result</td>
<td>ND</td>
<td>ND</td>
<td>1.0 CFU/1</td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>340994</td>
<td>MICR12042</td>
<td>Result</td>
<td>ND</td>
<td>ND</td>
<td>1.0 CFU/1</td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>340995</td>
<td>MICR12042</td>
<td>Accuracy</td>
<td>100</td>
<td>1 - 2000</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>340996</td>
<td>MICR12042</td>
<td>Result</td>
<td>ND</td>
<td>ND</td>
<td>1.0 CFU/1</td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>340997</td>
<td>MICR12042</td>
<td>Result</td>
<td>ND</td>
<td>ND</td>
<td>1.0 CFU/1</td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Laboratory Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>Result</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>341331</td>
<td>AUTO15806</td>
<td>Result</td>
<td>ND</td>
<td>0.00090 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>341332</td>
<td>AUTO15806</td>
<td>Accuracy</td>
<td>90</td>
<td>90 - 110</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341333</td>
<td>AUTO15806</td>
<td>Accuracy</td>
<td>103</td>
<td>90 - 110</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341334</td>
<td>AUTO15806</td>
<td>Accuracy</td>
<td>102</td>
<td>90 - 110</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341334</td>
<td>AUTO15806</td>
<td>Precision</td>
<td>0.98</td>
<td>0 - 20</td>
<td></td>
</tr>
</tbody>
</table>
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Lincoln/Parkway Baffle Boxes [2028421]
Received: 7/26/07 12:50

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.’s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:

E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Quality Control Summary

Client: SUTRON
Workorder ID: Lincoln/Parkway Baffle Boxes
Received: 7/26/07 12:50

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 351.2</td>
<td>AUTO15909</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MS.</td>
</tr>
<tr>
<td></td>
<td>2028421004</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MSD.</td>
</tr>
</tbody>
</table>

The above due to matrix effects. Accuracy demonstrated with other QC samples.
CERTIFICATE OF ANALYSIS

Client: SUTRON
Workorder ID: Lincoln/Parkway Baffle Boxes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Prep Batch</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>31</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WGE27918</td>
<td>07/25/07 18:50</td>
<td>TLC</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td>0.00070</td>
<td>mg/L</td>
<td>0.0070</td>
<td>0.028</td>
<td>EPA 200.7</td>
<td>META6512</td>
<td>08/07/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td>0.0024</td>
<td>mg/L</td>
<td>0.018</td>
<td>0.072</td>
<td>EPA 200.7</td>
<td>META6512</td>
<td>08/07/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>0.0058</td>
<td>mg/L</td>
<td>0.014</td>
<td>0.056</td>
<td>EPA 200.7</td>
<td>META6512</td>
<td>08/07/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>0.066</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META6512</td>
<td>08/07/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td></td>
<td>0.0090</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15793</td>
<td>07/26/07 13:21</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td></td>
<td>0.51</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15809</td>
<td>07/31/07 10:45</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td>0.64</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>AUTO15809</td>
<td>07/31/07 17:03</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td></td>
<td>0.13</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15809</td>
<td>07/26/07 12:58</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td></td>
<td>0.022</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15809</td>
<td>07/26/07 16:00</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td></td>
<td>0.12</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15809</td>
<td>07/30/07 10:43</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>40000</td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10,000</td>
<td>SM9222 D</td>
<td>MICR12652</td>
<td>07/26/07 15:25</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

Laboratory ID: 2028421002
Sample ID: Lincoln Up Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Prep Batch</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>33</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WGE27918</td>
<td>07/25/07 18:25</td>
<td>TLC</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td>0.00070</td>
<td>mg/L</td>
<td>0.0070</td>
<td>0.028</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/07/07 11:00</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td>0.0023</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/07/07 11:00</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>0.0068</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/07/07 11:00</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>0.058</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/07/07 11:00</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td></td>
<td>0.022</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15793</td>
<td>07/27/07 13:21</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td></td>
<td>0.38</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15809</td>
<td>07/31/07 10:45</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td>0.53</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>AUTO15809</td>
<td>07/31/07 17:04</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td></td>
<td>0.15</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15809</td>
<td>08/07/07 12:59</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td></td>
<td>0.020</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15809</td>
<td>07/26/07 16:00</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td></td>
<td>0.10</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15809</td>
<td>07/30/07 10:43</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>20000</td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10,000</td>
<td>SM9222 D</td>
<td>MICR12652</td>
<td>07/26/07 15:25</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

Results reported on Wet Weight Basis
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>5.1</td>
<td></td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WGE27918</td>
<td>07/27/07 17:00</td>
<td>TCI</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td></td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:34</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0018 U</td>
<td></td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:34</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0036 I</td>
<td></td>
<td>mg/L</td>
<td>0.014</td>
<td>0.0356</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:34</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.022 I</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:34</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.017 I</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.035</td>
<td>EPA 350.1</td>
<td>AUTO15794</td>
<td>07/27/07 13:21</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.59</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15809</td>
<td>07/31/07 10:45</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.1</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.54</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>08/07/07 12:59</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.45</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15790</td>
<td>07/26/07 16:00</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.57</td>
<td></td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15806</td>
<td>07/30/07 10:43</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform B</td>
<td>10000 I</td>
<td></td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10000</td>
<td>SM9222 D</td>
<td>MICR12052</td>
<td>07/26/07 15:25</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

Parkway Down Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>4.5</td>
<td></td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WGE27918</td>
<td>07/27/07 17:00</td>
<td>TCI</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td></td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:41</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0018 U</td>
<td></td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:41</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0016 I</td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:41</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.027 I</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8518</td>
<td>08/10/07 16:41</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.044</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.035</td>
<td>EPA 350.1</td>
<td>AUTO15794</td>
<td>07/27/07 13:21</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.40</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15809</td>
<td>07/31/07 10:45</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.73</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.34</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>08/07/07 13:00</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.16</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15790</td>
<td>07/26/07 16:00</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.30</td>
<td></td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15806</td>
<td>07/30/07 10:43</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform B</td>
<td>30000</td>
<td></td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10000</td>
<td>SM9222 D</td>
<td>MICR12052</td>
<td>07/26/07 15:25</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

1 Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.
B Results based upon colony counts outside of the acceptable range.
Company: Sybron
Address: 6903 Vista Parkway, Suite 5B, FL, Zip: 33411
Phone: 361-697-8151
Fax: 361-697-8151
Client Contact: Saka Kone
Project Name: Battle Box
Sampled By: Forrest Jay

COLLECTION
<table>
<thead>
<tr>
<th>LAB ID</th>
<th>DATE</th>
<th>TIME</th>
<th>Sample Type</th>
<th>MATRIX **</th>
<th># Containers</th>
<th>SAMPLE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>7/25/07</td>
<td>18:50</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td>Lincoln Down</td>
</tr>
<tr>
<td>2</td>
<td>7/25/07</td>
<td>18:25</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td>Lincoln Up</td>
</tr>
<tr>
<td>3</td>
<td>7/25/07</td>
<td>15:30</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td>Parkway Down</td>
</tr>
<tr>
<td>4</td>
<td>7/25/07</td>
<td>15:58</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td>Parkway Up</td>
</tr>
</tbody>
</table>

ANALYSES REQUESTED
- N
- I
- G
- S

COMMENTS
- RELINQUISHED BY:
- DATE/TIME: 7/26/07 12:50
- DISTRIBUTION: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER
EPA 160.2

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Sample</th>
<th>Analyte</th>
<th>Batch Number</th>
<th>Result</th>
<th>Recovery</th>
<th>Lower - Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>341093</td>
<td>WCGE27918</td>
<td>ND</td>
<td>0.7 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341094</td>
<td>WCGE27918</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2028379005</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>341095</td>
<td>WCGE27918</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
<td>2028379007</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341096</td>
<td>WCGE27918</td>
<td>Precision</td>
<td>3.7</td>
<td>0</td>
<td>10</td>
<td>2028379007</td>
<td></td>
</tr>
</tbody>
</table>

EPA 200.7

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Sample</th>
<th>Analyte</th>
<th>Batch Number</th>
<th>Result</th>
<th>Accuracy</th>
<th>Recovery</th>
<th>Lower - Upper</th>
<th>Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 98</td>
<td>85</td>
<td>115</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 97</td>
<td>70</td>
<td>114</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 99</td>
<td>70</td>
<td>114</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.0018 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>85</td>
<td>115</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 100</td>
<td>77.3</td>
<td>113</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>77.3</td>
<td>113</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.0014 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>85</td>
<td>115</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>80.1</td>
<td>121</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td>80.1</td>
<td>121</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 1.9</td>
<td>0</td>
<td>20</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td>85</td>
<td>115</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>70</td>
<td>130</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 105</td>
<td>70</td>
<td>130</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2.9</td>
<td>0</td>
<td>20</td>
<td>2028435002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>342147</td>
<td>META8518</td>
<td>Result ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>342148</td>
<td>META8518</td>
<td>Accuracy 97</td>
<td>85</td>
<td>115</td>
<td>2028421002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>342149</td>
<td>META8518</td>
<td>Accuracy 96</td>
<td>70</td>
<td>114</td>
<td>2028421002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>342150</td>
<td>META8518</td>
<td>Accuracy 98</td>
<td>70</td>
<td>114</td>
<td>2028421002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>342150</td>
<td>META8518</td>
<td>Precision 2.1</td>
<td>0</td>
<td>20</td>
<td>2028421002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>342147</td>
<td>META8518</td>
<td>Result ND</td>
<td>0.0018 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Report

Sample Information
- **Client:** SUTRON
- **Workorder ID:** Lincoln/Parkway Baffle Boxes
- **Received:** 7/26/07 12:50

Laboratory Results

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>342148</td>
<td>META8518</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>342149</td>
<td>META8518</td>
<td>Accuracy</td>
<td>99</td>
<td>77.3</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>342150</td>
<td>META8518</td>
<td>Accuracy</td>
<td>101</td>
<td>77.3</td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>342150</td>
<td>META8518</td>
<td>Precision</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>342148</td>
<td>META8518</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342149</td>
<td>META8518</td>
<td>Accuracy</td>
<td>100</td>
<td>60.1</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>342150</td>
<td>META8518</td>
<td>Accuracy</td>
<td>102</td>
<td>80.1</td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>342150</td>
<td>META8518</td>
<td>Precision</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>342147</td>
<td>META8518</td>
<td>Result ND</td>
<td>ND</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342148</td>
<td>META8518</td>
<td>Accuracy</td>
<td>102</td>
<td>85</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>342149</td>
<td>META8518</td>
<td>Accuracy</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>342150</td>
<td>META8518</td>
<td>Accuracy</td>
<td>102</td>
<td>70</td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341127</td>
<td>AUTO15793</td>
<td>Result ND</td>
<td>ND</td>
<td>0.0090 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341128</td>
<td>AUTO15793</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341129</td>
<td>AUTO15793</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341129</td>
<td>AUTO15793</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>341130</td>
<td>AUTO15793</td>
<td>Accuracy</td>
<td>96</td>
<td>90</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341131</td>
<td>AUTO15793</td>
<td>Accuracy</td>
<td>106</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341132</td>
<td>AUTO15793</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341132</td>
<td>AUTO15793</td>
<td>Precision</td>
<td>0.95</td>
<td>0</td>
</tr>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341133</td>
<td>AUTO15794</td>
<td>Result ND</td>
<td>ND</td>
<td>0.0090 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341134</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341135</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341135</td>
<td>AUTO15794</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>341136</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341137</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341137</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341170</td>
<td>AUTO15794</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341170</td>
<td>AUTO15794</td>
<td>Result ND</td>
<td>ND</td>
<td>0.0090 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341170</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341170</td>
<td>AUTO15794</td>
<td>Accuracy</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341170</td>
<td>AUTO15794</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341424</td>
<td>AUTO15809</td>
<td>Result ND</td>
<td>ND</td>
<td>0.045 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341425</td>
<td>AUTO15809</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>MMS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341426</td>
<td>AUTO15809</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Analyte</td>
<td>Sample Number</td>
<td>Laboratory Batch Number</td>
<td>Method Blank</td>
<td>Result</td>
<td>% Recovery</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341127</td>
<td>AUTO15809</td>
<td>Accuracy</td>
<td>76</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341128</td>
<td>AUTO15809</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341129</td>
<td>AUTO15809</td>
<td>Precision</td>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td>MMMS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341130</td>
<td>AUTO15809</td>
<td>Accuracy</td>
<td>49</td>
<td>90</td>
</tr>
<tr>
<td>MMMS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341131</td>
<td>AUTO15809</td>
<td>Precision</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>EPA 353.2</td>
<td>MMS Nitrate/Nitrite as N</td>
<td>341132</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>EPA 365.1</td>
<td>MMS Nitrate/Nitrite as N</td>
<td>341133</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>EPA 365.4</td>
<td>MMS Nitrate/Nitrite as N</td>
<td>341134</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>341100</td>
<td>AUTO15790</td>
<td>Result ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>341101</td>
<td>AUTO15790</td>
<td>Accuracy</td>
<td>97</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>341102</td>
<td>AUTO15790</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>341103</td>
<td>AUTO15790</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>341104</td>
<td>AUTO15790</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>341105</td>
<td>AUTO15790</td>
<td>Accuracy</td>
<td>104</td>
<td>90</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>341106</td>
<td>AUTO15790</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EPA 365.4</td>
<td>Total Phosphorus as P</td>
<td>341124</td>
<td>AUTO15808</td>
<td>Result ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>341125</td>
<td>AUTO15808</td>
<td>Accuracy</td>
<td>102</td>
<td>72</td>
</tr>
<tr>
<td>MMS</td>
<td>Total Phosphorus as P</td>
<td>341126</td>
<td>AUTO15808</td>
<td>Accuracy</td>
<td>111</td>
<td>72</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341127</td>
<td>AUTO15808</td>
<td>Accuracy</td>
<td>101</td>
<td>72</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341128</td>
<td>AUTO15808</td>
<td>Accuracy</td>
<td>101</td>
<td>72</td>
</tr>
<tr>
<td>MMMS</td>
<td>Total Phosphorus as P</td>
<td>341129</td>
<td>AUTO15808</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MMMS</td>
<td>Total Phosphorus as P</td>
<td>341130</td>
<td>AUTO15808</td>
<td>Accuracy</td>
<td>109</td>
<td>72</td>
</tr>
<tr>
<td>MMMS</td>
<td>Total Phosphorus as P</td>
<td>341131</td>
<td>AUTO15808</td>
<td>Precision</td>
<td>1.8</td>
<td>0</td>
</tr>
</tbody>
</table>

Nitrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>Result</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341132</td>
<td>AUTO15821</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>341133</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>91</td>
<td>90</td>
<td>110</td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341134</td>
<td>AUTO15821</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>341135</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>92</td>
<td>90</td>
<td>110</td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341136</td>
<td>AUTO15821</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Nitrate/Nitrite as N</td>
<td>341137</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341138</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td>0.0075 mg/L</td>
</tr>
</tbody>
</table>

Southeast Florida

FDOH # E96080

Printed: 8/14/07
Client: SUTRON
Workorder ID: Lincoln/Parkway Baffle Boxes
Received: 7/26/07 12:50

Quality Control Report

Sample Type	**Sample Number**	**Laboratory Batch Number**	**Method Blank**	**% Acceptance Criteria**	**Detection Limit**	**Original Sample**
MSD Nitrate/Nitrite as N | 341900 | AUTO15821 | Precision | 0 | 0 | 2028397001
MSD Nitrate/Nitrite as N | 341900 | AUTO15821 | Accuracy | 92 | 90 | 110 | 2028412001
MSD Nitrate/Nitrite as N | 341902 | AUTO15821 | Accuracy | 90 | 90 | 110 | 2028412001
MSD Nitrate/Nitrite as N | 341902 | AUTO15821 | Precision | 2.2 | 0 | 20 | 2028412001
MS Nitrate/Nitrite as N | 341903 | AUTO15821 | Accuracy | 100 | 90 | 110 | 2028421001
MSD Nitrate/Nitrite as N | 341904 | AUTO15821 | Accuracy | 101 | 90 | 110 | 2028421001
MSD Nitrate/Nitrite as N | 341904 | AUTO15821 | Precision | 1 | 0 | 20 | 2028421001
MS Nitrate/Nitrite as N | 341905 | AUTO15821 | Accuracy | 100 | 90 | 110 | 2028479001
MSD Nitrate/Nitrite as N | 341906 | AUTO15821 | Accuracy | 101 | 90 | 110 | 2028479001
MSD Nitrate/Nitrite as N | 341906 | AUTO15821 | Precision | 1 | 0 | 20 | 2028479001
MS Nitrate/Nitrite as N | 341907 | AUTO15821 | Accuracy | 105 | 90 | 110 | 2028507002
MSD Nitrate/Nitrite as N | 341908 | AUTO15821 | Accuracy | 106 | 90 | 110 | 2028507002
MSD Nitrate/Nitrite as N | 341908 | AUTO15821 | Precision | 0.9 | 0 | 20 | 2028507002

SM9222 D
MB Fecal Coliform | 341513 | MICR12052 | Result | ND | 1.0 CFU/1
MB Fecal Coliform | 341514 | MICR12052 | Result | ND | 1.0 CFU/1
LCS Fecal Coliform | 341515 | MICR12052 | Accuracy | 100 | 1 | 2000

TP QC (Persulfate Digestion)
MB Total Phosphorus as P | 341331 | AUTO15806 | Result | ND | 0.00090 mg/L
LCS Total Phosphorus as P | 341332 | AUTO15806 | Accuracy | 90 | 90 | 110 | 2028397001
MS Total Phosphorus as P | 341333 | AUTO15806 | Accuracy | 103 | 90 | 110 | 2028397001
MSD Total Phosphorus as P | 341334 | AUTO15806 | Accuracy | 102 | 90 | 110 | 2028397001
MSD Total Phosphorus as P | 341334 | AUTO15806 | Precision | 0.98 | 0 | 20 | 2028397001
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 7/31/07 11:40

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s:
E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Quality Control Summary

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 7/31/07 11:40

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample</th>
<th>Method</th>
<th>Sample ID</th>
<th>Analytical Method</th>
<th>Description</th>
</tr>
</thead>
</table>

Quality Control Summary

| Method | HBEL Batch | Analyte | Analytical Issue |
|--------|------------|---------|------------------|-------------|

[2028465]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory ID</th>
<th>Prep Batch</th>
<th>Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory ID: 2028465001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Suspended Solids</td>
<td>27</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Cadmium</td>
<td>U</td>
<td>0.00070 U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/9/07 11:00</td>
<td>08/10/07 19:10</td>
<td>08/10/07 19:10</td>
<td>DM</td>
</tr>
<tr>
<td>Chromium</td>
<td>I</td>
<td>0.0021 I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/9/07 11:00</td>
<td>08/10/07 19:10</td>
<td>08/10/07 19:10</td>
<td>DM</td>
</tr>
<tr>
<td>Copper</td>
<td>I</td>
<td>0.0036 I</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/9/07 11:00</td>
<td>08/10/07 19:10</td>
<td>08/10/07 19:10</td>
<td>DM</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>0.063</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META6518</td>
<td>08/9/07 11:00</td>
<td>08/10/07 19:10</td>
<td>08/10/07 19:10</td>
<td>DM</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td></td>
<td>0.068</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.038</td>
<td>EPA 350.1</td>
<td>AUTO15810</td>
<td>08/10/07 14:31</td>
<td>08/10/07 14:31</td>
<td>08/10/07 14:31</td>
<td>JL</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td></td>
<td>0.09</td>
<td>mg/L</td>
<td>0.645</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15820</td>
<td>08/6/07 11:08</td>
<td>08/6/07 11:08</td>
<td>08/6/07 11:08</td>
<td>DM</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td>0.81</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td>08/7/07 13:07</td>
<td>08/7/07 13:07</td>
<td>08/7/07 13:07</td>
<td>DH</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td></td>
<td>0.13</td>
<td>mg/L</td>
<td>0.075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>08/7/07 13:07</td>
<td>08/7/07 13:07</td>
<td>08/7/07 13:07</td>
<td>DM</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td></td>
<td>0.018</td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0026</td>
<td>EPA 356.1</td>
<td>AUTO15807</td>
<td>07/31/07 13:12</td>
<td>07/31/07 13:12</td>
<td>07/31/07 13:12</td>
<td>JL</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td></td>
<td>0.20</td>
<td>mg/L</td>
<td>0.0050</td>
<td>0.0036</td>
<td>EPA 356.1</td>
<td>AUTO15824</td>
<td>08/7/07 12:30</td>
<td>08/7/07 12:30</td>
<td>08/7/07 12:30</td>
<td>JL</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>7000</td>
<td>CFU/100mL</td>
<td>1000</td>
<td>1000</td>
<td>SM222 D</td>
<td>MIR12054</td>
<td>07/31/07 15:10</td>
<td>07/31/07 15:10</td>
<td>07/31/07 15:10</td>
<td>TR</td>
</tr>
</tbody>
</table>

Laboratory ID: 2028465002							**Total Suspended Solids**	33	mg/L	0.7	2.8	EPA 160.2	WCGE27946	07/31/07 15:45	TCL	E96080
Cadmium	U	0.00070 U	mg/L	0.00070	0.0028	EPA 200.7	META6524	08/14/07 17:18	08/15/07 17:18	08/15/07 17:18	DM	E96080				
Chromium	I	0.0023 I	mg/L	0.0018	0.0072	EPA 200.7	META6524	08/14/07 17:18	08/15/07 17:18	08/15/07 17:18	DM	E96080				
Copper	I	0.0072 I	mg/L	0.0014	0.0056	EPA 200.7	META6524	08/14/07 17:18	08/15/07 17:18	08/15/07 17:18	DM	E96080				
Zinc		0.069	mg/L	0.010	0.040	EPA 200.7	META6524	08/14/07 17:18	08/15/07 17:18	08/15/07 17:18	DM	E96080				
Ammonia, as N		0.067	mg/L	0.0090	0.036	EPA 350.1	AUTO15810	08/10/07 14:31	08/10/07 14:31	08/10/07 14:31	JL	E96080				
Total Kjeldahl Nitrogen		0.57	mg/L	0.045	0.18	EPA 351.2	AUTO15820	08/6/07 11:08	08/6/07 11:08	08/6/07 11:08	DM	E96080				
Total Nitrogen		0.72	mg/L	0.048	0.19	EPA 351.2	CALC5434	08/7/07 13:08	08/7/07 13:08	08/7/07 13:08	DH	E96080				
Nitrate/Nitrite as N		0.15	mg/L	0.0075	0.030	EPA 353.2	AUTO15821	08/7/07 13:08	08/7/07 13:08	08/7/07 13:08	DM	E96080				
Orthophosphate as P		0.023	mg/L	0.0019	0.0026	EPA 356.1	AUTO15807	07/31/07 13:12	07/31/07 13:12	07/31/07 13:12	JL	E96080				
Total Phosphorus as P		0.20	mg/L	0.0050	0.0036	EPA 356.1	AUTO15824	08/7/07 12:30	08/7/07 12:30	08/7/07 12:30	JL	E96080				
Fecal Coliform	B	1000 I	CFU/100mL	1000	1000	SM222 D	MIR12054	07/31/07 15:10	07/31/07 15:10	07/31/07 15:10	TR	E96080				

1 Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.
B Results based upon colony counts outside of the acceptable range.
<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION</th>
<th>DATE</th>
<th>TIME</th>
<th>Sample Type</th>
<th>MATRIX**</th>
<th>Containers</th>
<th>Sample Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>7/30/07 19:18</td>
<td>C</td>
<td>SW5</td>
<td>Lincoln Down</td>
<td></td>
<td></td>
<td></td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>7/30/07 18:57</td>
<td>C</td>
<td>SW5</td>
<td>Lincoln Up</td>
<td></td>
<td></td>
<td></td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

* Sample Type: G=Grab C=Composite
** Matrix: S=Solid SL=Sludge DW=Drinking Water GW=Ground Water SW=Surface Water WW=Wastewater M=Marine
EPA 160.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Result</th>
<th>Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Original Limit</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>341456</td>
<td>WCGE72946</td>
<td>Result</td>
<td>ND</td>
<td>0.7 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>341457</td>
<td>WCGE72946</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| DUP | Total Suspended Solids | 341458 | WCGE72946 | Precision | 2 | 0 | 10 | | | 2028379009
| DUP | Total Suspended Solids | 341459 | WCGE72946 | Precision | 1.3 | 0 | 10 | | | 2028438003
| DUP | Total Suspended Solids | 341460 | WCGE72946 | Precision | 1.3 | 0 | 10 | | | 2028438003

EPA 200.7

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Result</th>
<th>Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Original Limit</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>342147</td>
<td>META8518</td>
<td>Result</td>
<td>ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| LCS | Cadmium | 342148 | META8518 | Accuracy | 97 | 85 | 115 | | | 2028421002
| MS | Cadmium | 342149 | META8518 | Accuracy | 99 | 70 | 114 | | | 2028421002
| MSD | Cadmium | 342150 | META8518 | Accuracy | 98 | 70 | 114 | | | 2028421002
| MSD | Cadmium | 342150 | META8518 | Precision | 2.1 | 0 | 20 | | | 2028421002
| MB | Chromium| 342147 | META8518 | Result | ND | 0.0018 mg/L | | | |
| LCS | Chromium| 342148 | META8518 | Accuracy | 99 | 85 | 115 | | | 2028421002
| MS | Chromium| 342149 | META8518 | Accuracy | 99 | 77.3 | 113 | | | 2028421002
| MSD | Chromium| 342150 | META8518 | Accuracy | 101 | 77.3 | 113 | | | 2028421002
| MSD | Chromium| 342150 | META8518 | Precision | 2 | 0 | 20 | | | 2028421002
| MB | Copper | 342147 | META8518 | Result | ND | 0.0014 mg/L | | | |
| LCS | Copper | 342148 | META8518 | Accuracy | 99 | 85 | 115 | | | 2028421002
| MS | Copper | 342149 | META8518 | Accuracy | 100 | 80.1 | 121 | | | 2028421002
| MSD | Copper | 342150 | META8518 | Accuracy | 102 | 80.1 | 121 | | | 2028421002
| MSD | Copper | 342150 | META8518 | Precision | 2 | 0 | 20 | | | 2028421002
| MB | Zinc | 342147 | META8518 | Result | ND | 0.010 mg/L | | | |
| LCS | Zinc | 342148 | META8518 | Accuracy | 102 | 85 | 115 | | | 2028421002
| MS | Zinc | 342149 | META8518 | Accuracy | 100 | 70 | 130 | | | 2028421002
| MSD | Zinc | 342150 | META8518 | Accuracy | 102 | 70 | 130 | | | 2028421002
| MSD | Zinc | 342150 | META8518 | Precision | 2 | 0 | 20 | | | 2028421002
| MB | Cadmium | 342462 | META8524 | Result | ND | 0.00070 mg/L | | | |
| LCS | Cadmium | 342463 | META8524 | Accuracy | 95 | 85 | 115 | | | 2028465002
| MS | Cadmium | 342464 | META8524 | Accuracy | 96 | 70 | 114 | | | 2028465002
| MSD | Cadmium | 342465 | META8524 | Accuracy | 96 | 70 | 114 | | | 2028465002
| MSD | Cadmium | 342465 | META8524 | Precision | 0 | 0 | 20 | | | 2028465002
| MS | Chromium| 342466 | META8524 | Accuracy | 96 | 70 | 114 | | | 2129222001
| MB | Chromium| 342462 | META8524 | Result | ND | 0.0018 mg/L | | | |
| LCS | Chromium| 342463 | META8524 | Accuracy | 98 | 85 | 115 | | | 2028465002
| MS | Chromium| 342464 | META8524 | Accuracy | 100 | 77.3 | 113 | | | 2028465002

SouthEast Florida

- FDOH #: E96090

Central Florida

- FDOH #: E83509

SouthWest Florida

- FDOH #: E85370

West Central Florida

- FDOH #: E84418

Printed: 8/15/07
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>342465</td>
<td>META8524</td>
<td>Accuracy</td>
<td>100</td>
<td>77.3</td>
<td>113</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>342465</td>
<td>META8524</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>342462</td>
<td>META8524</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>342463</td>
<td>META8524</td>
<td>Accuracy</td>
<td>98</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342464</td>
<td>META8524</td>
<td>Accuracy</td>
<td>101</td>
<td>80.1</td>
<td>121</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>342465</td>
<td>META8524</td>
<td>Accuracy</td>
<td>100</td>
<td>80.1</td>
<td>121</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342465</td>
<td>META8524</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342466</td>
<td>META8524</td>
<td>Accuracy</td>
<td>100</td>
<td>80.1</td>
<td>121</td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>342462</td>
<td>META8524</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>342463</td>
<td>META8524</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342464</td>
<td>META8524</td>
<td>Accuracy</td>
<td>100</td>
<td>70</td>
<td>130</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>342465</td>
<td>META8524</td>
<td>Accuracy</td>
<td>99</td>
<td>70</td>
<td>130</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342466</td>
<td>META8524</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342466</td>
<td>META8524</td>
<td>Accuracy</td>
<td>98</td>
<td>70</td>
<td>130</td>
</tr>
</tbody>
</table>

EPA 350.1

MB	Ammonia, as N	341534	AUTO15810	Result	ND		
MS	Ammonia, as N	341535	AUTO15810	Accuracy	102	90	110
MSD	Ammonia, as N	341536	AUTO15810	Accuracy	103	90	110
MSD	Ammonia, as N	341536	AUTO15810	Precision	0.98	0	20
LCS	Ammonia, as N	341537	AUTO15810	Accuracy	95		110
MS	Ammonia, as N	341538	AUTO15810	Accuracy	106	90	110
MSD	Ammonia, as N	341539	AUTO15810	Accuracy	106	90	110
MSD	Ammonia, as N	341539	AUTO15810	Precision	0	0	20

EPA 351.2

MB	Total Kjeldahl Nitrogen	341817	AUTO15820	Result	ND		
LCS	Total Kjeldahl Nitrogen	341818	AUTO15820	Accuracy	93	90	110
MMS	Total Kjeldahl Nitrogen	341819	AUTO15820	Accuracy	95	90	110
MSD	Total Kjeldahl Nitrogen	341820	AUTO15820	Accuracy	93	90	110
MMSD	Total Kjeldahl Nitrogen	341820	AUTO15820	Precision	2.1	0	20
MS	Total Kjeldahl Nitrogen	341821	AUTO15820	Accuracy	87	90	110
MSD	Total Kjeldahl Nitrogen	341822	AUTO15820	Accuracy	88	90	110
MSD	Total Kjeldahl Nitrogen	341822	AUTO15820	Precision	1.1	0	20

EPA 353.2

| MMS | Nitrate/Nitrite as N | 341897 | AUTO15821 | Accuracy | 78 | 90 | 110 |
| MMSD | Nitrate/Nitrite as N | 341898 | AUTO15821 | Accuracy | 80 | 90 | 110 |
Quality Control Report

Sample Information

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 7/31/07 11:40
[2028465]

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSD</td>
<td>Nitrile/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2.5</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

EPA 365.1

MB Orthophosphate as P
- Sample Number: 341452
- Laboratory Batch Number: AUTO15807
- Method: Result
- %: ND
- Detection Limit: 0.0019 mg/L

MS Orthophosphate as P
- Sample Number: 341453
- Laboratory Batch Number: AUTO15807
- Method: Accuracy
- %: 94 | 90 | 110

MD Orthophosphate as P
- Sample Number: 341454
- Laboratory Batch Number: AUTO15807
- Method: Accuracy
- %: 94 | 90 | 110

MSD Orthophosphate as P
- Sample Number: 341454
- Laboratory Batch Number: AUTO15807
- Method: Precision
- %: 0 | 0 | 20

LCS Orthophosphate as P
- Sample Number: 341455
- Laboratory Batch Number: AUTO15807
- Method: Accuracy
- %: 96 | 90 | 110

Nitrate/Nitrite

MB Nitrate/Nitrite as N
- Sample Number: 341899
- Laboratory Batch Number: AUTO15821
- Method: Result
- %: ND
- Detection Limit: 0.0075 mg/L

LCS Nitrate/Nitrite as N
- Sample Number: 341890
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 91 | 90 | 110

MB Nitrate/Nitrite as N
- Sample Number: 341891
- Laboratory Batch Number: AUTO15821
- Method: Result
- %: ND
- Detection Limit: 0.0075 mg/L

LCS Nitrate/Nitrite as N
- Sample Number: 341892
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 92 | 90 | 110

MB Nitrate/Nitrite as N
- Sample Number: 341893
- Laboratory Batch Number: AUTO15821
- Method: Result
- %: ND
- Detection Limit: 0.0075 mg/L

LCS Nitrate/Nitrite as N
- Sample Number: 341894
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 100 | 90 | 110

MS Nitrate/Nitrite as N
- Sample Number: 341899
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 99 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341900
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 97 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341900
- Laboratory Batch Number: AUTO15821
- Method: Precision
- %: 2 | 0 | 20

MS Nitrate/Nitrite as N
- Sample Number: 341901
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 92 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341902
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 90 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341902
- Laboratory Batch Number: AUTO15821
- Method: Precision
- %: 2.2 | 0 | 20

MS Nitrate/Nitrite as N
- Sample Number: 341903
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 100 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341904
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 101 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341904
- Laboratory Batch Number: AUTO15821
- Method: Precision
- %: 1 | 0 | 20

MS Nitrate/Nitrite as N
- Sample Number: 341905
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 100 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341906
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 101 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341907
- Laboratory Batch Number: AUTO15821
- Method: Precision
- %: 1 | 0 | 20

MS Nitrate/Nitrite as N
- Sample Number: 341907
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 105 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341908
- Laboratory Batch Number: AUTO15821
- Method: Accuracy
- %: 106 | 90 | 110

MSD Nitrate/Nitrite as N
- Sample Number: 341908
- Laboratory Batch Number: AUTO15821
- Method: Precision
- %: 0.9 | 0 | 20

SM9222 D

MB Fecal Coliform
- Sample Number: 341522
- Laboratory Batch Number: MICR12054
- Method: Result
- %: ND
- Detection Limit: 1.0 CFU/1

MB Fecal Coliform
- Sample Number: 341523
- Laboratory Batch Number: MICR12054
- Method: Result
- %: ND
- Detection Limit: 1.0 CFU/1

MB Fecal Coliform
- Sample Number: 341524
- Laboratory Batch Number: MICR12054
- Method: Result
- %: ND
- Detection Limit: 1.0 CFU/1

LCS Fecal Coliform
- Sample Number: 341525
- Laboratory Batch Number: MICR12054
- Method: Accuracy
- %: 100 | 1 | 2000

TP QC (Persulfate Digestion)

Southeast Florida
- FDOH # E96800

Central Florida
- FDOH # E83509

Southwest Florida
- FDOH # E85370

West Central Florida
- FDOH # E84418

Printed: 8/15/07
Quality Control Report

Client: SUTRON
Workorder ID: Lincoln Baffle Box
Received: 7/31/07 11:40

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>341942</td>
<td>AUTO15824</td>
<td>Result</td>
<td>ND</td>
<td>0.00090 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>341943</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2129202001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341944</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>107</td>
<td>90</td>
<td>110</td>
<td>2129202001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341945</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td>2129202001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341946</td>
<td>AUTO15824</td>
<td>Precision</td>
<td>1.9</td>
<td>0</td>
<td>20</td>
<td>2028465001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341947</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2028465001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341947</td>
<td>AUTO15824</td>
<td>Precision</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td>2028465001</td>
</tr>
</tbody>
</table>

Southeast Florida
FDOH # E96080
Printed: 8/15/07

Central Florida
FDOH # E83599

Southwest Florida
FDOH # E85370

West Central Florida
FDOH # E84418
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Rockledge Baffle Box
[2028411]
Received: 7/25/07 13:15

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:

E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Quality Control Summary

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 7/25/07 13:15

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Analytical Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 351.2</td>
<td>AUTO15799</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MS.</td>
</tr>
<tr>
<td></td>
<td>2028411001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028411001</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MSD.</td>
</tr>
</tbody>
</table>

The above due to matrix effects. Accuracy/Precision demonstrated with other QC samples.
HARBOR BRANCH ENVIRONMENTAL LABORATORIES, INC.

5600 U.S. 1 North, Fort Pierce, FL 34946
Phone: (772) 465-2400, Ext. 265
Fax: (772) 467-1584

CERTIFICATE OF ANALYSIS

[2028411]

Client: SUTRON
Workorder ID: Rockledge Baffle Box

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID: Master (Down) Composite</td>
<td>Laboratory ID: 2028411001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>39</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGE27918</td>
<td>07/21/07 17:50</td>
<td>TCL</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td></td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/06/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0021 I</td>
<td></td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/06/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0049 I</td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/06/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.043</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8512</td>
<td>08/06/07 14:29</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>0.13</td>
<td></td>
<td>mg/L</td>
<td>0.0036</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15792</td>
<td>07/27/07 13:21</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>1.0</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15769</td>
<td>07/26/07 10:55</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.3</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td></td>
<td>DH</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrile as N</td>
<td>0.34</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>09/07/07 12:38</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.12</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 355.1</td>
<td>AUTO15763</td>
<td>07/25/07 16:35</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.28</td>
<td></td>
<td>mg/L</td>
<td>0.00050</td>
<td>0.0038</td>
<td>EPA 355.1</td>
<td>AUTO15850</td>
<td>07/30/07 10:43</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>110000</td>
<td>B</td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10000</td>
<td>SM9222 D</td>
<td>MICR12051</td>
<td>07/25/07 14:40</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

Sample ID: Slave (Up) Composite	Laboratory ID: 2028411002									
Total Suspended Solids		48	mg/L	0.7	2.8	EPA 160.2	WCGE27918	07/21/07 17:00	TCL	E96080
Cadmium	0.00070 U		mg/L	0.00070	0.0028	EPA 200.7	META8512	08/06/07 14:29	DM	E96080
Chromium	0.0027 I		mg/L	0.0018	0.0072	EPA 200.7	META8512	08/06/07 14:29	DM	E96080
Copper	0.0043 I		mg/L	0.0014	0.0056	EPA 200.7	META8512	08/06/07 14:29	DM	E96080
Zinc	0.058		mg/L	0.010	0.040	EPA 200.7	META8512	08/06/07 14:29	DM	E96080
Ammonia as N	0.094		mg/L	0.0090	0.035	EPA 350.1	AUTO15791	07/27/07 13:21	JL	E96080
Total Kjeldahl Nitrogen	0.86		mg/L	0.045	0.18	EPA 351.2	AUTO15799	07/26/07 10:55	DM	E96080
Total Nitrogen	1.2		mg/L	0.048	0.19	EPA 351.2	CALC5434		DH	E96080
Nitrate/Nitrile as N	0.36		mg/L	0.0075	0.030	EPA 353.2	AUTO15821	09/07/07 12:39	DM	E96080
Orthophosphate as P	0.094		mg/L	0.0019	0.0076	EPA 355.1	AUTO15763	07/25/07 16:35	JL	E96080
Total Phosphorus as P	0.22		mg/L	0.00050	0.0036	EPA 355.1	AUTO15850	07/30/07 10:43	JL	E96080
Fecal Coliform	70000	B	CFU/100mL	10000	10000	SM9222 D	MICR12051	07/25/07 14:40	TR	E96080

1 Result Qualifiers:
U = Not Detected
I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
Applicable Florida Department of Environmental Protection Qualifiers defined below.
Statement of Estimated Uncertainty available upon request.
B Results based upon colony counts outside of the acceptable range.
Chain-of-Custody and Agreement to Perform Services

Company: Slater

Address: 6903 Vista Del Rey #5

Phone: 561-697-8451

Fax: 561-697-8453

Client Contact: Forrest Jay

Project Name: Rock Lodge

Sampled By: Tony McCormack

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION DATE</th>
<th>TIME</th>
<th>Sample Type</th>
<th>Sample Type</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>7/21/07</td>
<td>17:30</td>
<td>C</td>
<td>5</td>
<td>Master Down</td>
</tr>
<tr>
<td>002</td>
<td>7/21/07</td>
<td>17:50</td>
<td>C</td>
<td>5</td>
<td>SLNT UP</td>
</tr>
</tbody>
</table>

USE BALL POINT PEN

PRESS HARD

COMPLETELY FILL OUT

ALL NON GREYED AREAS

PRINT LEGIBLY

Laboratory not responsible for omitted information

PRESERVATIVE

- H=Hydrochloric Acid
- N=Nitric Acid
- S=Sulfuric Acid
- SH=Sodium Hydroxide
- U=Unpreserved

COMMENTS

RELINQUISHED BY

DATE/TIME

RECEIVED BY

DATE/TIME

RECEIVED FOR HBEL CUSTODY BY

7/25/07 13:15

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER

CHAIN PAGE 1 of 1
EPA 160.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>341093</td>
<td>WCGE27918</td>
<td>Result ND</td>
<td>0</td>
<td>0 - 10</td>
<td>0.7 mg/L</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341094</td>
<td>WCGE27918</td>
<td>Precision 0</td>
<td>0</td>
<td>0 - 10</td>
<td>0.7 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>341095</td>
<td>WCGE27918</td>
<td>Accuracy 99</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341096</td>
<td>WCGE27918</td>
<td>Precision 3.7</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 200.7

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0</td>
<td>0 - 10</td>
<td>0.00070 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 98</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 97</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 99</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0</td>
<td>0 - 10</td>
<td>0.0018 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 100</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0</td>
<td>0 - 10</td>
<td>0.0014 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>341867</td>
<td>META8512</td>
<td>Accuracy 106</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>341863</td>
<td>META8512</td>
<td>Result ND</td>
<td>0</td>
<td>0 - 10</td>
<td>0.010 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>341864</td>
<td>META8512</td>
<td>Accuracy 104</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>341865</td>
<td>META8512</td>
<td>Accuracy 102</td>
<td>70</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>341866</td>
<td>META8512</td>
<td>Accuracy 105</td>
<td>70</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>341867</td>
<td>META8512</td>
<td>Precision 2.9</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341115</td>
<td>AUTO15791</td>
<td>Result ND</td>
<td>0</td>
<td>0 - 10</td>
<td>0.0090 mg/L</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341116</td>
<td>AUTO15791</td>
<td>Accuracy 102</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341117</td>
<td>AUTO15791</td>
<td>Accuracy 102</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341117</td>
<td>AUTO15791</td>
<td>Precision 0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>341118</td>
<td>AUTO15791</td>
<td>Accuracy 92</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 7/25/07 13:15

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341119</td>
<td>AUTO15791</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td>2028353001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341120</td>
<td>AUTO15791</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td>2028353001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341120</td>
<td>AUTO15791</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>2028353001</td>
</tr>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341121</td>
<td>AUTO15792</td>
<td>Result ND</td>
<td></td>
<td>0.0090 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341122</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2028397001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341123</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2028397001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341123</td>
<td>AUTO15792</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2028397001</td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>341124</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341125</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341126</td>
<td>AUTO15792</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341126</td>
<td>AUTO15792</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>2028411001</td>
</tr>
</tbody>
</table>

EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341047</td>
<td>AUTO15799</td>
<td>Result ND</td>
<td></td>
<td>0.045 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341046</td>
<td>AUTO15799</td>
<td>Accuracy</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341049</td>
<td>AUTO15799</td>
<td>Accuracy</td>
<td>81</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341050</td>
<td>AUTO15799</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341050</td>
<td>AUTO15799</td>
<td>Precision</td>
<td>1.2</td>
<td>0</td>
<td>20</td>
<td>2028411001</td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>341897</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>78</td>
<td>90</td>
<td>110</td>
<td>2028452001</td>
</tr>
<tr>
<td>MM3</td>
<td>Nitrate/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>80</td>
<td>90</td>
<td>110</td>
<td>2028452001</td>
</tr>
<tr>
<td>MM3D</td>
<td>Nitrate/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2.5</td>
<td>0</td>
<td>20</td>
<td>2028452001</td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>341004</td>
<td>AUTO15783</td>
<td>Result ND</td>
<td></td>
<td>0.0019 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Orthophosphate as P</td>
<td>341005</td>
<td>AUTO15783</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>341006</td>
<td>AUTO15783</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Orthophosphate as P</td>
<td>341006</td>
<td>AUTO15783</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2028411001</td>
</tr>
<tr>
<td>LCS</td>
<td>Orthophosphate as P</td>
<td>341007</td>
<td>AUTO15783</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td>2028411001</td>
</tr>
</tbody>
</table>

EPA 365.4

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>341047</td>
<td>AUTO15797</td>
<td>Result ND</td>
<td></td>
<td>0.012 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>341048</td>
<td>AUTO15797</td>
<td>Accuracy</td>
<td>100</td>
<td>72</td>
<td>132</td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341049</td>
<td>AUTO15797</td>
<td>Accuracy</td>
<td>98</td>
<td>72</td>
<td>132</td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341050</td>
<td>AUTO15797</td>
<td>Accuracy</td>
<td>99</td>
<td>72</td>
<td>132</td>
<td>2028411001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341050</td>
<td>AUTO15797</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2028411001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341059</td>
<td>AUTO15797</td>
<td>Accuracy</td>
<td>101</td>
<td>72</td>
<td>132</td>
<td>2028412002</td>
</tr>
</tbody>
</table>
Quality Control Report

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 7/25/07 13:15

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341060</td>
<td>AUTO15797</td>
<td>Accuracy</td>
<td>102</td>
<td>72</td>
<td>132</td>
<td>2028412002</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341060</td>
<td>AUTO15797</td>
<td>Precision</td>
<td>0.99</td>
<td>0</td>
<td>20</td>
<td>2028412002</td>
</tr>
</tbody>
</table>

Nitrate/Nitrite

MB	Nitrate/Nitrite as N	341889	AUTO15821	Result	ND	0.0075 mg/L	
LCS	Nitrate/Nitrite as N	341890	AUTO15821	Accuracy	91	90	110
MB	Nitrate/Nitrite as N	341891	AUTO15821	Result	ND	0.0075 mg/L	
LCS	Nitrate/Nitrite as N	341892	AUTO15821	Accuracy	92	90	110
MB	Nitrate/Nitrite as N	341893	AUTO15821	Result	ND	0.0075 mg/L	
LCS	Nitrate/Nitrite as N	341894	AUTO15821	Accuracy	100	90	110
MS	Nitrate/Nitrite as N	341899	AUTO15821	Accuracy	99	90	110
MSD	Nitrate/Nitrite as N	341900	AUTO15821	Accuracy	97	90	110
MSD	Nitrate/Nitrite as N	341900	AUTO15821	Precision	2	0	20
MS	Nitrate/Nitrite as N	341901	AUTO15821	Accuracy	92	90	110
MSD	Nitrate/Nitrite as N	341902	AUTO15821	Accuracy	90	90	110
MSD	Nitrate/Nitrite as N	341902	AUTO15821	Precision	2.2	0	20
MS	Nitrate/Nitrite as N	341903	AUTO15821	Accuracy	100	90	110
MSD	Nitrate/Nitrite as N	341904	AUTO15821	Accuracy	101	90	110
MSD	Nitrate/Nitrite as N	341904	AUTO15821	Precision	1	0	20
MS	Nitrate/Nitrite as N	341905	AUTO15821	Accuracy	100	90	110
MSD	Nitrate/Nitrite as N	341906	AUTO15821	Accuracy	101	90	110
MSD	Nitrate/Nitrite as N	341906	AUTO15821	Precision	1	0	20
MS	Nitrate/Nitrite as N	341907	AUTO15821	Accuracy	105	90	110
MSD	Nitrate/Nitrite as N	341908	AUTO15821	Accuracy	106	90	110
MSD	Nitrate/Nitrite as N	341908	AUTO15821	Precision	0.9	0	20

SM9222 D

MB	Focal Coliform	341509	MICR12051	Result	ND	1.0 CFU/1	
MB	Focal Coliform	341510	MICR12051	Result	ND	1.0 CFU/1	
LCS	Focal Coliform	341511	MICR12051	Accuracy	100	1	2000

TP QC (Persulfate Digestion)

MB	Total Phosphorus as P	341331	AUTO15806	Result	ND	0.00090 mg/L	
LCS	Total Phosphorus as P	341332	AUTO15806	Accuracy	90	90	110
MS	Total Phosphorus as P	341333	AUTO15806	Accuracy	103	90	110
MSD	Total Phosphorus as P	341334	AUTO15806	Accuracy	102	90	110
MSD	Total Phosphorus as P	341334	AUTO15806	Precision	0.98	0	20

Printed: 8/13/07
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Rockledge Baffle Box [2028479]
Received: 8/01/07 12:10

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s: E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 8/01/07 12:10

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>HBEL Sample</th>
<th>Number</th>
<th>Sample ID</th>
<th>Analytical Method</th>
<th>Description</th>
</tr>
</thead>
</table>

Quality Control Summary

| Method | HBEL Batch | Analyte | Analytical Issue |
|--------|------------|---------|------------------|-------------|

[2028479]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>39</td>
<td>mg/L</td>
<td>0.8</td>
<td>3.2</td>
<td>EPA 180.2</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0019 I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0048 I</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.035 I</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.038</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.81</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.92</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.11</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.059</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.26</td>
<td>mg/L</td>
<td>0.00590</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>CFU/100mL</td>
<td>10000</td>
<td>100000</td>
<td>SM9222 D</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory ID: 2028479001
Sample ID: Rock Down Composite
Matrix: Water
Results reported on Wet Weight Basis
Sampled: 07/31/07 13:29
Received: 08/01/07 12:10
Prep Batch: WGE27965
Date/Time: 08/06/07 13:50
TCL: E96080

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>28</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 180.2</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070 U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0026 I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0047 I</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.030 I</td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td></td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.023 I</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.58</td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.69</td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.11</td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.056</td>
<td>mg/L</td>
<td>0.0012</td>
<td>0.0048</td>
<td>EPA 365.1</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.23</td>
<td>mg/L</td>
<td>0.00590</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>CFU/100mL</td>
<td>10000</td>
<td>100000</td>
<td>SM9222 D</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory ID: 2028479002
Sample ID: Rock Up Composite
Matrix: Water
Results reported on Wet Weight Basis
Sampled: 07/31/07 13:32
Received: 08/01/07 12:10
Prep Batch: WGE27965
Date/Time: 08/06/07 13:50
TCL: E96080

1. **Result Qualifiers:** U = Not Detected
2. **Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit**
3. **Applicable Florida Department of Environmental Protection Qualifiers defined below**
4. **Statement of Estimated Uncertainty available upon request**
5. **B** = Results based upon colony counts outside of the acceptable range.
Chain-of-Custody

Company: Sutron
Address: 6903 Vista Parkway North Suite #5 WPB FL Zip: 33411
Phone: 561-978-151 **Fax:** 561-978-8153
Client Contact: Suka Kane
Project Name: Battle Oax
Sampled By: Forrest Jay

LAB # Z025479

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION DATE</th>
<th>TIME</th>
<th>MATRIX</th>
<th># Containers</th>
<th>SAMPLE DESCRIPTION</th>
<th>As Will Appear On Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>7/31/07</td>
<td>12:29</td>
<td>C</td>
<td>SW S</td>
<td>Rock Down</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>7/31/07</td>
<td>13:32</td>
<td>C</td>
<td>SW S</td>
<td>Rock Up</td>
<td></td>
</tr>
</tbody>
</table>

Temperature

- **Temperature:** 20.8°C

For Lab Use Only

- **Custody Seals Intact:** Y
- **pH:** 7.5

Preservation

Preservation Key
- **H:** Hydrochloric Acid
- **N:** Nitric Acid
- **S:** Sulfuric Acid
- **ST:** Sodium Sulfate
- **SH:** Sodium Hydroxide
- **Unpreserved**

Analyses Requested

- A
- B
- C
- O
- P
- E

Comments

Sample Type: G=Grab **Matrix:** S=Solid **SL=Sludge** **DW=Drinking Water** **GW=Ground Water** **SW=Surface Water** **WW=Wastewater** **M=Marine**

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER
CHAIN PAGE 1 of 1
EPA 160.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method</th>
<th>Result</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>341697</td>
<td>MB</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>0.7 mg/L</td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341698</td>
<td>DUP</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td></td>
<td>2026438005</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>341699</td>
<td>LCS</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
<td></td>
<td>2026473001</td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341700</td>
<td>DUP</td>
<td>Precision</td>
<td>2.7</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA 200.7

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method</th>
<th>Result</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>342462</td>
<td>MB</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>0.00070 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>342463</td>
<td>LCS</td>
<td>Accuracy</td>
<td>95</td>
<td>85</td>
<td>115</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>342464</td>
<td>MS</td>
<td>Accuracy</td>
<td>96</td>
<td>70</td>
<td>114</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>342465</td>
<td>MSD</td>
<td>Accuracy</td>
<td>96</td>
<td>70</td>
<td>114</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>342466</td>
<td>MS</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2129222001</td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>342467</td>
<td>MB</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>0.0018 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>342468</td>
<td>LCS</td>
<td>Accuracy</td>
<td>98</td>
<td>85</td>
<td>115</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>342469</td>
<td>MS</td>
<td>Accuracy</td>
<td>100</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>342470</td>
<td>MSD</td>
<td>Accuracy</td>
<td>100</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>342471</td>
<td>MS</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>342472</td>
<td>MB</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>0.0014 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>342473</td>
<td>LCS</td>
<td>Accuracy</td>
<td>98</td>
<td>85</td>
<td>115</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342474</td>
<td>MS</td>
<td>Accuracy</td>
<td>101</td>
<td>60.1</td>
<td>121</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>342475</td>
<td>MSD</td>
<td>Accuracy</td>
<td>100</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342476</td>
<td>MS</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2129222001</td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>342477</td>
<td>MB</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>342478</td>
<td>LCS</td>
<td>Accuracy</td>
<td>99</td>
<td>85</td>
<td>115</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342479</td>
<td>MS</td>
<td>Accuracy</td>
<td>100</td>
<td>70</td>
<td>130</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>342480</td>
<td>MSD</td>
<td>Accuracy</td>
<td>99</td>
<td>70</td>
<td>130</td>
<td></td>
<td>2026465002</td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342481</td>
<td>MS</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2129222001</td>
</tr>
</tbody>
</table>

EPA 350.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte, as N</th>
<th>Sample Number</th>
<th>Method</th>
<th>Result</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>341543</td>
<td>MB</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>0.0090 mg/L</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341544</td>
<td>MS</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2026470004</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>341545</td>
<td>MSD</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2026470004</td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>341546</td>
<td>MS</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2026470004</td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>341547</td>
<td>LCS</td>
<td>Accuracy</td>
<td>94</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EPA 351.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>341817</td>
<td>AUTO15820</td>
<td>ND</td>
<td>0.045 mg/L</td>
</tr>
</tbody>
</table>

EPA 353.2

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>Nitrate/Nitrite as N</td>
<td>341897</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>78</td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>80</td>
</tr>
<tr>
<td>MMSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341898</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>2.5</td>
</tr>
</tbody>
</table>

EPA 365.1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Orthophosphate as P</td>
<td>341199</td>
<td>AUTO15802</td>
<td>ND</td>
<td>0.0012 mg/L</td>
</tr>
</tbody>
</table>

Nitrate/Nitrite

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Nitrate/Nitrite as N</td>
<td>341889</td>
<td>AUTO15821</td>
<td>ND</td>
<td>0.0075 mg/L</td>
</tr>
</tbody>
</table>

Printed: 8/15/07
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341903</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341904</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341904</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341905</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341906</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341906</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341907</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341908</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341908</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>0.9</td>
<td>0</td>
<td>20</td>
<td>2028421001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SM9222 D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>342042</td>
<td>MICR12078</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>342043</td>
<td>MICR12078</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>1.0 CFU/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>342044</td>
<td>MICR12078</td>
<td>Accuracy</td>
<td>100</td>
<td>1</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>341942</td>
<td>AUTO15824</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.00090 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>341943</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td>2129202001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341944</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>107</td>
<td>90</td>
<td>110</td>
<td>2129202001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341945</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>105</td>
<td>90</td>
<td>110</td>
<td>2129202001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341945</td>
<td>AUTO15824</td>
<td>Precision</td>
<td>1.9</td>
<td>0</td>
<td>20</td>
<td>2129202001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341946</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td>2028465001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341947</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>98</td>
<td>90</td>
<td>110</td>
<td>2028465001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341947</td>
<td>AUTO15824</td>
<td>Precision</td>
<td>3</td>
<td>0</td>
<td>20</td>
<td>2028465001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:
E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
Quality Control Summary

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 8/03/07 10:20

Method Narratives (If Applicable)

<table>
<thead>
<tr>
<th>Method</th>
<th>HBEL Batch</th>
<th>Analyte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 351.2</td>
<td>AUTO15839</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>Precision - Outside acceptance limits between the MS and MSD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MSD.</td>
</tr>
</tbody>
</table>

The above due to matrix effects. Accuracy/Precision demonstrated with other QC samples.
Client: SUTRON
Workorder ID: Rockledge Baffle Box

Laboratory ID: 2028507001
Sample ID: Rock Down Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>26</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGE29966</td>
<td>08/05/07 13:50</td>
<td>TCL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 21:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0023</td>
<td>I</td>
<td>mg/L</td>
<td>0.0016</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 21:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0047</td>
<td>I</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 21:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.076</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 21:57</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.041</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15828</td>
<td>08/08/07 16:11</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>1.1</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15839</td>
<td>08/06/07 10:00</td>
<td>08/07/07 17:42</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.2</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td>08/13/07 16:41</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.059</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>08/07/07 13:20</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.071</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15815</td>
<td>08/04/07 9:06</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.24</td>
<td></td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15824</td>
<td>08/07/07 15:48</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>58000</td>
<td>CFU/100mL</td>
<td>1000</td>
<td>1,000</td>
<td>SM9222 D</td>
<td>MICR12080</td>
<td>08/03/07 14:00</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory ID: 2028507002
Sample ID: Rock Up Composite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Batch</th>
<th>Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>28</td>
<td>mg/L</td>
<td>0.7</td>
<td>2.8</td>
<td>EPA 160.2</td>
<td>WCGE29966</td>
<td>08/05/07 13:50</td>
<td>TCL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 22:03</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0018</td>
<td>U</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 22:03</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0048</td>
<td>I</td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 22:03</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.16</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8528</td>
<td>08/15/07 16:40</td>
<td>08/16/07 22:03</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.034</td>
<td>I</td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15828</td>
<td>08/08/07 16:12</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>0.81</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15839</td>
<td>08/06/07 10:00</td>
<td>08/07/07 17:43</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.87</td>
<td></td>
<td>mg/L</td>
<td>0.048</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5434</td>
<td>08/13/07 16:42</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.058</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15821</td>
<td>08/07/07 13:22</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.057</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15815</td>
<td>08/04/07 9:06</td>
<td>DM</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.19</td>
<td></td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15824</td>
<td>08/07/07 15:48</td>
<td>JL</td>
<td>E96080</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td>90000</td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10,000</td>
<td>SM9222 D</td>
<td>MICR12080</td>
<td>08/03/07 14:00</td>
<td>TR</td>
<td>E96080</td>
<td></td>
</tr>
</tbody>
</table>

1. Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
2. Applicable Florida Department of Environmental Protection Qualifiers defined below.
3. Statement of Estimated Uncertainty available upon request.
4. B = Results based upon colony counts outside of the acceptable range.

Printed: 8/17/07
Company: Sutram
Address: 6903 Vista Parkway North, Suite #5, WPB, FL, zip: 33411
Phone: 561-697-8151, Fax: 561-697-8153
Client Contact: Siaka Kane
Project Name: Battle Box
Sampled By: Forrest Jay

Collection Dates and Times:
- 8/2/07 14:08 C SW 5 Rock Down
- 8/2/07 14:06 C SW 5 Rock Up

Sample Description:
As Will Appear On Report

Preservative:
- N: No Preservative
- S: Solid
- T: Time

ANALYSES REQUESTED:
- TS5
- Ca/Cr
- Co/Cr
- Ni/Cr
- Mo/Cr
- Fe/Cr
- Cu/Cr

Comments:

Laboratory Approval: Requires Laboratory Approval

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Sample Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>341697</td>
<td>WCGE27966</td>
<td>Result ND</td>
<td>0.7 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341698</td>
<td>WCGE27966</td>
<td>Precision 0</td>
<td>0 0 10</td>
<td></td>
<td>2028438005</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>341699</td>
<td>WCGE27966</td>
<td>Accuracy 99</td>
<td>85 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>341700</td>
<td>WCGE27966</td>
<td>Precision 2.7</td>
<td>0 10</td>
<td></td>
<td>2028473001</td>
</tr>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>342592</td>
<td>META8528</td>
<td>Result ND</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>342593</td>
<td>META8528</td>
<td>Accuracy 94</td>
<td>85 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>342594</td>
<td>META8528</td>
<td>Accuracy 97</td>
<td>70 114</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>342595</td>
<td>META8528</td>
<td>Accuracy 95</td>
<td>70 114</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>342596</td>
<td>META8528</td>
<td>Precision 2.1</td>
<td>0 20</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>342592</td>
<td>META8528</td>
<td>Result ND</td>
<td>0.0018 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>342593</td>
<td>META8528</td>
<td>Accuracy 96</td>
<td>85 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>342594</td>
<td>META8528</td>
<td>Accuracy 113</td>
<td>77.3 113</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>342595</td>
<td>META8528</td>
<td>Accuracy 109</td>
<td>77.3 113</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>342596</td>
<td>META8528</td>
<td>Precision 3.6</td>
<td>0 20</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>342597</td>
<td>META8528</td>
<td>Accuracy 99</td>
<td>77.3 113</td>
<td></td>
<td>2028586034</td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>342592</td>
<td>META8528</td>
<td>Result ND</td>
<td>0.0014 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>342593</td>
<td>META8528</td>
<td>Accuracy 97</td>
<td>85 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342594</td>
<td>META8528</td>
<td>Accuracy 103</td>
<td>60.1 121</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>342595</td>
<td>META8528</td>
<td>Accuracy 103</td>
<td>60.1 121</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>342596</td>
<td>META8528</td>
<td>Precision 0</td>
<td>0 20</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>342597</td>
<td>META8528</td>
<td>Accuracy 102</td>
<td>60.1 121</td>
<td></td>
<td>2028586034</td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>342592</td>
<td>META8528</td>
<td>Result ND</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>342593</td>
<td>META8528</td>
<td>Accuracy 99</td>
<td>85 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>342594</td>
<td>META8528</td>
<td>Accuracy 106</td>
<td>70 130</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>342595</td>
<td>META8528</td>
<td>Accuracy 102</td>
<td>70 130</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>342596</td>
<td>META8528</td>
<td>Precision 3.8</td>
<td>0 20</td>
<td></td>
<td>2028586019</td>
</tr>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>342086</td>
<td>AUTO15828</td>
<td>Result ND</td>
<td>0.0090 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>342087</td>
<td>AUTO15828</td>
<td>Accuracy 95</td>
<td>90 110</td>
<td></td>
<td>2306056002</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>342088</td>
<td>AUTO15828</td>
<td>Accuracy 93</td>
<td>90 110</td>
<td></td>
<td>2306056002</td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>342088</td>
<td>AUTO15828</td>
<td>Precision 2.1</td>
<td>0 20</td>
<td></td>
<td>2306056002</td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>342089</td>
<td>AUTO15828</td>
<td>Accuracy 93</td>
<td>90 110</td>
<td></td>
<td>2306056002</td>
</tr>
</tbody>
</table>

EPA 350.1

EPA 351.2
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>342131</td>
<td>AUTO15839</td>
<td>Result ND</td>
<td>110</td>
<td>90</td>
<td>110</td>
<td>0.045 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>342132</td>
<td>AUTO15839</td>
<td>Accuracy</td>
<td>134</td>
<td>90</td>
<td>110</td>
<td>2028507002</td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>342133</td>
<td>AUTO15839</td>
<td>Accuracy</td>
<td>76</td>
<td>90</td>
<td>110</td>
<td>2028507002</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>342134</td>
<td>AUTO15839</td>
<td>Precision</td>
<td>55</td>
<td>0</td>
<td>20</td>
<td>2028507002</td>
</tr>
</tbody>
</table>

EPA 353.2

MMS	Nitrate/Nitrite as N	341897	AUTO15821	Accuracy	78	90	110	2028462001
MMSD	Nitrate/Nitrite as N	341898	AUTO15821	Accuracy	80	90	110	2028462001
MMSD	Nitrate/Nitrite as N	341898	AUTO15821	Precision	2.5	0	20	2028462001

EPA 365.1

MB	Orthophosphate as P	341763	AUTO15815	Result ND	108	90	110	0.0019 mg/L
MS	Orthophosphate as P	341764	AUTO15815	Accuracy	106	90	110	2028507002
MSD	Orthophosphate as P	341765	AUTO15815	Accuracy	1.9	0	20	2028507002
LCS	Orthophosphate as P	341766	AUTO15815	Precision	102	90	110	2028507002

EPA 365.4

MB	Total Phosphorus as P	342131	AUTO15836	Result ND	102	72	132	0.012 mg/L
LCS	Total Phosphorus as P	342132	AUTO15836	Accuracy	101	72	132	2028507002
MS	Total Phosphorus as P	342133	AUTO15836	Accuracy	98	72	132	2028507002
MSD	Total Phosphorus as P	342134	AUTO15836	Precision	3	0	20	2028507002

Nitrate/Nitrite

MB	Nitrate/Nitrite as N	341899	AUTO15821	Result ND	91	90	110	0.0075 mg/L
LCS	Nitrate/Nitrite as N	341890	AUTO15821	Accuracy	92	90	110	0.0075 mg/L
MS	Nitrate/Nitrite as N	341891	AUTO15821	Result ND	99	90	110	2028397001
MSD	Nitrate/Nitrite as N	341892	AUTO15821	Accuracy	97	90	110	2028397001
MB	Nitrate/Nitrite as N	341893	AUTO15821	Result ND	2	0	20	2028412007
LCS	Nitrate/Nitrite as N	341894	AUTO15821	Accuracy	92	90	110	2028412007
MS	Nitrate/Nitrite as N	341895	AUTO15821	Precision	90	90	110	2028412007
MSD	Nitrate/Nitrite as N	341896	AUTO15821	Accuracy	2.2	0	20	2028412007
MS	Nitrate/Nitrite as N	341897	AUTO15821	Precision	100	90	110	2028412007
Quality Control Report

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 8/03/07 10:20

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341904</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028421001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341904</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028479001</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341905</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028479001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341906</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028479001</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341906</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028507002</td>
</tr>
<tr>
<td>MS</td>
<td>Nitrate/Nitrite as N</td>
<td>341907</td>
<td>AUTO15821</td>
<td>Accuracy</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028507002</td>
</tr>
<tr>
<td>MSD</td>
<td>Nitrate/Nitrite as N</td>
<td>341908</td>
<td>AUTO15821</td>
<td>Precision</td>
<td>0.9</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028507002</td>
</tr>
</tbody>
</table>

SM9222 D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Result</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>342048</td>
<td>MICR12080</td>
<td>ND</td>
<td>1.0 CFU/1</td>
</tr>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>342049</td>
<td>MICR12080</td>
<td>ND</td>
<td>1.0 CFU/1</td>
</tr>
<tr>
<td>LCS</td>
<td>Fecal Coliform</td>
<td>342050</td>
<td>MICR12080</td>
<td>Accuracy</td>
<td>100</td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Result</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>341942</td>
<td>AUTO15824</td>
<td>ND</td>
<td>0.00090 mg/L</td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>341943</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>100</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341944</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>107</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341945</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>105</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341945</td>
<td>AUTO15824</td>
<td>Precision</td>
<td>1.9</td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>341946</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>101</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341947</td>
<td>AUTO15824</td>
<td>Accuracy</td>
<td>98</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>341947</td>
<td>AUTO15824</td>
<td>Precision</td>
<td>3</td>
</tr>
</tbody>
</table>
To: Siaka Kone
SUTRON
6903 Visa Pkwy N #5
West Palm Beach, FL 33411

Client: SUTRON
Workorder ID: Rockledge Baffle Box [2028685]
Received: 8/24/07 12:30

Dear Siaka Kone;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #’s:
E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer
Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.
<table>
<thead>
<tr>
<th>Method</th>
<th>HREL Batch</th>
<th>Analyte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 160.2</td>
<td>AUTO15886</td>
<td>Total Suspended Solids</td>
<td>Precision - Outside acceptance limits between DUPs.</td>
</tr>
<tr>
<td></td>
<td>2028632002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA 351.2</td>
<td>AUTO15886</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MS.</td>
</tr>
<tr>
<td></td>
<td>2028685001</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Accuracy - Outside acceptance limits in the MSD.</td>
</tr>
<tr>
<td></td>
<td>2028685001</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Precision - Outside acceptance limits between the MS and MSD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA 365.4</td>
<td>AUTO15884</td>
<td>Total Phosphorus as P</td>
<td>Accuracy - Outside acceptance limits in the MS.</td>
</tr>
<tr>
<td></td>
<td>2028685001</td>
<td>Total Phosphorus as P</td>
<td>Precision - Outside acceptance limits between the MS and MSD.</td>
</tr>
</tbody>
</table>

The above due to matrix effects. Accuracy/Precision demonstrated with other QC samples.
Laboratory ID: 202865001
Sample ID: Downstream Grab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>63</td>
<td>mg/L</td>
<td>3.5</td>
<td>14</td>
<td>EPA 160.2</td>
<td>WCGE28086</td>
<td>08/19/07 8:00</td>
<td>GG</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0026</td>
<td>EPA 200.7</td>
<td>META8562</td>
<td>09/06/07 11:16</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0022</td>
<td>I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8562</td>
<td>09/06/07 11:16</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0074</td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8562</td>
<td>09/06/07 11:16</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.059</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8562</td>
<td>09/06/07 11:16</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.045</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.036</td>
<td>EPA 350.1</td>
<td>AUTO15893</td>
<td>09/04/07 14:43</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>1.8</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15886</td>
<td>08/30/07 14:30</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>2.2</td>
<td></td>
<td>mg/L</td>
<td>0.046</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5447</td>
<td>09/04/07 8:41</td>
<td>DH</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>0.38</td>
<td></td>
<td>mg/L</td>
<td>0.0075</td>
<td>0.030</td>
<td>EPA 353.2</td>
<td>AUTO15873</td>
<td>09/28/07 0:10</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.45</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15865</td>
<td>09/24/07 23:16</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.70</td>
<td></td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15874</td>
<td>08/27/07 19:12</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>Z</td>
<td></td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10,000</td>
<td>SM9222 D</td>
<td>MCR12143</td>
<td>08/24/07 16:10</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

Laboratory ID: 202865002
Sample ID: Upstream Grab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Reporting Limit</th>
<th>Method</th>
<th>Laboratory Prep Date/Time</th>
<th>Analyzed Date/Time</th>
<th>Analyst</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td></td>
<td>52</td>
<td>mg/L</td>
<td>3.5</td>
<td>14</td>
<td>EPA 160.2</td>
<td>WCGE28086</td>
<td>08/19/07 8:00</td>
<td>GG</td>
<td>E96080</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00070</td>
<td>U</td>
<td>mg/L</td>
<td>0.00070</td>
<td>0.0028</td>
<td>EPA 200.7</td>
<td>META8552</td>
<td>09/06/07 20:12</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.0028</td>
<td>I</td>
<td>mg/L</td>
<td>0.0018</td>
<td>0.0072</td>
<td>EPA 200.7</td>
<td>META8552</td>
<td>09/06/07 11:18</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0073</td>
<td></td>
<td>mg/L</td>
<td>0.0014</td>
<td>0.0056</td>
<td>EPA 200.7</td>
<td>META8552</td>
<td>09/06/07 11:18</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.052</td>
<td></td>
<td>mg/L</td>
<td>0.010</td>
<td>0.040</td>
<td>EPA 200.7</td>
<td>META8552</td>
<td>09/06/07 11:18</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>0.16</td>
<td></td>
<td>mg/L</td>
<td>0.0090</td>
<td>0.038</td>
<td>EPA 350.1</td>
<td>AUTO15893</td>
<td>09/04/07 14:43</td>
<td>JL</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>2.2</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.18</td>
<td>EPA 351.2</td>
<td>AUTO15886</td>
<td>08/30/07 14:30</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>3.5</td>
<td></td>
<td>mg/L</td>
<td>0.045</td>
<td>0.19</td>
<td>EPA 351.2</td>
<td>CALC5447</td>
<td>09/04/07 8:42</td>
<td>DH</td>
<td>E96080</td>
</tr>
<tr>
<td>Nitrate/Nitrite as N</td>
<td>1.2</td>
<td></td>
<td>mg/L</td>
<td>0.075</td>
<td>0.30</td>
<td>EPA 353.2</td>
<td>AUTO15873</td>
<td>08/28/07 0:11</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Orthophosphate as P</td>
<td>0.51</td>
<td></td>
<td>mg/L</td>
<td>0.0019</td>
<td>0.0076</td>
<td>EPA 365.1</td>
<td>AUTO15865</td>
<td>09/04/07 8:42</td>
<td>DH</td>
<td>E96080</td>
</tr>
<tr>
<td>Total Phosphorus as P</td>
<td>0.77</td>
<td></td>
<td>mg/L</td>
<td>0.00090</td>
<td>0.0036</td>
<td>EPA 365.1</td>
<td>AUTO15874</td>
<td>08/27/07 19:12</td>
<td>DM</td>
<td>E96080</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>B</td>
<td></td>
<td>CFU/100mL</td>
<td>10000</td>
<td>10,000</td>
<td>SM9222 D</td>
<td>MCR12143</td>
<td>08/24/07 16:10</td>
<td>TR</td>
<td>E96080</td>
</tr>
</tbody>
</table>

1 Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit
Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.
B Results based upon colony counts outside of the acceptable range.
Z Too many colonies were present (TNTC), the numeric value represents the filtration volume.
Chain-of-Custody
and
Agreement to Perform Services

Method(s) of **Self**

Company: Seaton

Address: 6903 Vista Pkwy N, St. Jas

Phone: 5619781571 **Fax:** 5618978153

Client Contact: Forrest Jay

Project Name: Rockledge

Sampled By: McCormick

Preservative

<table>
<thead>
<tr>
<th>Preservation Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>H=Hydrochloric Acid</td>
</tr>
<tr>
<td>P=Phosphoric Acid</td>
</tr>
<tr>
<td>N=Nitric Acid</td>
</tr>
<tr>
<td>ST=Sodium ST</td>
</tr>
<tr>
<td>S=Sulfuric Acid</td>
</tr>
<tr>
<td>Thiosulfate</td>
</tr>
<tr>
<td>SH=Sodium Hydroxide</td>
</tr>
<tr>
<td>U=Unpreserved</td>
</tr>
</tbody>
</table>

ANALYSES REQUESTED

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>Coliform</td>
<td>E. Coli</td>
<td>Coliform</td>
<td>OPA</td>
</tr>
</tbody>
</table>

SAMPLE DESCRIPTION

As Will Appear On Report

<table>
<thead>
<tr>
<th>LAB ID</th>
<th>COLLECTION</th>
<th>DATE</th>
<th>TIME</th>
<th>SAMPLE TYPE</th>
<th>MATRIX</th>
<th>CONTAINERS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Aug 25</td>
<td>16:41</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td></td>
<td>Down Stream</td>
</tr>
<tr>
<td>2</td>
<td>Aug 25</td>
<td>16:41</td>
<td>C</td>
<td>SW</td>
<td>5</td>
<td></td>
<td>Up Stream</td>
</tr>
</tbody>
</table>

Comments

* Sample Type: G=Grab, C=Composite

Matrix: S=Solid, SL=Sludge, DW=Drinking Water, GW=Ground Water, SW=Surface Water, WW=Wastewater, M=Magno

Laboratory not responsible for omitted information

FDOH # E85370
5600 US 1 North
307 Coolidge Avenue
Lehigh Acres, FL 33936

FDOH # E84418
4155 St. Johns Pkwy.
Suite 1300
Sanford, FL 32771
Ben North

From: Don Hash
Sent: Monday, August 27, 2007 10:52 AM
To: Ben North
Subject: FW: Correction to CofC for 8/23/07

can you revise lims and let me know when done.

[Original Message]
From: Lisa Herlihy [mailto:lherlihy@sutron.com]
Sent: Monday, August 27, 2007 9:00 AM
To: Don Hash
Cc: Forrest Jay
Subject: Correction to CofC for 8/23/07

Don,

We have a correction to the CofC for the Rockledge sample collected on 8/23/07. The downstream sample was collected at 18:04 on 8/23, and the upstream sample was collected at 18:08 on 8/23.

Lisa Herlihy
Sr. Environmental Scientist
Sutron Corporation
6903 Vista Parkway North
Suite 5
West Palm Beach, FL 33411
Ph. (561) 697-8151
Fax (561) 697-8153
lherlihy@sutron.com

No virus found in this incoming message.
Checked by AVG Free Edition.
Version: 7.5.484 / Virus Database: 269.12.9/975 - Release Date: 8/26/07 9:34 PM

No virus found in this outgoing message.
Checked by AVG Free Edition.
Version: 7.5.484 / Virus Database: 269.12.9/975 - Release Date: 8/26/07 9:34 PM

8/27/07
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Batch Number</th>
<th>Method Blank</th>
<th>% Acceptance Criteria</th>
<th>Detection Limit</th>
<th>Original Sample</th>
<th>EPA 160.2</th>
<th>EPA 200.7</th>
<th>EPA 350.1</th>
<th>EPA 351.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Total Suspended Solids</td>
<td>343499</td>
<td>WCGE28086</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>Total Suspended Solids</td>
<td>343500</td>
<td>WCGE28086</td>
<td>Precision</td>
<td>18</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Suspended Solids</td>
<td>343501</td>
<td>WCGE28086</td>
<td>Accuracy</td>
<td>89</td>
<td>85</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Cadmium</td>
<td>344173</td>
<td>META8562</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Cadmium</td>
<td>344174</td>
<td>META8562</td>
<td>Accuracy</td>
<td>95</td>
<td>85</td>
<td>115</td>
<td>0.00070 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Cadmium</td>
<td>344175</td>
<td>META8562</td>
<td>Accuracy</td>
<td>96</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>344176</td>
<td>META8562</td>
<td>Accuracy</td>
<td>97</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Cadmium</td>
<td>344176</td>
<td>META8562</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Chromium</td>
<td>344173</td>
<td>META8562</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Chromium</td>
<td>344174</td>
<td>META8562</td>
<td>Accuracy</td>
<td>100</td>
<td>85</td>
<td>115</td>
<td>0.0018 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Chromium</td>
<td>344175</td>
<td>META8562</td>
<td>Accuracy</td>
<td>101</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>344176</td>
<td>META8562</td>
<td>Accuracy</td>
<td>101</td>
<td>77.3</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Chromium</td>
<td>344176</td>
<td>META8562</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Copper</td>
<td>344173</td>
<td>META8562</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Copper</td>
<td>344174</td>
<td>META8562</td>
<td>Accuracy</td>
<td>97</td>
<td>85</td>
<td>115</td>
<td>0.0014 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Copper</td>
<td>344175</td>
<td>META8562</td>
<td>Accuracy</td>
<td>100</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>344176</td>
<td>META8562</td>
<td>Accuracy</td>
<td>100</td>
<td>80.1</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Copper</td>
<td>344176</td>
<td>META8562</td>
<td>Precision</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Zinc</td>
<td>344173</td>
<td>META8562</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Zinc</td>
<td>344174</td>
<td>META8562</td>
<td>Accuracy</td>
<td>103</td>
<td>85</td>
<td>115</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Zinc</td>
<td>344175</td>
<td>META8562</td>
<td>Accuracy</td>
<td>104</td>
<td>70</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>344176</td>
<td>META8562</td>
<td>Accuracy</td>
<td>102</td>
<td>70</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Zinc</td>
<td>344176</td>
<td>META8562</td>
<td>Precision</td>
<td>1.9</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Ammonia, as N</td>
<td>343861</td>
<td>AUTO15893</td>
<td>Result ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0090 mg/L</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>343862</td>
<td>AUTO15893</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td>230609002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>343863</td>
<td>AUTO15893</td>
<td>Accuracy</td>
<td>100</td>
<td>90</td>
<td>110</td>
<td></td>
<td>230609002</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>343863</td>
<td>AUTO15893</td>
<td>Precision</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td></td>
<td>230609002</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Ammonia, as N</td>
<td>343864</td>
<td>AUTO15893</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028674001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Ammonia, as N</td>
<td>343865</td>
<td>AUTO15893</td>
<td>Accuracy</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028674001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>343866</td>
<td>AUTO15893</td>
<td>Accuracy</td>
<td>107</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2028674001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Ammonia, as N</td>
<td>343866</td>
<td>AUTO15893</td>
<td>Precision</td>
<td>0.94</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2028674001</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Report

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 8/24/07 12:30

Sample Table

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Batch Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Acceptance Criteria Lower</th>
<th>Acceptance Criteria Upper</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Kjeldahl Nitrogen</td>
<td>343604</td>
<td>AUTO15886</td>
<td>Result</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.045 mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>343605</td>
<td>AUTO15886</td>
<td>Accuracy</td>
<td>99</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2026865001</td>
</tr>
<tr>
<td>MS</td>
<td>Total Kjeldahl Nitrogen</td>
<td>343606</td>
<td>AUTO15886</td>
<td>Accuracy</td>
<td>123</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2026865001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>343607</td>
<td>AUTO15886</td>
<td>Accuracy</td>
<td>171</td>
<td>90</td>
<td>110</td>
<td></td>
<td>2026865001</td>
</tr>
<tr>
<td>MSD</td>
<td>Total Kjeldahl Nitrogen</td>
<td>343607</td>
<td>AUTO15886</td>
<td>Precision</td>
<td>33</td>
<td>0</td>
<td>20</td>
<td></td>
<td>2026865001</td>
</tr>
</tbody>
</table>

EPA 353.2

MMS	Nitrate/Nitrite as N	343372	AUTO15873	Accuracy	101	90	110		2026865002
MMMS	Nitrate/Nitrite as N	343373	AUTO15873	Accuracy	100	90	110		2026865002
MMMSD	Nitrate/Nitrite as N	343373	AUTO15873	Precision	1	0	20		2026865002

EPA 365.1

MB	Orthophosphate as P	343273	AUTO15865	Result	ND			0.0019 mg/L	
MS	Orthophosphate as P	343274	AUTO15865	Accuracy	98	90	110		2126333006
MSD	Orthophosphate as P	343275	AUTO15865	Accuracy	98	90	110		2126333006
MSD	Orthophosphate as P	343275	AUTO15865	Precision	0	0	20		2126333006
LCS	Orthophosphate as P	343276	AUTO15865	Accuracy	100	90	110		2126333006

EPA 365.4

MB	Total Phosphorus as P	343604	AUTO15884	Result	ND			0.012 mg/L	
LCS	Total Phosphorus as P	343605	AUTO15884	Accuracy	100	72	132		2026865001
MS	Total Phosphorus as P	343606	AUTO15884	Accuracy	0.8	72	132		2026865001
MSD	Total Phosphorus as P	343607	AUTO15884	Accuracy	104	72	132		2026865001
MSD	Total Phosphorus as P	343607	AUTO15884	Precision	197	0	20		2026865001

Nitrate/Nitrite

MB	Nitrate/Nitrite as N	343368	AUTO15873	Result	ND			0.0075 mg/L	
MB	Nitrate/Nitrite as N	343369	AUTO15873	Accuracy	92	90	110		2026865001
MB	Nitrate/Nitrite as N	343370	AUTO15873	Result	ND			0.0075 mg/L	
LCS	Nitrate/Nitrite as N	343371	AUTO15873	Accuracy	96	90	110		2026819002
MS	Nitrate/Nitrite as N	343374	AUTO15873	Accuracy	97	90	110		2026819002
MSD	Nitrate/Nitrite as N	343375	AUTO15873	Accuracy	98	90	110		2026819002
MSD	Nitrate/Nitrite as N	343375	AUTO15873	Precision	1	0	20		2026865001
MS	Nitrate/Nitrite as N	343376	AUTO15873	Accuracy	95	90	110		2026865001
MSD	Nitrate/Nitrite as N	343377	AUTO15873	Accuracy	97	90	110		2026865001
MSD	Nitrate/Nitrite as N	343377	AUTO15873	Precision	2.1	0	20		2026865001

SM9222 D

| MB | Fecal Coliform | 343767 | MICR12143 | Result | ND | | | 1.0 CFU/1 | |

Printed: 9/11/07
FDOH # E96080
FDOH # E93509
FDOH # E85370
FDOH # E84416

Sebastian County
Southwest Florida
West Central Florida
Quality Control Report

Client: SUTRON
Workorder ID: Rockledge Baffle Box
Received: 8/24/07 12:30

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Recovery</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Fecal Coliform</td>
<td>343768</td>
<td>MICR12143</td>
<td>Result 5.0</td>
<td>100</td>
<td>1</td>
<td>2000</td>
<td>1.0 CFU/1</td>
<td></td>
</tr>
</tbody>
</table>

TP QC (Persulfate Digestion)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Analyte</th>
<th>Sample Number</th>
<th>Laboratory Number</th>
<th>Method Blank</th>
<th>% Accuracy</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Detection Limit</th>
<th>Original Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Total Phosphorus as P</td>
<td>343364</td>
<td>AUTO15874</td>
<td>Result ND</td>
<td>97</td>
<td>90</td>
<td>110</td>
<td>2028682001</td>
<td></td>
</tr>
<tr>
<td>LCS</td>
<td>Total Phosphorus as P</td>
<td>343365</td>
<td>AUTO15874</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td>2028682001</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Total Phosphorus as P</td>
<td>343366</td>
<td>AUTO15874</td>
<td>Accuracy</td>
<td>102</td>
<td>90</td>
<td>110</td>
<td>2028682001</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Total Phosphorus as P</td>
<td>343367</td>
<td>AUTO15874</td>
<td>Accuracy</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>2028682001</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Result (%)</td>
<td>Result (mg/kg) DL (mg/L)</td>
<td>Method Reference</td>
<td>Date Analysed</td>
<td>Analyst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon: Nitrogen Ratio</td>
<td>mg/kg</td>
<td>23.8</td>
<td>708</td>
<td>0.15</td>
<td>0.34</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg/kg</td>
<td>309</td>
<td>3.38</td>
<td>0.17</td>
<td>0.34</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>mg/kg</td>
<td>3859</td>
<td>1.8</td>
<td>0.15</td>
<td>0.34</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Solids</td>
<td>%</td>
<td>20.67</td>
<td>89</td>
<td>890100</td>
<td>0.048</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids, Total</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
<td>1000000</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biosolids Analysis

Sample ID: 46059

Lab Number: 46059

To: DANIEL SMITH

Quality Analyses For Informed Decisions

A & L GREAT LAKES LABORATORIES, INC.

Report Date: 10/09/2009

Page: 1

Date Received: 03/31/2009

Date Sampled: 04/07/2009

Date Reported: 04/07/2009
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon:Nitrogen Ratio (C:N)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Carbon by LOI @ 550C</td>
<td>%</td>
<td>7.93</td>
</tr>
<tr>
<td>Organic Matter by LOI @ 550C</td>
<td>%</td>
<td>15.87</td>
</tr>
<tr>
<td>Ash @ 550°C</td>
<td>%</td>
<td>8.71</td>
</tr>
<tr>
<td>Potash (K₂O)</td>
<td>%</td>
<td>0.04</td>
</tr>
<tr>
<td>Phosphate (P)</td>
<td>%</td>
<td>0.04</td>
</tr>
<tr>
<td>Phosphorus (P₂O₅)</td>
<td>%</td>
<td>0.04</td>
</tr>
<tr>
<td>Total Nitrogen (N)</td>
<td>%</td>
<td>0.49</td>
</tr>
<tr>
<td>Moisture @ 70°C</td>
<td>%</td>
<td>24.58</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>%</td>
<td>75.42</td>
</tr>
<tr>
<td>Estimated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMECC 05.02-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMECC 03.09-A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
April 08, 2009

Daniel Smith
Applied Environmental Technology
10809 Cedar Cove Drive
Tampa, FL 33592-2250

Laboratory Results for: Baffle Box Research

Dear Daniel:

Enclosed are the results of the sample(s) submitted to our laboratory on March 27, 2009. For your reference, these analyses have been assigned our service request number J0901508.

All analyses were performed according to our laboratory’s quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4408. You may also contact me via email at TKissinger@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

[Signature]

Tom Kissinger
Project Manager

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/09; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/09; North Carolina, #527 valid through 12/31/09; South Carolina, #96021001 valid through 6/30/09.
CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab’s NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

3 solid samples were received for analysis at Columbia Analytical Services on 3/27/09. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4±2°C upon receipt at the lab.

General Chemistry Parameters

Samples were composited and ground using a SPEX 6850 freezer Mill prior to sample analysis.

Relative Percent Difference Exceptions

The Relative Percent Difference (RPD) for the replicate analysis of Total Kjeldahl Nitrogen in sample 24 was outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character of the sample. The sample contained relatively large amounts of twigs and leaves and vegetation, which created difficulties during the homogenization process. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike Recovery Exceptions

The control criteria for matrix spike recovery of Total Kjeldahl Nitrogen, Total Phosphorus and Nitrate+Nitrite for sample 24 and 21 are not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.
Florida DEP Data Qualifiers

B Results based upon colony counts outside the acceptable range.

D Measurement was made in the field.

H Value based on field kit determination; results may not be accurate.

i The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Estimated value (one of the following reasons is discussed in the project case narrative).
1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
2. No known quality control criteria exists for the component.
3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).

K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).

L Off scale high. The analyte is above the upper limit of the linear calibration range.

M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.

N Presumptive evidence of the analyte. Confirmation was not performed.

Q Sample held beyond the accepted holding time.

T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.

U Indicates that the compound was analyzed for but not detected.

V Indicates that the analyte was detected in both the sample and the associated method blank.

Y The laboratory analysis was from an improperly preserved sample.

Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.
Acronyms

ASTM American Society for Testing and Materials
A2LA American Association for Laboratory Accreditation
CARB California Air Resources Board
CAS Number Chemical Abstract Service registry Number
CFC Chlorofluorocarbon
CFU Colony-Forming Unit
DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DOE Department of Ecology
DOH Department of Health
EPA U. S. Environmental Protection Agency
ELAP Environmental Laboratory Accreditation Program
GC Gas Chromatography
GC/MS Gas Chromatography/Mass Spectrometry
LUFT Leaking Underground Fuel Tank
M Modified
MCL Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit
NA Not Applicable
NC Not Calculated
NCASI National Council of the Paper Industry for Air and Stream Improvement
ND Not Detected
NIOSH National Institute for Occupational Safety and Health
PQL Practical Quantitation Limit
RCRA Resource Conservation and Recovery Act
SIM Selected Ion Monitoring
TPH Total Petroleum Hydrocarbons
tr Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.
<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>CLIENT SAMPLE ID</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0901508-001</td>
<td>24</td>
<td>3/19/09</td>
<td>13:00</td>
</tr>
<tr>
<td>J0901508-002</td>
<td>2</td>
<td>3/19/09</td>
<td>13:00</td>
</tr>
<tr>
<td>J0901508-003</td>
<td>21</td>
<td>3/19/09</td>
<td>13:00</td>
</tr>
</tbody>
</table>
Inorganic Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>2.1</td>
<td>1</td>
<td>04/08/09 11:43</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>215</td>
<td>5</td>
<td>04/07/09 15:34</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Nitrite-Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>43</td>
<td>50</td>
<td>04/07/09 12:03</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>125</td>
<td>5</td>
<td>04/08/09 09:31</td>
<td>8600</td>
<td>J3</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>11</td>
<td>10</td>
<td>04/07/09 15:58</td>
<td>980</td>
<td>J3</td>
</tr>
</tbody>
</table>

Basis: Dry

Report By: Palimi
Inorganic Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>2.2</td>
<td>1</td>
<td>04/08/09 11:43</td>
<td>200</td>
</tr>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>224</td>
<td>5</td>
<td>04/07/09 15:34</td>
<td>15000</td>
</tr>
<tr>
<td>Nitrite+Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>45</td>
<td>50</td>
<td>04/07/09 12:03</td>
<td>550</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>250</td>
<td>10</td>
<td>04/08/09 09:31</td>
<td>18000</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>5.6</td>
<td>5</td>
<td>04/07/09 15:58</td>
<td>1100</td>
</tr>
</tbody>
</table>
Analytical Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0901508
Date Collected: 03/19/09
Date Received: 03/27/09

Inorganic Parameters

Sample Name: 21
Lab Code: J0901508-003
Test Notes: Basis: Dry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>2.6</td>
<td>1</td>
<td>04/08/09 11:43</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>265</td>
<td>5</td>
<td>04/07/09 15:34</td>
<td>11000</td>
<td></td>
</tr>
<tr>
<td>Nitrite-Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>53</td>
<td>50</td>
<td>04/07/09 12:03</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>250</td>
<td>10</td>
<td>04/08/09 09:31</td>
<td>19000</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>6.6</td>
<td>5</td>
<td>04/07/09 15:58</td>
<td>1100</td>
<td>J3</td>
</tr>
</tbody>
</table>
Analytical Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0901508
Date Collected: NA
Date Received: NA

Inorganic Parameters

Sample Name: Method Blank
Lab Code: J0901508-MB
Test Notes: Basis: Dry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>0.5</td>
<td>1</td>
<td>04/08/09 11:43</td>
<td>U</td>
</tr>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>10</td>
<td>1</td>
<td>04/07/09 15:34</td>
<td>U</td>
</tr>
<tr>
<td>Nitrite+Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>0.2</td>
<td>1</td>
<td>04/07/09 12:03</td>
<td>U</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>25</td>
<td>1</td>
<td>04/08/09 09:31</td>
<td>U</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>0.25</td>
<td>1</td>
<td>04/07/09 15:58</td>
<td>U</td>
</tr>
</tbody>
</table>

Report By: Palimi
Analytical Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0901508
Date Collected: 03/19/09
Date Received: 03/27/09

Solids, Total

Analysis Method: 160.3 MOD
Units: PERCENT
Basis: NA

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Lab Code</th>
<th>MRL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>J0901508-001</td>
<td>0.1</td>
<td>1</td>
<td>04/01/09 15:00</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J0901508-002</td>
<td>0.1</td>
<td>1</td>
<td>04/01/09 15:00</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>J0901508-003</td>
<td>0.1</td>
<td>1</td>
<td>04/01/09 15:00</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0901508
Date Collected: 03/19/09
Date Received: 03/27/09
Date Extracted: NA
Date Analyzed: 04/01/09

Duplicate Summary
Inorganic Parameters

Sample Name: 24
Lab Code: J0901508-001DUP
Test Notes:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Sample Result</th>
<th>Duplicate Sample Result</th>
<th>Average</th>
<th>Relative Percent Difference</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, Total</td>
<td>160.3 MOD</td>
<td>0.1</td>
<td>20</td>
<td>23</td>
<td>20</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>
COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client : GPI Southeast
Project Name : Baffle Box Research
Project Number : NA
Sample Matrix : SOLID

Service Request : J0901508
Date Collected : 03/19/09
Date Received : 03/27/09
Date Extracted : 04/07/09
Date Analyzed : 04/07/08/09

Duplicate Summary
Inorganic Parameters

Sample Name : 24
Lab Code : J0901508-001DUP
Test Notes :

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Sample Result</th>
<th>Duplicate Sample Result</th>
<th>Average</th>
<th>Relative Percent Difference</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>2.1</td>
<td>8.7</td>
<td>7.4</td>
<td>8.05</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>125</td>
<td>8600</td>
<td>6900</td>
<td>7750</td>
<td>22</td>
<td>J3</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>11</td>
<td>980</td>
<td>1100</td>
<td>1040</td>
<td>12</td>
<td>J3</td>
</tr>
</tbody>
</table>

Report By: Palimi
Analyte Summary

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Spike Level</th>
<th>Sample Result</th>
<th>Spiked Sample Result</th>
<th>Percent Recovery</th>
<th>CAS Percent Recovery Acceptance Limits</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>2.1</td>
<td>211</td>
<td>8.7</td>
<td>218</td>
<td>99</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>125</td>
<td>1087</td>
<td>8600</td>
<td>6510</td>
<td>NC</td>
<td>90-110</td>
<td>J3</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>11</td>
<td>62.5</td>
<td>980</td>
<td>1030</td>
<td>NC</td>
<td>90-110</td>
<td>J3</td>
</tr>
</tbody>
</table>
Duplicate Summary

Inorganic Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Sample Result</th>
<th>Duplicate Sample Result</th>
<th>Average</th>
<th>Relative Percent Difference</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>265</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Nitrite+Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>53</td>
<td>450</td>
<td>470</td>
<td>460</td>
<td>4</td>
<td>J3</td>
</tr>
</tbody>
</table>

Basis: Dry
QA/QC Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0901508
Date Collected: 03/19/09
Date Received: 03/27/09
Date Extracted: NA
Date Analyzed: 04/07/09

Matrix Spike Summary

Inorganic Parameters

Sample Name: 21
Lab Code: J0901508-003MS
Test Notes:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Spike Level</th>
<th>Sample Result</th>
<th>Spiked Sample Result</th>
<th>Percent Recovery</th>
<th>CAS Percent Recovery Acceptance Limits</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>265</td>
<td>10463</td>
<td>11000</td>
<td>20700</td>
<td>93</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrite+Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>53</td>
<td>106</td>
<td>450</td>
<td>410</td>
<td>NC</td>
<td>90-110</td>
<td>J3</td>
</tr>
</tbody>
</table>

Basis: Dry
QA/QC Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0901508
Date Collected: NA
Date Received: NA
Date Extracted: 04/07/09
Date Analyzed: 04/07/08/09

Laboratory Control Sample Summary
Inorganic Parameters

Sample Name: Laboratory Control Sample
Lab Code: J0901508-LCS
Test Notes:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>True Value</th>
<th>Result</th>
<th>Percent Recovery</th>
<th>CAS Percent Recovery Acceptance Limits</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>350.1M</td>
<td>50.0</td>
<td>48.8</td>
<td>98</td>
<td>90-110</td>
<td></td>
</tr>
<tr>
<td>Carbon, Total Organic</td>
<td>mg/Kg (ppm)</td>
<td>9060M</td>
<td>500</td>
<td>480</td>
<td>96</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrite+Nitrate as Nitrogen</td>
<td>mg/Kg (ppm)</td>
<td>353.2M</td>
<td>2.5</td>
<td>2.68</td>
<td>107</td>
<td>90-110</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>250</td>
<td>256</td>
<td>102</td>
<td>90-110</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>12.5</td>
<td>12.5</td>
<td>100</td>
<td>90-110</td>
<td></td>
</tr>
</tbody>
</table>

Basis: Dry
Columbia Analytical Services, Inc.
Cooler Receipt and Preservation Form

Client: GPE Southeast Inc
Project: Baffle Box Research
Service Request #: 50901508

Cooler received on 3-22-09 and opened on 3-22-09 by SC

<table>
<thead>
<tr>
<th>COURIER:</th>
<th>CAS</th>
<th>UPS</th>
<th>FEDEX</th>
<th>DHL</th>
<th>CLIENT</th>
<th>Tracking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Were custody seals on outside of cooler?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Were seals intact, signed and dated?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Were custody papers properly filled out?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Temperature of cooler(s) upon receipt (Should be 4 +/- 2 degrees C)</td>
<td>85F</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Correct Temperature?</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Were Ice or Ice Packs present</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Did all bottles arrive in good condition (unbroken, etc...)?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Were all bottle labels complete (sample ID, preservation, etc...)?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Did all bottle labels and tags agree with custody papers?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Were the correct bottles used for the tests indicated?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Were all of the preserved bottles received with the appropriate preservative?</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HNO3 pH<2 H2SO4 pH<2 ZnAc2/NaOH pH>9 NaOH pH>12 HCl pH<2
Preservative additions noted below

12 | Were all samples received within analysis holding times? | Yes | No | N/A |
13 | Were VOA vials checked for absence of air bubbles? If present, note below | Yes | No | N/A |
14 | Where did the bottles originate? | CAS | Client |

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Reagent</th>
<th>Manuf. Lot # or CAS Chem ID</th>
<th>ml added</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional comments and/or explanation of all discrepancies noted above:

Client approval to run samples if discrepancies noted: Date 7
CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Suite 200 Jacksonville, FL 32256 / Phone (904) 739-2277 / 800-695-7222 x06 / FAX (904) 739-2011

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baffle Box Research</td>
<td>Report CC</td>
</tr>
</tbody>
</table>

Report To

Daniel Smith
dpsmith_aet@verizon.net
813 864 5735

Company/Address

GPI Southeast inc.
13097 N Telecom Parkway Tampa FL 33637

Phone #
813 632 7690

Sampler's Signature
Daniel Smith

CLIENT SAMPLE ID	**LAB ID**	**SAMPLING DATE**	**TIME**	**Matrix**	**NUMBER OF CONTAINERS**	**Preservative**	**Total Solids**	**TKN**	**Total Phosphorus**	**Composting**	**Grinding**
24 | SCM 1 | X X X X X X |
2 | SCM 1 | X X X X X X |
1 | SCM 1 | X X X X X X |

SCM = Stormwater cleanout material

See attached Columbia quote for analyses

Special Instructions/Comments:

Reinaglished By

Signature

Received By

Signature

P.O. #

REQUESTED REPORT DATE

Edata Yes No
April 13, 2009

J. Rodriquez
GPI Southeast
13097 N. Telecom Parkway
Tampa, FL 33637

RE: Baffle Box
Order No.: F09031034

Dear J. Rodriquez:

Pace Analytical Services, Inc received 4 samples on 3/26/2009 8:46:00 AM for the analyses presented in the following report. The results included in this report relate only to the samples received. Analyses are performed with method-required calibration and QA/QC samples whenever applicable. Method performance, which is based on the calibration and QA/QC samples, establishes the validity and certainty of the reported sample results. This data is provided along with the sample results when requested.

Thank you for this opportunity to be of service. If you have any questions regarding this data, please feel free to call me at (386) 672-5668, extension 308.

Sincerely,

Martha Montero

Project Manager
Pace Analytical Services, Inc.
P.O. Box 468
Ormond Beach, FL 32175-0468

The test results in this report meet the requirements of the 2003 NELAC standards unless otherwise noted.
The following acronyms may be utilized within this report:

- %REC: Percent Recovery
- A: Absent
- ABLK: Analytical Method Blank
- CG: Confluent Growth
- CGB: Confluent Growth Without Coliforms
- CGC: Confluent Growth With Coliforms
- DUP: Sample Duplicate
- dw: Dry Weight
- kg: Kilograms
- L: Liter
- LCS: Laboratory Control Spike (may also be appended with an abbreviation indicating spiking level)
- MBLK: Preparation Method Blank
- MDL: Laboratory Method Detection Limit
- mg: Milligrams
- ml: Milliliter
- MS: Matrix Spike (may also be appended with an abbreviation indicating spiking level)
- MSD: Matrix Spike Duplicate (may also be appended with an abbreviation indicating spiking level)
- P: Present
- PQL: Practical Quantitation Limit
- QCS: Alternate source Calibration Verification Standard (may also be reported as analytical LCS in some applications)
- RL: Reporting Limit
- RPD: Relative Percent Difference
- SPK: Spike
- SUB: Indicates subcontracted analytical results
- TIC: Tentatively Identified Compound
- TNTC: Too Numerous To Count
- ug: Micrograms
The following notes may apply to analytical results within this report:

Residue (solids) analysis may employ a single, heated drying process of at least 12 hours duration in lieu of employing short, repeated drying cycles, which represents a deviation from the methodology.

Because the EPA-recommended holding time for pH, residual chlorine, chloramines and chlorine dioxide is 15 minutes from time of collection, these analyses are routinely performed outside of their EPA-recommended holding time when performed in the laboratory.

Analytical results for ammonia analysis, or calculated analytical results depending on ammonia analysis, do not include a sample distillation procedure. A study comparing distilled versus non-distilled analytical results has been performed to document the validity of the analysis without prior distillation, and represents equivalent results for the represented project matrices.

Since N-nitrosodiphenylamine decomposes in the GC inlet and cannot be chromatographically resolved from diphenylamine, these compounds are reported as a single analyte in the report.

Since m-cresol and p-cresol cannot be chromatographically resolved, these compounds are reported as a single analyte in the report.

Because 1,2-diphenylhydrazine breaks down rapidly to azobenzene at the GC inlet after initial sample injection, all results for this compound will be quantified as azobenzene.

All analytical results are provide on an "as received" basis unless units include the term "dw", indicating that the analytical results are provided on a dry weight basis.

The following certifications may apply to analytical results within this report:

<table>
<thead>
<tr>
<th>State</th>
<th>Certification</th>
<th>Certification Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>DEM</td>
<td>41320</td>
</tr>
<tr>
<td>Arizona</td>
<td>DHS</td>
<td>AZ0640</td>
</tr>
<tr>
<td>Colorado</td>
<td>DPHE</td>
<td>FL NELAC Reciprocity</td>
</tr>
<tr>
<td>Connecticut</td>
<td>DPH</td>
<td>PH-0216</td>
</tr>
<tr>
<td>Florida</td>
<td>DOH</td>
<td>E83079</td>
</tr>
<tr>
<td>Georgia</td>
<td>DNR</td>
<td>955</td>
</tr>
<tr>
<td>Kentucky</td>
<td>DEP</td>
<td>90050</td>
</tr>
<tr>
<td>Louisiana</td>
<td>DHH</td>
<td>LA090012</td>
</tr>
<tr>
<td>Maine</td>
<td>LCP</td>
<td>FL020</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>DEP</td>
<td>M-FL1264</td>
</tr>
<tr>
<td>Michigan</td>
<td>DEQ</td>
<td>9911</td>
</tr>
<tr>
<td>Mississippi</td>
<td>DOH</td>
<td>FL NELAC Reciprocity</td>
</tr>
<tr>
<td>Nevada</td>
<td>EP</td>
<td>NAC 445A</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>DES</td>
<td>2958</td>
</tr>
<tr>
<td>New Jersey</td>
<td>DEP</td>
<td>FL765</td>
</tr>
<tr>
<td>New York</td>
<td>DOH</td>
<td>11608</td>
</tr>
<tr>
<td>North Carolina</td>
<td>NCPH</td>
<td>12710</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>DEP</td>
<td>68-547</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>DOH</td>
<td>FL 00020</td>
</tr>
<tr>
<td>Tennessee</td>
<td>DOH</td>
<td>TN02974</td>
</tr>
<tr>
<td>Texas</td>
<td>CEQ</td>
<td>TX246</td>
</tr>
<tr>
<td>Virginia</td>
<td>DGS</td>
<td>432</td>
</tr>
</tbody>
</table>
WorkOrder Sample Summary

CLIENT: GPI Southeast*

Project: Baffle Box

Lab Order: F09031034

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Tag Number</th>
<th>Collection Date</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>F09031034-002</td>
<td>Baffle Box 17</td>
<td>Parkway</td>
<td>3/25/2009 10:00:00 AM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-002</td>
<td>Baffle Box 17</td>
<td>Parkway</td>
<td>3/25/2009 10:00:00 AM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-002</td>
<td>Baffle Box 17</td>
<td>Parkway</td>
<td>3/25/2009 10:00:00 AM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-003</td>
<td>Baffle Box 26</td>
<td>Rockledge</td>
<td>3/25/2009 1:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-003</td>
<td>Baffle Box 26</td>
<td>Rockledge</td>
<td>3/25/2009 1:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-003</td>
<td>Baffle Box 26</td>
<td>Rockledge</td>
<td>3/25/2009 1:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-003E</td>
<td>Baffle Box 26</td>
<td>Rockledge</td>
<td>3/25/2009 1:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-004</td>
<td>Baffle Box 74</td>
<td>Sarasota</td>
<td>3/25/2009 5:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-004</td>
<td>Baffle Box 74</td>
<td>Sarasota</td>
<td>3/25/2009 5:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-004</td>
<td>Baffle Box 74</td>
<td>Sarasota</td>
<td>3/25/2009 5:00:00 PM</td>
<td>3/26/2009</td>
</tr>
<tr>
<td>F09031034-004E</td>
<td>Baffle Box 74</td>
<td>Sarasota</td>
<td>3/25/2009 5:00:00 PM</td>
<td>3/26/2009</td>
</tr>
</tbody>
</table>
I. SAMPLE RECEIVING/ CUSTODY

The samples were received and processed by the Sample Custody section of the laboratory. There were no significant logistics or quality problems unless noted below. All sample containers received for this report were collected by either the client or an agent of the client. Any field data results contained within this report were therefore generated by the client and were reported at the request of the client.

Containers were sent to a client-approved subcontract laboratory for BOD, Ortho Phosphorus and TSS determination (certification number E84973).

II. ANALYTICAL DATA

The samples were analyzed according to the laboratory's Standard Operating Procedures for the methodologies requested. There were no significant logistics or quality problems unless noted below or in the text of the report.

III. QUALITY CONTROL

There were no significant quality control problems unless noted below or in the text of the report.
<table>
<thead>
<tr>
<th>Analyses</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>PQL</th>
<th>Units</th>
<th>DF</th>
<th>Date Analyzed</th>
<th>Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD-CARBONACEOUS</td>
<td>SM5210 B</td>
<td></td>
<td>2.0</td>
<td>U</td>
<td>mg/L</td>
<td>1</td>
<td>03/27/09 09:04</td>
<td>60428</td>
</tr>
<tr>
<td>Carbonaceous BOD</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
<td>2.0</td>
<td>mg/L</td>
<td>03/27/09 09:04</td>
<td>60428</td>
<td></td>
</tr>
<tr>
<td>ORTHOPHOSPHATE AS P</td>
<td>SM4500P-E</td>
<td></td>
<td>0.029</td>
<td>I</td>
<td>0.0089</td>
<td>0.10 mg/L</td>
<td>03/26/09 12:17</td>
<td>R77519</td>
</tr>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.029</td>
<td>I</td>
<td>0.0089</td>
<td>0.10</td>
<td>mg/L</td>
<td>03/26/09 12:17</td>
<td>R77519</td>
<td></td>
</tr>
<tr>
<td>SOLIDS, TOTAL SUSPENDED (RESIDUE, NO</td>
<td>SM2540 D</td>
<td></td>
<td>12</td>
<td>5.0</td>
<td>5.0 mg/L</td>
<td>04/01/09 12:00</td>
<td>60537</td>
<td></td>
</tr>
<tr>
<td>Solids, Suspended (Residue, Non-Filterable)</td>
<td>12</td>
<td></td>
<td>5.0</td>
<td>5.0</td>
<td>mg/L</td>
<td>04/01/09 12:00</td>
<td>60537</td>
<td></td>
</tr>
<tr>
<td>CHEMICAL OXYGEN DEMAND</td>
<td>E410.4</td>
<td></td>
<td>31</td>
<td>12</td>
<td>mg/L</td>
<td>04/03/09 10:51</td>
<td>R77766</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>31</td>
<td></td>
<td>12</td>
<td>25</td>
<td>mg/L</td>
<td>04/03/09 10:51</td>
<td>R77766</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, AMMONIA</td>
<td>E350.1</td>
<td></td>
<td>0.14</td>
<td>0.020</td>
<td>0.050 mg/L</td>
<td>03/30/09 12:59</td>
<td>R77583B</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>0.14</td>
<td></td>
<td>0.020</td>
<td>0.050</td>
<td>mg/L</td>
<td>03/30/09 12:59</td>
<td>R77583B</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, NITRATE-NITRITE</td>
<td>E353.2</td>
<td></td>
<td>0.10</td>
<td>0.025</td>
<td>0.050 mg/L</td>
<td>03/31/09 15:01</td>
<td>R77631B</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate-Nitrite</td>
<td>0.10</td>
<td></td>
<td>0.025</td>
<td>0.050</td>
<td>mg/L</td>
<td>03/31/09 15:01</td>
<td>R77631B</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, TOTAL KJELDAHL</td>
<td>E351.2</td>
<td></td>
<td>0.95</td>
<td>0.071</td>
<td>0.50 mg/L</td>
<td>04/02/09 12:12</td>
<td>60492</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>0.95</td>
<td></td>
<td>0.071</td>
<td>0.50</td>
<td>mg/L</td>
<td>04/02/09 12:12</td>
<td>60492</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS, TOTAL</td>
<td>E365.4</td>
<td></td>
<td>0.13</td>
<td>0.050</td>
<td>0.10 mg/L</td>
<td>04/02/09 12:12</td>
<td>60492</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total (as P)</td>
<td>0.13</td>
<td></td>
<td>0.050</td>
<td>0.10</td>
<td>mg/L</td>
<td>04/02/09 12:12</td>
<td>60492</td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:

- I: Analyte detected below quantitation limits
- U: Not Detected Above the MDL
Analytical Report

CLIENT: GPI Southeast
Lab Order: F09031034
Project: Baffle Box
Lab ID: F09031034-002
Client Sample ID: Baffle Box 17
Collection Date: 3/25/2009 10:00:00 AM
Sample Description: Parkway
Matrix: Surface Water

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>PQL</th>
<th>Units</th>
<th>DF</th>
<th>Date Analyzed</th>
<th>Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD-CARBONACEOUS</td>
<td>SM5210 B</td>
<td>PrepDate: 3/27/2009 9:04:00 A</td>
<td>Analyst: JSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonaceous BOD</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
<td>2.0</td>
<td>mg/L</td>
<td>1</td>
<td>03/27/09 09:04</td>
<td>60428</td>
</tr>
<tr>
<td>ORTHOPHOSPHATE AS P</td>
<td>SM4500P-E</td>
<td>PrepDate:</td>
<td>Analyst: JSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.50</td>
<td></td>
<td>0.0089</td>
<td>0.10</td>
<td>mg/L</td>
<td>1</td>
<td>03/26/09 12:18</td>
<td>R77519</td>
</tr>
<tr>
<td>SOLIDS, TOTAL SUSPENDED (RESIDUE, NO-Filterable)</td>
<td>SM2540 D</td>
<td>PrepDate: 4/1/2009</td>
<td>Analyst: JSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids, Suspended (Residue, Non-Filterable)</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
<td>5.0</td>
<td>mg/L</td>
<td>1</td>
<td>04/01/09 12:00</td>
<td>60537</td>
</tr>
<tr>
<td>CHEMICAL OXYGEN Demand</td>
<td>E410.4</td>
<td>PrepDate: 4/2/2009 11:10:00 A</td>
<td>Analyst: SSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>22 I</td>
<td>12</td>
<td>25</td>
<td>mg/L</td>
<td>1</td>
<td>04/03/09 10:51</td>
<td>R77766</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, AMMONIA</td>
<td>E350.1</td>
<td>PrepDate:</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>0.020 U</td>
<td>0.020</td>
<td>0.050</td>
<td>mg/L</td>
<td>1</td>
<td>03/30/09 13:01</td>
<td>R77583B</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, NITRATE-NITRITE</td>
<td>E353.2</td>
<td>PrepDate:</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate-Nitrite</td>
<td>0.97</td>
<td>0.025</td>
<td>0.050</td>
<td>mg/L</td>
<td>1</td>
<td>03/31/09 15:02</td>
<td>R77631B</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, TOTAL KJELDAHL</td>
<td>E351.2</td>
<td>PrepDate: 3/31/2009 9:15:00 A</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>0.65</td>
<td>0.071</td>
<td>0.50</td>
<td>mg/L</td>
<td>1</td>
<td>04/02/09 12:19</td>
<td>60492</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS, TOTAL</td>
<td>E365.4</td>
<td>PrepDate: 3/31/2009 9:15:00 A</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total (as P)</td>
<td>0.57</td>
<td>0.050</td>
<td>0.10</td>
<td>mg/L</td>
<td>1</td>
<td>04/02/09 12:19</td>
<td>60492</td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
I: Analyte detected below quantitation limits
U: Not Detected Above the MDL

Page 7 of 18
Analytical Report

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>PQL</th>
<th>Units</th>
<th>DF</th>
<th>Date Analyzed</th>
<th>Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD-CARBONACEOUS</td>
<td>SM5210 B</td>
<td>PrepDate: 3/27/2009 9:04:00 A</td>
<td>Analyst: JSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonaceous BOD</td>
<td>10</td>
<td>2.0</td>
<td>2.0</td>
<td>mg/L</td>
<td>1</td>
<td>03/27/09 09:04</td>
<td>60428</td>
<td></td>
</tr>
<tr>
<td>ORTHOPHOSPHATE AS P</td>
<td>SM4500P-E</td>
<td>PrepDate:</td>
<td>Analyst: JSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.60</td>
<td>0.0089</td>
<td>0.10</td>
<td>mg/L</td>
<td>1</td>
<td>03/26/09 12:19R77519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLIDS, TOTAL SUSPENDED (RESIDUE, NO</td>
<td>SM2540 D</td>
<td>PrepDate: 4/1/2009</td>
<td>Analyst: JSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids, Suspended (Residue, Non-Filterable)</td>
<td>8.5</td>
<td>5.0</td>
<td>5.0</td>
<td>mg/L</td>
<td>1</td>
<td>04/01/09 12:00</td>
<td>60537</td>
<td></td>
</tr>
<tr>
<td>CHEMICAL OXYGEN DEMAND</td>
<td>E410.4</td>
<td>PrepDate: 4/2/2009 11:10:00 A</td>
<td>Analyst: SSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>91</td>
<td>12</td>
<td>25</td>
<td>mg/L</td>
<td>1</td>
<td>04/03/09 10:51</td>
<td>R77766</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, AMMONIA</td>
<td>E350.1</td>
<td>PrepDate:</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>0.25</td>
<td>0.020</td>
<td>0.050</td>
<td>mg/L</td>
<td>1</td>
<td>03/30/09 13:02R77583B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGEN, NITRATE-NITRITE</td>
<td>E353.2</td>
<td>PrepDate:</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate-Nitrite</td>
<td>0.025</td>
<td>0.025</td>
<td>0.050</td>
<td>mg/L</td>
<td>1</td>
<td>03/31/09 15:04</td>
<td>R77631B</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, TOTAL KJELDAHL</td>
<td>E351.2</td>
<td>PrepDate: 3/31/2009 9:15:00 A</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>2.2</td>
<td>0.071</td>
<td>0.50</td>
<td>mg/L</td>
<td>1</td>
<td>04/02/09 12:20</td>
<td>60492</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS, TOTAL</td>
<td>E365.4</td>
<td>PrepDate: 3/31/2009 9:15:00 A</td>
<td>Analyst: TKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total (as P)</td>
<td>0.89</td>
<td>0.050</td>
<td>0.10</td>
<td>mg/L</td>
<td>1</td>
<td>04/02/09 12:20</td>
<td>60492</td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- I Analyte detected below quantitation limits
- U Not Detected Above the MDL
Analytical Report

CLIENT: GPI Southeast
Lab Order: F09031034
Project: Baffle Box
Lab ID: F09031034-004
Client Sample ID: Baffle Box 74
Collection Date: 3/25/2009 5:00:00 PM
Sample Description: Sarasota
Matrix: Surface Water

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>PQL</th>
<th>Units</th>
<th>DF</th>
<th>Date Analyzed</th>
<th>Batch ID</th>
</tr>
</thead>
</table>
| **BOD-CARBONACEOUS** | SM5210 B | PrepDate: 3/27/2009 9:04:00 A | Analyst: JSE
Carbonaceous BOD | 28 | 2.0 | 2.0 | mg/L | 1 | 03/27/09 09:04 | 60428 |
| **ORTHOPHOSPHATE AS P** | SM4500P-E | PrepDate: | Analyst: JSE
Phosphorus, Orthophosphate (As P) | 1.1 | 0.018 | 0.20 | mg/L | 2 | 03/26/09 12:34 | R77519 |
| **SOLIDS, TOTAL SUSPENDED (RESIDUE, NO** | SM2540 D | PrepDate: 4/1/2009 | Analyst: JSE
Solids, Suspended (Residue, Non-Filterable) | 8.3 | 5.0 | 5.0 | mg/L | 1 | 04/01/09 12:00 | 60537 |
| **CHEMICAL OXYGEN DEMAND** | E410.4 | PrepDate: 4/2/2009 11:10:00 A | Analyst: SSM
Chemical Oxygen Demand | 120 | 12 | 25 | mg/L | 1 | 04/03/09 10:51 | R77766 |
| **NITROGEN, AMMONIA** | E350.1 | PrepDate: | Analyst: TKE
Nitrogen, Ammonia (As N) | 1.2 | 0.020 | 0.050 | mg/L | 1 | 03/30/09 14:04 | R77583C |
| **NITROGEN, NITRATE-NITRITE** | E353.2 | PrepDate: | Analyst: TKE
Nitrogen, Nitrate-Nitrite | 0.027 | I | 0.025 | 0.050 | mg/L | 1 | 03/31/09 15:05 | R77631B |
| **NITROGEN, TOTAL KJELDAHL** | E351.2 | PrepDate: 3/31/2009 9:15:00 A | Analyst: TKE
Nitrogen, Kjeldahl, Total | 3.9 | 0.071 | 0.50 | mg/L | 1 | 04/02/09 12:22 | 60492 |
| **PHOSPHORUS, TOTAL** | E365.4 | PrepDate: 3/31/2009 9:15:00 A | Analyst: TKE
Phosphorus, Total (as P) | 1.4 | 0.050 | 0.10 | mg/L | 1 | 04/02/09 12:22 | 60492 |

Data Qualifier Code Key:

- I Analyte detected below quantitation limits
- U Not Detected Above the MDL
Analytical QC Summary Report

Test Code: COD
Sample ID: F09031034
Client ID: Baffle Box
Prep Date: 4/2/2009
Analysis Date: 4/3/2009
Run No: 77766
Seq No: 2373683

Sample: MB-R77766

Sample ID: MB-R77766
SampType: MBLK
Test Code: COD
Units: mg/L
Prep Date: 4/2/2009
Analysis Date: 4/3/2009
Test No: E410.4

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Oxygen Demand</td>
<td>12</td>
<td>U</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: LCS-R77766

Sample ID: LCS-R77766
SampType: LCS
Test Code: COD
Units: mg/L
Prep Date: 4/2/2009
Analysis Date: 4/3/2009
Test No: E410.4

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Oxygen Demand</td>
<td>510</td>
<td>12</td>
<td>500</td>
<td>0</td>
<td>103</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: F09031034-001DMS

Sample ID: F09031034-001DMS
SampType: MS
Test Code: COD
Units: mg/L
Prep Date: 4/2/2009
Analysis Date: 4/3/2009
Test No: E410.4

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Oxygen Demand</td>
<td>540</td>
<td>12</td>
<td>500</td>
<td>31</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: F09031034-001DDUP

Sample ID: F09031034-001DDUP
SampType: DUP
Test Code: COD
Units: mg/L
Prep Date: 4/2/2009
Analysis Date: 4/3/2009
Test No: E410.4

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Oxygen Demand</td>
<td>33</td>
<td>12</td>
<td>31</td>
<td>6.85</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- **I:** Analyte detected below quantitation limits
- **R:** RPD outside accepted recovery limits
- **S:** Spike Recovery outside accepted recovery limits
- **U:** Not Detected Above the MDL
SAMPLE 1

Sample ID: QCS
Sample Type: QCS
Test Code: N-NH3_W
Units: mg/L
Prep Date: RunNo: 77583

<table>
<thead>
<tr>
<th>Data</th>
<th>Qualifier</th>
<th>Code Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Analyzer detected below quantitation limits</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>Spike Recovery outside accepted recovery limits</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>9.5</td>
<td>0.020</td>
<td>10</td>
<td>0</td>
<td>94.8</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: MB-R77583B
Sample Type: MBLK
Test Code: N-NH3_W
Units: mg/L
Prep Date: RunNo: 77583

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>0.020</td>
<td>U</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: LCS-R77583B
Sample Type: LCS
Test Code: N-NH3_W
Units: mg/L
Prep Date: RunNo: 77583

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>1.0</td>
<td>0.020</td>
<td>1.0</td>
<td>0</td>
<td>99.7</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: F09030983-002DMS
Sample Type: MS
Test Code: N-NH3_W
Units: mg/L
Prep Date: RunNo: 77583

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>1.1</td>
<td>0.020</td>
<td>1.0</td>
<td>0.068</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: F09030983-002DDUP
Sample Type: DUP
Test Code: N-NH3_W
Units: mg/L
Prep Date: RunNo: 77583

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Ammonia (As N)</td>
<td>0.064</td>
<td>0.020</td>
<td>0.068</td>
<td>6.06</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical QC Summary Report

Test Code: N-NH3_W

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SampType</th>
<th>TestCode: N-NH3_W</th>
<th>Units: mg/L</th>
<th>Prep Date:</th>
<th>RunNo: 77583</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB-R77583C</td>
<td>MBLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-R77583C</td>
<td>LCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031034-004D</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031034-004DD</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte: Nitrogen, Ammonia (As N)

<table>
<thead>
<tr>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPDLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>U</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.98</td>
<td></td>
<td>0.020</td>
<td>1.0</td>
<td>0</td>
<td>97.5</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>0.020</td>
<td>1.0</td>
<td>1.2</td>
<td>98.0</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>0.646</td>
<td>20</td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Analyte detected below quantitation limits</td>
</tr>
<tr>
<td>R</td>
<td>RPD outside accepted recovery limits</td>
</tr>
<tr>
<td>S</td>
<td>Spike Recovery outside accepted recovery limits</td>
</tr>
<tr>
<td>U</td>
<td>Not Detected Above the MDL</td>
</tr>
</tbody>
</table>

Page 12 of 18
Analytical QC Summary Report

Test Code: N-NOX-353.2

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SampType</th>
<th>TestCode: N-NOX-353.2</th>
<th>Units: mg/L</th>
<th>Prep Date:</th>
<th>RunNo:</th>
<th>SeqNo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCS NOX</td>
<td>QCS</td>
<td>E353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB-R77631B</td>
<td>MBLK</td>
<td>E353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-R77631B</td>
<td>LCS</td>
<td>E353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031020-001AMS</td>
<td>MS</td>
<td>E353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031020-001ADUP</td>
<td>DUP</td>
<td>E353.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitrogen, Nitrate-Nitrite

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPDLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCS NOX</td>
<td>2.6</td>
<td>0.025</td>
<td>2.5</td>
<td>0</td>
<td>104</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB-R77631B</td>
<td>0.025</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-R77631B</td>
<td>1.1</td>
<td>0.025</td>
<td>1.0</td>
<td>0</td>
<td>108</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031020-001AMS</td>
<td>2.0</td>
<td>S</td>
<td>0.025</td>
<td>1.0</td>
<td>111</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031020-001ADUP</td>
<td>0.86</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- I: Analyte detected below quantitation limits
- R: RPD outside accepted recovery limits
- S: Spike Recovery outside accepted recovery limits
- U: Not Detected Above the MDL
Analytical QC Summary Report

Test Code: N-TKN_W

Sample 1
- **Sample ID:** MB-60492
- **Sample Type:** MBLK
- **Test Code:** N-TKN_W
- **Units:** mg/L
- **Prep Date:** 3/31/2009
- **Analysis Date:** 4/2/2009
- **Run No:** 77715
- **Seq No:** 2372555

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>0.071</td>
<td>U</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample 2
- **Sample ID:** LCS-60492
- **Sample Type:** LCS
- **Test Code:** N-TKN_W
- **Units:** mg/L
- **Prep Date:** 3/31/2009
- **Analysis Date:** 4/2/2009
- **Run No:** 77715
- **Seq No:** 2372557

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>20</td>
<td>0.071</td>
<td>20</td>
<td>0</td>
<td>101</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample 3
- **Sample ID:** F09031034-001DMS
- **Sample Type:** MS
- **Test Code:** N-TKN_W
- **Units:** mg/L
- **Prep Date:** 3/31/2009
- **Analysis Date:** 4/2/2009
- **Run No:** 77715
- **Seq No:** 2372567

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>6.7</td>
<td>0.071</td>
<td>6.0</td>
<td>0.95</td>
<td>95.5</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample 4
- **Sample ID:** F09031034-001DDUP
- **Sample Type:** DUP
- **Test Code:** N-TKN_W
- **Units:** mg/L
- **Prep Date:** 3/31/2009
- **Analysis Date:** 4/2/2009
- **Run No:** 77715
- **Seq No:** 2372561

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>0.94</td>
<td>0.071</td>
<td></td>
<td>0.95</td>
<td>1.06</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample 5
- **Sample ID:** QCS
- **Sample Type:** QCS
- **Test Code:** N-TKN_W
- **Units:** mg/L
- **Prep Date:**
- **Analysis Date:** 4/2/2009
- **Run No:** 77715
- **Seq No:** 2372443

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Kjeldahl, Total</td>
<td>19</td>
<td>0.071</td>
<td>20</td>
<td>0</td>
<td>94.8</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- **I:** Analyte detected below quantitation limits
- **R:** RPD outside accepted recovery limits
- **S:** Spike Recovery outside accepted recovery limits
- **U:** Not Detected Above the MDL
Analytical QC Summary Report

Test Code: P-TOT_W

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SampType</th>
<th>TestCode</th>
<th>Units</th>
<th>Prep Date</th>
<th>RunNo</th>
<th>Sequence No</th>
<th>Analyte Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB-60492</td>
<td>MBLK</td>
<td>P-TOT_W</td>
<td>mg/L</td>
<td>3/31/2009</td>
<td>77715</td>
<td>2372556</td>
<td>Phosphorus, Total (as P)</td>
<td>0.050</td>
<td>U</td>
<td>0.050</td>
<td>0.050</td>
<td>0</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-60492</td>
<td>LCS</td>
<td>P-TOT_W</td>
<td>mg/L</td>
<td>3/31/2009</td>
<td>77715</td>
<td>2372558</td>
<td>Phosphorus, Total (as P)</td>
<td>4.2</td>
<td>0.050</td>
<td>4.0</td>
<td>0</td>
<td>106</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baffle Box 15 MS</td>
<td>MS</td>
<td>P-TOT_W</td>
<td>mg/L</td>
<td>3/31/2009</td>
<td>77715</td>
<td>2372568</td>
<td>Phosphorus, Total (as P)</td>
<td>1.3</td>
<td>0.050</td>
<td>1.2</td>
<td>0.13</td>
<td>100</td>
<td>80</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baffle Box 15 DUP</td>
<td>DUP</td>
<td>P-TOT_W</td>
<td>mg/L</td>
<td>3/31/2009</td>
<td>77715</td>
<td>2372562</td>
<td>Phosphorus, Total (as P)</td>
<td>0.13</td>
<td>0.050</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCS</td>
<td>QCS</td>
<td>P-TOT_W</td>
<td>mg/L</td>
<td></td>
<td>77715</td>
<td>2372444</td>
<td>Phosphorus, Total (as P)</td>
<td>3.9</td>
<td>0.050</td>
<td>4.0</td>
<td>0</td>
<td>98.2</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- I: Analyte detected below quantitation limits
- R: RPD outside accepted recovery limits
- S: Spike Recovery outside accepted recovery limits
- U: Not Detected Above the MDL
Project: Baffle Box

CLIENT: GPI Southeast

Work Order: F09031034

WORK ORDER

ANALYTICAL QC SUMMARY REPORT

TestCode: T-BOD-C

<table>
<thead>
<tr>
<th>Data Qualifier Code Key:</th>
<th>I Analyte detected below quantitation limits</th>
<th>R RPD outside accepted recovery limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Spike Recovery outside accepted recovery limits</td>
<td>U Not Detected Above the MDL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID: MB-60428</th>
<th>SampType: MBLK</th>
<th>TestCode: T-BOD-C</th>
<th>Units: mg/L</th>
<th>Prep Date: 3/27/2009</th>
<th>RunNo: 77692</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client ID: MB-60428</td>
<td>Batch ID: 60428</td>
<td>TestNo: SM5210 B</td>
<td></td>
<td>Analysis Date: 3/27/2009</td>
<td>SeqNo: 2370875</td>
</tr>
</tbody>
</table>

Carbonaceous BOD

<table>
<thead>
<tr>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPDLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID: LCS-60428</th>
<th>SampType: LCS</th>
<th>TestCode: T-BOD-C</th>
<th>Units: mg/L</th>
<th>Prep Date: 3/27/2009</th>
<th>RunNo: 77692</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client ID: LCS-60428</td>
<td>Batch ID: 60428</td>
<td>TestNo: SM5210 B</td>
<td></td>
<td>Analysis Date: 3/27/2009</td>
<td>SeqNo: 2370876</td>
</tr>
</tbody>
</table>

Carbonaceous BOD

<table>
<thead>
<tr>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPDLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>2.0</td>
<td>400</td>
<td>0</td>
<td>89.0</td>
<td>84.59</td>
<td>115.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID: F09031034-004ADUP</th>
<th>SampType: DUP</th>
<th>TestCode: T-BOD-C</th>
<th>Units: mg/L</th>
<th>Prep Date: 3/27/2009</th>
<th>RunNo: 77692</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client ID: Baffle Box 74 DUP</td>
<td>Batch ID: 60428</td>
<td>TestNo: SM5210 B</td>
<td></td>
<td>Analysis Date: 3/27/2009</td>
<td>SeqNo: 2370881</td>
</tr>
</tbody>
</table>

Carbonaceous BOD

<table>
<thead>
<tr>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPDLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>13.5</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 16 of 18
ANALYTICAL QC SUMMARY REPORT

Test Code: T-ORTHOP-4500PE

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SampType</th>
<th>Test Code</th>
<th>Units</th>
<th>Prep Date</th>
<th>RunNo</th>
<th>SeqNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLANK</td>
<td>ABLK</td>
<td>T-ORTHOP-45</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCS</td>
<td>QCS</td>
<td>T-ORTHOP-45</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031034-001CMS</td>
<td>MS</td>
<td>T-ORTHOP-45</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F09031034-001CDUP</td>
<td>DUP</td>
<td>T-ORTHOP-45</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>LowLimit</th>
<th>HighLimit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPDLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.0089</td>
<td>U</td>
<td>0.0089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.62</td>
<td>0.0089</td>
<td>0.60</td>
<td>0</td>
<td>103</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.32</td>
<td>0.0089</td>
<td>0.30</td>
<td>0.029</td>
<td>96.1</td>
<td>80</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Orthophosphate (As P)</td>
<td>0.026</td>
<td>I</td>
<td>0.0089</td>
<td></td>
<td>0.029</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- I: Analyte detected below quantitation limits
- R: RPD outside accepted recovery limits
- S: Spike Recovery outside accepted recovery limits
- U: Not Detected Above the MDL

Page 17 of 18
Analytical QC Summary Report

Test Code: T-SOLIDS-TS
Sample ID: MB-60537
Client ID: MB-60537
Batch ID: 60537
Sample Type: MBLK
Test Code: T-SOLIDS-TS
Units: mg/L
Prep Date: 4/1/2009
Analysis Date: 4/1/2009
Run No: 77758
Seq No: 2373352

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, Suspended (Residue, Non-Filter)</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Qualifier Code Key:
- **I:** Analyte detected below quantitation limits
- **R:** RPD outside accepted recovery limits
- **S:** Spike Recovery outside accepted recovery limits
- **U:** Not Detected Above the MDL

Sample ID: LCS-60537
Client ID: LCS-60537
Batch ID: 60537
Sample Type: LCS
Test Code: T-SOLIDS-TS
Units: mg/L
Prep Date: 4/1/2009
Analysis Date: 4/1/2009
Run No: 77758
Seq No: 2373353

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, Suspended (Residue, Non-Filter)</td>
<td>79</td>
<td>5.0</td>
<td>80</td>
<td>0</td>
<td>99.8</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: F09031034-004BDUP
Client ID: Baffle Box 74 DUP
Batch ID: 60537
Sample Type: DUP
Test Code: T-SOLIDS-TS
Units: mg/L
Prep Date: 4/1/2009
Analysis Date: 4/1/2009
Run No: 77758
Seq No: 2373358

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>MDL</th>
<th>SPK Value</th>
<th>SPK Ref Val</th>
<th>%REC</th>
<th>Low Limit</th>
<th>High Limit</th>
<th>RPD Ref Val</th>
<th>%RPD</th>
<th>RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, Suspended (Residue, Non-Filter)</td>
<td>10</td>
<td>R</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.3</td>
<td>23.4</td>
</tr>
</tbody>
</table>
Chain of Custody Record

No. E

FOR LAB USE ONLY

<table>
<thead>
<tr>
<th>Temp. of Contents:</th>
<th>Condition of Contents:</th>
<th>Condition of Seals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1℃ (or Received on Ice, ROI)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Client: (Company or Individual)

GiP1 Southeast

Report To: (If different from above)

Daniel Smith

dpsmith_aet@verizon.net

Client Project Name:

Baffle Box Research Project

LINCOLN

Sample Method:

<table>
<thead>
<tr>
<th>Item</th>
<th>Sample ID or No.</th>
<th>Sample Description</th>
<th>Date</th>
<th>Time</th>
<th>Comp.</th>
<th>Crab</th>
<th>Water (Trace)</th>
<th>Air</th>
<th>Soil</th>
<th>Sludge</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Water Sample Codes (for Item 15)

- DW = Drinking Water
- GW = Ground Water
- SW = Surface Water
- PW = Processed Water
- WW = Waste Water

Container Codes (for Item 16)

- V = VOA vial
- G = glass
- P = plastic
- M = micro bag/cup
- O = other

Preservatives

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>COD</td>
</tr>
<tr>
<td>T</td>
<td>TSS</td>
</tr>
<tr>
<td>A</td>
<td>TP</td>
</tr>
<tr>
<td>B</td>
<td>NOx</td>
</tr>
<tr>
<td>H</td>
<td>TP</td>
</tr>
<tr>
<td>J</td>
<td>XH3</td>
</tr>
<tr>
<td>K</td>
<td>NH3</td>
</tr>
<tr>
<td>L</td>
<td>TKN</td>
</tr>
<tr>
<td>M</td>
<td>MH3</td>
</tr>
</tbody>
</table>

Preservative Codes (for Item 18)

- C = Cool Only
- H = Hydrochloric Acid
- M = Monochloroacetic Acid
- N = Nitric Acid
- OH = Sodium Hydroxide
- S = Sulfuric Acid
- T = Sodium Thioulate

Report Type:

- Routine
- Standard QC
- Data Package

Turnaround Time:

- Standard
- Rush: / / /

Lab Sample No.

Remarks:

Lab Test Only

Lab Sample No.

Distribution:

White with report; Blue, Green, Yellow to labs; Gold to submitter

Revised: 06/05
1. Client: (Company or Individual)
 Gil' Southeast

2. Report to: (if different from above)
 Daniel Smith
dpsmith_aet@verizon.net

3. Client Project Name:
 Baffle Box Research Project

4. Client Project No.:

5. P.O. No.:

6. Custody Seal No.:

7. Sample By:
 Daniel Smith

8. Shipping Method:

9. Sample ID or No.:
 17 baffle box

10. Sample Description:
 (See attached Pace Cost Proposal)
 5 bottles
 TIME = 10 AM

11. Date: 3-25-09
12. Time: 8:00 AM
13. Comp.: x SW

14. Water Sample Codes (for Item 13)
 DW = Drinking Water
 GW = Ground Water
 SW = Surface Water
 PW = Processed Water
 WW = Waste Water

15. Container Codes (for Item 16)
 V = VOA vial
 G = glass
 P = plastic
 M = micro bag/cup
 O = other

16. Preservatives
17. Containers

18. Report Type:
 Routine Standard QC
 Data Package

19. Turnaround Time:
 Standard Rush: 1/1

20. REMARK:

21. RELINQUISHED BY
 DATE: 3-25-09
 TIME: 8:00 AM

22. RECEIVED BY
 DATE: 3-26-09
 TIME: 9:00 AM

DISTRIBUTION: White with report; Blue, Green, Yellow to labs; Gold to submitter

Revised: 06/05
Chain of Custody Record

No. E

For Lab Use Only

Temp. of Contents: 18°C (or Received on Ice, ROI)

<table>
<thead>
<tr>
<th>Water Sample Codes (for Item 13)</th>
<th>Container Codes (for Item 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW = Drinking Water</td>
<td>V = VOA vial</td>
</tr>
<tr>
<td>GW = Ground Water</td>
<td>G = glass</td>
</tr>
<tr>
<td>SW = Surface Water</td>
<td>P = plastic</td>
</tr>
<tr>
<td>PW = Processed Water</td>
<td>M = micro bag/cup</td>
</tr>
<tr>
<td>WW = Waste Water</td>
<td>O = other</td>
</tr>
</tbody>
</table>

Address: 13097 N Telecom Parkway
City: Tampa
State: FL
Zip Code: 33637
Phone: (813) 632 7690

Address: 10809 Cedar Cove Drive
City: Tampa
State: FL
Zip Code: 33592
Phone: (813) 864 5735

Client Project No.:
P.O. No.:
Custody Seal No.:
Sampled By: Daniel Smith
Shipping Method:

<table>
<thead>
<tr>
<th>Item</th>
<th>Sample ID or No.</th>
<th>Sample Description</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>baffle box</td>
<td>3/25</td>
<td>12.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Received By:
Date: 3/26/09
Time: 849
Sampling Fee:
Hrs.:

Profile No.:
Quote No.:

DISTRIBUTION: White with report; Blue, Green, Yellow to labs; Gold to submitter
Revised: 06/05
Chain of Custody Record

No. E

For Lab Use Only

Condition of Contents:

Temp. of Contents: 1.3°C (or Received on Ice, ROI)

Condition of Seals:

1. Client: (Company or Individual)

GIP! Southeast

2. Report to: (if different from above)

Daniel Smith
dpsmith_aet@verizon.net

3. Client Project Name:

Baffle Box Research Project

4. Client Project No.:

5. P.O. No.:

6. Custody Seal No.:

7. Sampled By:

Daniel Smith

8. Shipping Method:

9. Sample ID or No.

<table>
<thead>
<tr>
<th>Item</th>
<th>Sample Description</th>
<th>Date</th>
<th>Time</th>
<th>Comp.</th>
<th>Grab</th>
<th>Water</th>
<th>Soil</th>
<th>Sludge</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>baffle box</td>
<td>3/25</td>
<td></td>
<td>x</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Sample Description

(See attached Pace Cost Proposal)

- **5 bottles**
- **Collected 1700 ppm**

11.

12.

13.

14. Water Sample Codes (for item 13):

- DW = Drinking Water
- GW = Ground Water
- SW = Surface Water
- PW = Processed Water
- WW = Waste Water

15. Container Codes (for item 16):

- V = VOA vial
- G = glass
- P = plastic
- M = micro bag/cup
- O = other

16. Preservatives

17. Containers

18. Routine Type:

Standard QC Data Package

19. Turnaround Time:

Standard

20. Remarks:

21. Relinquished By:

Drs. [Signature]

22. Received By:

[Signature]

Sampling Fee:

Equipment Rental Fee:

Distribution:

White with report; Blue, Green, Yellow to labs; Gold to submitter

Revised: 06/05
October 30, 2009

Daniel Smith
Applied Environmental Technology
10809 Cedar Cove Drive
Tampa, FL 33592-2250

Service Request No: J0904985

Laboratory Results for: Baffle Box Research

Dear Daniel:

Enclosed are the results of the sample(s) submitted to our laboratory on October 8, 2009. For your reference, these analyses have been assigned our service request number J0904985.

All analyses were performed according to our laboratory’s quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 4408. You may also contact me via email at TKissinger@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

[Signature]

Tom Kissinger
Project Manager

Page 1 of 14
CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab’s NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

3 solid samples were received for analysis at Columbia Analytical Services on 10/8/09. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4±2°C upon receipt at the lab.

General Chemistry Parameters

Samples were composited and ground using a SPEX 6850 freezer Mill prior to sample analysis.

Matrix Spike Recovery Exceptions

The control criterion for matrix spike recovery of Total Phosphorus for sample 1 is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.
Florida DEP Data Qualifiers

B Results based upon colony counts outside the acceptable range.

D Measurement was made in the field.

H Value based on field kit determination; results may not be accurate.

i The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Estimated value (one of the following reasons is discussed in the project case narrative).
 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
 2. No known quality control criteria exists for the component.
 3. The reported value failed to meet the established quality control criteria for either precision or
 accuracy.
 4. The sample matrix interfered with the ability to make any accurate determination (e.g.,
 primary and confirmation results show greater than 40% RPD).
 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune
 did not meet method criteria).

K Off scale low. The value is less than the lowest calibration standard but greater than the method
 reporting limit (MRL).

L Off scale high. The analyte is above the upper limit of the linear calibration range.

M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to
 matrix interference.

N Presumptive evidence of the analyte. Confirmation was not performed.

Q Sample held beyond the accepted holding time.

T Value reported is less than the laboratory method detection limit. The value is reported for
 informational purposes only.

U Indicates that the compound was analyzed for but not detected.

V Indicates that the analyte was detected in both the sample and the associated method blank.

Y The laboratory analysis was from an improperly preserved sample.

Z Too many colonies were present (TN TC). The numeric value represents the filtration volume.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>A2LA</td>
<td>American Association for Laboratory Accreditation</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Abstract Service registry Number</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbon</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-Forming Unit</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environmental Conservation</td>
</tr>
<tr>
<td>DEQ</td>
<td>Department of Environmental Quality</td>
</tr>
<tr>
<td>DHS</td>
<td>Department of Health Services</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Ecology</td>
</tr>
<tr>
<td>DOH</td>
<td>Department of Health</td>
</tr>
<tr>
<td>EPA</td>
<td>U. S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ELAP</td>
<td>Environmental Laboratory Accreditation Program</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GC/MS</td>
<td>Gas Chromatography/Mass Spectrometry</td>
</tr>
<tr>
<td>LUFT</td>
<td>Leaking Underground Fuel Tank</td>
</tr>
<tr>
<td>M</td>
<td>Modified</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.</td>
</tr>
<tr>
<td>MDL</td>
<td>Method Detection Limit</td>
</tr>
<tr>
<td>MPN</td>
<td>Most Probable Number</td>
</tr>
<tr>
<td>MRL</td>
<td>Method Reporting Limit</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NC</td>
<td>Not Calculated</td>
</tr>
<tr>
<td>NCASI</td>
<td>National Council of the Paper Industry for Air and Stream Improvement</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>PQL</td>
<td>Practical Quantitation Limit</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>SIM</td>
<td>Selected Ion Monitoring</td>
</tr>
<tr>
<td>TPH</td>
<td>Total Petroleum Hydrocarbons</td>
</tr>
<tr>
<td>tr</td>
<td>Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>CLIENT SAMPLE ID</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>J0904985-001</td>
<td>1</td>
</tr>
<tr>
<td>J0904985-002</td>
<td>2</td>
</tr>
<tr>
<td>J0904985-003</td>
<td>3</td>
</tr>
</tbody>
</table>
Analytical Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0904985
Date Collected: 10/05/09
Date Received: 10/08/09

Nitrogen, Total Kjeldahl (TKN)

Analysis Method: 351.2
Test Notes:

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Lab Code</th>
<th>MRL</th>
<th>MDL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J0904985-001</td>
<td>83</td>
<td>16</td>
<td>2</td>
<td>10/28/09 14:09</td>
<td>12000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J0904985-002</td>
<td>93</td>
<td>18</td>
<td>2</td>
<td>10/28/09 14:09</td>
<td>9300</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J0904985-003</td>
<td>109</td>
<td>21</td>
<td>2</td>
<td>10/28/09 14:09</td>
<td>14000</td>
<td></td>
</tr>
<tr>
<td>Method Blank</td>
<td>J0904985-MB</td>
<td>13</td>
<td>2.4</td>
<td>1</td>
<td>10/28/09 14:09</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

Units: mg/Kg (ppm)
Basis: Dry

Report By: Palimi
Phosphorus, Total

Analysis Method: 365.1
Units: mg/Kg (ppm)
Basis: Dry

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Lab Code</th>
<th>MRL</th>
<th>MDL</th>
<th>Dilution Factor</th>
<th>Date/Time Analyzed</th>
<th>Result</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J0904985-001</td>
<td>42</td>
<td>17</td>
<td>100</td>
<td>10/26/09 13:59</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J0904985-002</td>
<td>46</td>
<td>19</td>
<td>100</td>
<td>10/26/09 13:59</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J0904985-003</td>
<td>54</td>
<td>22</td>
<td>100</td>
<td>10/26/09 13:59</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Method Blank</td>
<td>J0904985-MB</td>
<td>0.13</td>
<td>0.05</td>
<td>1</td>
<td>10/26/09 13:59</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>
Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0904985
Date Collected: 10/05/09
Date Received: 10/08/09

Solids, Total

Analysis Method: 160.3 MOD
Test Notes:

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Lab Code</th>
<th>MRL</th>
<th>MDL</th>
<th>Dilution Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J0904985-001</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>J0904985-002</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>J0904985-003</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

Units: PERCENT
Basis: NA

Date/Time Analyzed	Result	Notes
10/12/09 11:30 | 30 | 10/12/09 11:30 | 27 |
10/12/09 11:30 | 23 | 10/12/09 11:30 | 27 |
Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0904985
Date Collected: 10/05/09
Date Received: 10/08/09
Date Extracted: 10/28/09
Date Analyzed: 10/26-28/09

Duplicate Summary
Inorganic Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Sample Result</th>
<th>Duplicate Sample Result</th>
<th>Average</th>
<th>Relative Percent Difference</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>83</td>
<td>12000</td>
<td>12000</td>
<td>12000</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>42</td>
<td>860</td>
<td>850</td>
<td>855</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Basis: Dry
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>MRL</th>
<th>Spike Level</th>
<th>Sample Result</th>
<th>Spiked Sample Result</th>
<th>Percent Recovery</th>
<th>CAS Percent Recovery Limits</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>83</td>
<td>4350</td>
<td>12000</td>
<td>16000</td>
<td>92</td>
<td>90-110</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>42</td>
<td>41</td>
<td>860</td>
<td>870</td>
<td>NC</td>
<td>90-110</td>
<td></td>
</tr>
</tbody>
</table>
COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client: GPI Southeast
Project Name: Baffle Box Research
Project Number: NA
Sample Matrix: SOLID

Service Request: J0904985
Date Collected: NA
Date Received: NA
Date Extracted: 10/28/09
Date Analyzed: 10/26-28/09

Laboratory Control Sample Summary
Inorganic Parameters

Sample Name: Laboratory Control Sample
Lab Code: J0904985-LCS
Test Notes:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Analysis Method</th>
<th>True Value</th>
<th>Result</th>
<th>Percent Recovery</th>
<th>CAS Percent Recovery Acceptance Limits</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl (TKN)</td>
<td>mg/Kg (ppm)</td>
<td>351.2</td>
<td>125</td>
<td>125</td>
<td>100</td>
<td>90-110</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/Kg (ppm)</td>
<td>365.1</td>
<td>12.5</td>
<td>12.3</td>
<td>98</td>
<td>90-110</td>
<td></td>
</tr>
</tbody>
</table>

Basis: Dry
Columbia Analytical Services, Inc.
Cooler Receipt and Preservation Form

Client: GPE
Project: Buffalo Box Research

Cooler received on 10/8/09 and opened on 10/8/09 by SL

1. Were custody seals on outside of cooler? Yes No N/A
2. Were seals intact, signed and dated? Yes No N/A
3. Were custody papers properly filled out? Yes No N/A
4. Temperature of cooler(s) upon receipt (Should be 4 +/- 2 degrees C) Room Temp
5. Correct Temperature? Yes No N/A
6. Were Ice or Ice Packs present? Yes No N/A
7. Did all bottles arrive in good condition (unbroken, etc....)? Yes No N/A
8. Were all bottle labels complete (sample ID, preservation, etc....)? Yes No N/A
9. Did all bottle labels and tags agree with custody papers? Yes No N/A
10. Were the correct bottles used for the tests indicated? Yes No N/A
11. Were all of the preserved bottles received with the appropriate preservative? Yes No N/A

HNO3 pH<2 H2SO4 pH<2 ZnAc2/NaOH pH>9 NaOH pH>12 HCl pH<2
Preservative additions noted below

12. Were all samples received within analysis holding times? Yes No N/A
13. Were VOA vials checked for absence of air bubbles? If present, note below Yes No N/A
14. Where did the bottles originate? CAS Client

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Reagent</th>
<th>Manuf. Lot # or CAS Chem ID</th>
<th>ml added</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional comments and/or explanation of all discrepancies noted above:

Client approval to run samples if discrepancies noted: Date 12
Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler recept form.

<table>
<thead>
<tr>
<th>Bottle Code</th>
<th>Contaminant</th>
<th>Location</th>
<th>PH</th>
<th>Temp</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Container</th>
<th>Location</th>
<th>PH</th>
<th>Temp</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

Project Name: Baffle Box Research

Baffle Box Research

Report To: Daniel Smith
dpszimk_set@verizon.net 813
864 5735

Company/Address:

GPI Southeast inc.

13097 N Telecom Parkway Tampa FL 33637

Phone #: 813 632 7690

FAX #:

Sampler's Signature: Daniel Smith

Sample's Printed Name:

CLIENT SAMPLE ID	**LAB ID**	**SAMPLING DATE**	**TIME**	**Matrix**	**NUMBER OF CONTAINERS**	**Preservative**	**Total Solids**	**TKN**	**Total Phosphorus**	**Composting**	**Grinding**
1 | | 10 5 2009 | SCM | 1 | X | X | X | X | X |
2 | | 10 5 2009 | SCM | 1 | X | X | X | X | X |
3 | | 10 5 2009 | SCM | 1 | X | X | X | X | X |

SCM = Stormwater cleanout material

See attached Columbia quote for analyses

Remarks:

Bill to Gordon England
Credit card, Visa # 4264 0296 09613
Gordon England
760 S. Brevard Ave #421
Cocoa Beach FL 32931 321-783-8283 Exp/1/12

Returned By

Received By

Signature

Relinquished By

Printed Name

Firm

Date/Time

12-3-09 10:00 AM

Special Instructions/Comments:

TURNAROUND REQUIREMENTS

REPORT REQUIREMENTS

INVOICE INFORMATION
Baffle Box Testing Program

Quality Assurance Project Plan

Prepared for:
Sarasota County BOCC Florida Dept. of Environmental Protection
Contract No. 2005-432 DEP Agreement No. S0236
Specific Authorization No. 06-01

Prepared by:
Sutron Corporation PBS&J
6903 Vista Parkway North 3230 Commerce Place
Suite 5 Suite A
West Palm Beach, FL 33411 West Palm Beach, FL 33407

Berryman & Henigar
1412 Tech Boulevard
Tampa, Florida 33619

Prepared and Approved by:

Gordon England, P.E., Project Manager, Berryman & Henigar Date

Daniel Smith, P.E., Project Scientist, Berryman & Henigar Date

Siaka Kone, PhD, Supervisory Engineer, Sutron Corporation Date

Lisa Herlihy, Sutron QA Officer, Sutron Corporation Date

Jeffrey Herr, P.E., Project Manager/QA Officer, PBS&J Date
Section 2.0 **Table of Contents**

QUALITY ASSURANCE ELEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Rev. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 3 Distribution List</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Section 4 Project Organization</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Section 5 Problem Definition and Background</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>A. Project Background</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B. Study Site Names and Addresses</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1. Rockledge City</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2. Stuart City</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3. Sarasota</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Section 6 Project Description</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>A. Project Purpose</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>B. Project Objectives</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>C. Project Tasks</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>D. Site Locations</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1. Rockledge City</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2. Stuart</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3. Sarasota</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Section 7 Quality Objectives and Criteria</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>A. Precision and Accuracy</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>B. Representativeness</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>C. Comparability</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>D. Completeness</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Section 8 Special Training/Certifications</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Section 9 Documentation and Records</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>A. Field Procedure Documentation and Reporting</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1. Field Logs</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2. Sample Collection, Preservation and Transport</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>3. Equipment Decontamination, Calibration and Maintenance Logs</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>B. Laboratory Documentation and Reporting</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>C. Archival of Electronically Stored Data</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>D. QAPP Document Control</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
Section 10 Sampling Process Design

A. Site Location ... 33
B. Monitoring and Sampling Frequency and Duration 33
C. Number of Samples and Matrices .. 34

Section 11 Sampling Methodology .. 37

A. Aqueous Sample Collection ... 37
 1. Equipment Specifications .. 37
 a) Rain Gauge ... 37
 b) Flow Meters .. 37
 c) Autosamplers ... 37
 d) Flowlink Software .. 37
 2. Procedure for Collection and Preservation of Flow Weighted
 Composite Samples .. 38
 3. Procedure for Collection and Preservation of Fecal Coliform
 Samples ... 38
B. Herbaceous Material and Sediment Collection and Processing .. 38
 1. Trash, Herbaceous Matter, and Sediment Samples In
 Baffle Box Chambers .. 38
 2. Trash, Herbaceous Material and Sediment Gathered from
 NSBB Screens .. 38
C. Equipment Decontamination ... 39

Section 12 Sample Handling and Chain of Custody 40

A. Sample Identification ... 40
B. Chain of Custody Procedures ... 40
C. Shipping Procedures ... 40
D. Sample Containers, Preservation and Holding Times 40

Section 13 Analytical Methodology ... 42

A. Sediment/Solid Matrix .. 42
B. Aqueous Matrix ... 43

Section 14 Quality Control .. 45

A. Field Quality Control Samples ... 45
 1. Field Generated QC Blanks ... 45
 2. Evaluation of Field Blanks ... 46
B. Laboratory Quality Control Samples 46
 1. Quality Control Requirements for Chemical Analyses 47
 a) Matrix-Related Quality Control Samples 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Laboratory Control Sample ..</td>
<td>47</td>
</tr>
<tr>
<td>c) Spiking/Fortification Requirements ...</td>
<td>47</td>
</tr>
<tr>
<td>d) Evaluation of Matrix Spikes ..</td>
<td>48</td>
</tr>
<tr>
<td>e) Evaluation of Laboratory Duplicate/Replicate Samples</td>
<td>48</td>
</tr>
<tr>
<td>f) Instrument Calibration ..</td>
<td>48</td>
</tr>
<tr>
<td>g) Quality Control Blanks ...</td>
<td>49</td>
</tr>
<tr>
<td>h) Quality Control Failure ..</td>
<td>49</td>
</tr>
<tr>
<td>i) MDL/PQL Adjustment ...</td>
<td>49</td>
</tr>
<tr>
<td>2. Quality Control Requirements for Microbiological Testing</td>
<td>50</td>
</tr>
<tr>
<td>a) Quality Control Blanks ...</td>
<td>50</td>
</tr>
<tr>
<td>b) Laboratory Quality Control Duplicates ...</td>
<td>50</td>
</tr>
<tr>
<td>c) Colony Counts ...</td>
<td>50</td>
</tr>
</tbody>
</table>

Section 15 Instrument/Equipment Decontamination, Testing, Inspection and Maintenance

A. Equipment Requiring Maintenance, Testing or Inspection 52

B. Equipment Decontamination .. 52

C. Equipment Maintenance ... 52

Section 16 Field Instrument/Equipment Calibration and Frequency

Section 17 Inspection/Acceptance of Supplies and Consumables

A. Sample Containers ... 54

B. Sample Coolers ... 54

C. Field Filtration Apparatus ... 54

D. Sample Preservation Kits .. 54

E. Analyte-Free Water ... 54

F. Equipment Decontamination Reagents .. 54

 1. Liqui-Nox Detergent ... 54
 2. Pesticide Grade Solvents .. 54
 3. Reagent Grade Hydrochloric Acid .. 54

Section 18 Non-Direct Measurements

Section 19 Data Management

A. Record Retention .. 56

B. Field Logs ... 56

C. Chain of Custody Records .. 56
Section 20 Assessments and Response Actions ... 57
 A. Planning Review Audits .. 57
 B. Quality Systems Audits ... 57
 C. Corrective Action ... 57
 D. Statements of Usability .. 57
Section 21 Reports to Management ... 58
 A. Quarterly Reports ... 58
 B. Final Reports ... 58
Section 22 Data Review, Verification and Validation 59
 A. Data Verification .. 59
 B. Data Validation .. 59
Section 23 Verification and Validation Methods ... 60
Section 24 Reconciliation with User Requirements 61
LIST OF TABLES

Table .. PageRev. Date
Table 1 Scheduled Tasks ...15
Table 2 Parameters of Interest by Matrix ..16
Table 3 Documentation and Records Storage26
Table 4 Sampling Equipment ..39
Table 5 Aqueous Matrix Containers, Preservation, and Holding Times ...40
Table 6 Herbaceous Material/Sediment Matrix Containers, Preservation and Holding Times41
Table 7 HBEL/MACTEC Sediment/Solid Methodology, Precision and Accuracy, Detection Limits ..42
Table 8 HBEL Aqueous Methodology, Precision and Accuracy, Detection Limits ...43
Table 9 JEL/SL Aqueous Methodology, Precision and Accuracy, Detection Limits ...44
Table 10 Sample and Blank Collection Frequency Summary46

LIST OF FIGURES

Figure ... PageRev. Date
Figure 1 Project Organization ...9
Figure 2 The Nutrient Separating Baffle Box Location at the Intersection of Little John Dr. and Rockledge Dr., Rockledge City ...17
Figure 3 Baffle Box Location at SE Lincoln Ave. and Dixie Hwy., Stuart ...18
Figure 4 Baffle Box Location at the Intersection of the SE Parkway Dr. and SE 7th Street, Stuart19
Figure 5 Baffle Box location at the intersection of Oriole Dr. and McClellan Pkwy, Sarasota ...20
Figure 6 Chain of Custody Forms ...27
Figure 7 Chain of Custody Labels ...30

LIST OF APPENDICES

Appendix .. Rev. Date
Appendix A Harbor Branch Environmental Laboratory Certification
Appendix B Jupiter Environmental Laboratory Certification
Appendix C Sanders Laboratory Certification
Section 3 **Distribution List**

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Title</th>
<th>Phone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon England</td>
<td>Berryman & Henigar</td>
<td>Project Manager</td>
<td>813-623-2230</td>
</tr>
<tr>
<td>Daniel P. Smith</td>
<td>Berryman & Henigar</td>
<td>Project Scientist</td>
<td>813-758-4758</td>
</tr>
<tr>
<td>Siaka Kone</td>
<td>Sutron Corp.</td>
<td>Supervisory Engineer</td>
<td>561-697-8151</td>
</tr>
<tr>
<td>Forrest Jay</td>
<td>Sutron Corp.</td>
<td>Staff Engineer</td>
<td>561-697-8151</td>
</tr>
<tr>
<td>Lisa Herlihy</td>
<td>Sutron Corp.</td>
<td>Project QA Officer</td>
<td>561-697-8151</td>
</tr>
<tr>
<td>Joe Stolo</td>
<td>Sutron Corp.</td>
<td>Sr. Field Technician</td>
<td>561-697-8151</td>
</tr>
<tr>
<td>Cindy Cromer</td>
<td>Harbor Branch Env. Lab</td>
<td>President</td>
<td>772-465-2400</td>
</tr>
<tr>
<td>Eric Charest</td>
<td>Harbor Branch Env. Lab</td>
<td>QA Manager</td>
<td>772-465-2400</td>
</tr>
<tr>
<td>Brian Hathaway</td>
<td>MACTEC</td>
<td>Project Manager</td>
<td>561-242-7713</td>
</tr>
<tr>
<td>Jeffrey L. Herr</td>
<td>PBS&J</td>
<td>Project Manager</td>
<td>561-689-7275</td>
</tr>
<tr>
<td>Tara Bardi</td>
<td>Jupiter Environmental Lab</td>
<td>Project Manager</td>
<td>561-575-0030</td>
</tr>
<tr>
<td>Tami Bright</td>
<td>Sanders Lab</td>
<td>Project Manager</td>
<td>941-488-8103</td>
</tr>
</tbody>
</table>
Section 4 **Project Organization**

Berryman & Henigar (B&H) has contracted with Sutron Corp. to set up baffle box and autosampler stations at the Rockledge and Stuart sites, to perform field sampling, to sub-contract with Harbor Branch Environmental Laboratories (HBEL), and MACTEC Engineering for sampling and laboratory services, and to review the resultant data and generate summary reports.

Sarasota County has contracted with PBS&J to set up baffle box and autosampler stations, to perform field sampling at the Sarasota site, to sub-contract with Harbor Branch Environmental Laboratories (HBEL), MACTEC Engineering, Sanders Laboratories (SL), and Jupiter Environmental Laboratories (JEL) for laboratory services, and to review the resultant data and generate summary reports.

B&H will retain overall project management responsibilities and will audit the field activities. The project QA officers will maintain the approved QAPP.
Figure 1 Project Organization

- **Project Manager**
 Berryman & Henigar, Inc.
 Gordon England, P.E.

- **Project Scientist**
 Daniel P. Smith, Ph.D., P.E.

- **Sutron QA Officer**
 Sutron Corp.
 Lisa Herlihy

- **Project Manager/QA Officer**
 PBS&J
 Jeffrey Herr, P.E.

- **Field Sample Collection/Station Maintenance**
 PBS&J
 Bob Woithe, PhD
 Michael Conn

- **Laboratory Services**
 Jupiter Environmental Laboratories
 Tara Bardi
 Sanders Laboratories
 Tami Bright
 MACTEC Engineering
 Brian Hathaway

- **Supervising Engineer**
 Sutron Corp.
 Siaka Kone, PhD

- **System Installation and Field Sample Collection**
 Sutron Corp.
 Forrest Jay
 Joe Stolo

- **Station Maintenance**
 Sutron Corp.
 Forrest Jay
 Joe Stolo

- **Data Management**
 Sutron Corp.
 Siaka Kone, PhD

- **Laboratory Services and Sample Collection**
 Harbor Branch Environmental Laboratory
 Cindy Cromer, President
 Eric Charest, QA Manager

- **Laboratory Services**
 MACTEC Engineering
 Brian Hathaway, Project Manager
Section 5 **Problem Definition and Background**

A. Project Background

Florida Department of Environmental Protection (FDEP) has given Section 319(h) grant funding to several communities for the installation of baffle boxes to provide stormwater treatment for outfall pipes. As a condition of these grants, the communities are required to implement a monitoring and testing program to document the effectiveness of their baffle box installations with respect to pollutant removal. Historically, FDEP’s monitoring requirements consisted of a sampling regime covering a nominal number of storm events to be tested, resulting in a monitoring program with inexpensive costs of the communities, but not providing adequate data to determine pollution reduction.

FDEP recognizes that monitoring only a few storm events for a BMP does not give statistically valid results and often leads to poor conclusions when there are small storm events and/or equipment problems. As a result, FDEP desires to undertake a more rigorous, long term monitoring program for four baffle box installations to provide a higher level of confidence in documentation of the pollutant removal effectiveness of baffle boxes.

Baffle boxes are devices typically in line with stormdrain pipes. They are divided into multiple chambers by baffles set near the flow line of the entrance pipe. Below the baffles are several feet of sediment accumulation storage. There are two models of baffle boxes in use: 1) the original designs with vertical screens (“Type 1”) and 2) Nutrient Separating Baffle Boxes (NSBB) manufactured by Suntree Technologies (“Type 2”). The difference between the models is that the NSBB has a horizontal screen that traps, trash, debris, and herbaceous matter (leaves, grass, seeds) and keeps them in a dry state suspended above the water trapped in the box. The original design of the baffle boxes allowed the trash, debris, and herbaceous organic matter to fall into the water in the chambers, where nutrients could leach out into the chambers and be washed out with subsequent rain events. While it is intuitive that keeping organic matter out of the water in the chambers will prevent nutrients from leaching, no testing has been performed to date to quantify the nutrient removal effectiveness of the NSBB. Two Type 1 baffle boxes and one NSBB will be monitored by Sutron. One NSBB will be monitored by PBS&J.

B. Study Site Names and Addresses

1. **Rockledge City**

 Site location is at the intersection of Little John Dr. and Rockledge Dr. A site map is provided as Figure 2 in Section 6.

2. **Stuart City**

 One site location is at the intersection of SE Lincoln Ave. and Dixie Hwy., and one site location at the intersection of SE Parkway Dr. and SE 7th Street. Site maps are provided as Figures 3 and 4 in Section 6.
3. **Sarasota**

Site location is at the intersection of Oriole Dr. and McClellan Pkwy. A site map provided as Figure 5 in Section 6.
Section 6 **Project Description**

A. **Project Purpose**

To determine the effectiveness of baffle boxes in removing stormwater pollutants by measuring total and dissolved pollutants and using a mass balance approach.

B. **Project Objectives**

Pollutant removal effectiveness will be demonstrated by monitoring four representative baffle box installations at various locations in Florida. Sutron Corporation (Sutron) will perform the monitoring at three sites outside of Sarasota and PBS&J will monitor the site in Sarasota. Monitoring will take place over a period of up to two years. The parameters to be analyzed and matrices are presented in Table 2. Quarterly reports will be prepared by Sutron and PBS&J, and sent to B & H, Sarasota County and FDEP, along with preliminary stormwater monitoring results and photographs, and preliminary and final project reports.

The removal performance of each baffle box will be assessed through monitoring of:

1. stormwater constituents that are dissolved and suspended in the water column and that can be collected using an autosampler; and
2. “gross solids” and associated contaminants.

Removal of dissolved and suspended stormwater constituents will be measured by simultaneous autosampling of influent and effluent for 7 to 10 storm events over a period of up to two years. For each storm event, flow weighted pollutant concentration and pollutant mass will be quantified in baffle box influent and effluent.

This study will also evaluate the quantity of *gross solids* removed by baffle boxes and conduct physical and chemical analysis of gross solids material. *Gross solids* is a generic term used to describe components of stormwater that are generally not collected by autosamplers, and consists of four types of materials:

1. **Trash and debris**: litter, paper, plastic, metal, glass, cups, styrofoam, bags, branches, 2x4, etc. This material floats on the surface or is too large to enter autosampler strainers or tubing.
2. **Herbaceous material**: leaves, grass, and seeds generally > 850 um (20 mesh). These materials may float on the surface or be transported at different depths in the water column, but are generally too large to enter autosampler tubing. Breakdown can release smaller organic particles or dissolved components that can be taken up by autosamplers.
3. **Sediment**: inorganic breakdown products from solids, pavement and building materials that are greater than 200 mesh (75um), or a fine sand size. The sediment component of gross solids is transported through saltation or bedload, and may not be collected by autosamplers for two reasons. The first is that autosampler intake ports that are located above the bottom of stormwater conveyance feature (pipe or channel) will not intercept and capture bedload sediments. The second reason is that the settling velocity of larger and denser particles may be greater than the lift velocity within the sample tubing,
leading to selective exclusion of large particles. The sediment component of gross solids and the organic breakdown products of herbaceous materials are often intermingled and not readily distinguished or separable.

4. **Oil and grease**: This material floats on the surface.

The “gross solids” components of interest in this study are trash and debris, herbaceous material and sediments. Oil and grease are not expected to be present.

Gross solids removal will be assessed by measuring the volume and mass of material accumulated in the bottom chambers of each baffle box and on the screens of the two Nutrient Separating Baffle Boxes. Two times during the project, the bottom chambers of each baffle box will be sampled, volume-weighted composited, dried and analyzed, and the material in the chambers completely removed. Material collected on the screens at the two nutrient separating baffle boxes (Type 2) will be completely removed, quantified, composited, and analyzed two times during the project. The result will be a cumulative mass removal of “gross solids” and associated contaminants over the time period corresponding to the water column autosampler-based pollutant removals.

C. **Project Tasks**

Table 1 includes the project scheduled tasks. The start dates are contingent upon receipt of a signed contract from FDEP.

Task 1: Initiate Project and Data Collection

B&H has prepared a sub-consultant contract with Sutron Corporation for field testing of three (3) baffle boxes at various locations in Florida and Sarasota County has entered into an agreement with PBS&J for monitoring the Sarasota location. B&H will consult with FDEP representatives to determine the goals of the monitoring program and desired protocols to be used for monitoring.

Deliverables: Completed contract with Sutron Corporation and PBS&J.

Task 2: Select Four Monitoring Sites

B&H will canvass sites across Florida where First Generation and Second Generation Baffle Boxes have been installed. This search will include Baffle Boxes that have been built under the 319 program as well as those built outside of the 319 program. The sites will be investigated to determine their appropriateness for establishing a monitoring program at the sites. Criteria to be used in site selection include size and type of Baffle Box, configuration of Baffle Box (one pipe in and one pipe out is preferable), on-line vs. off-line, submersion of box from upstream or downstream tailwater, base flows, willingness of communities and residents to accept a monitoring program in their yards, and availability of monitoring contractors in the vicinity. Two First Generation Baffle Box sites and two Second Generation sites will be chosen for the
monitoring program. These sites will be visited to determine their suitability for the monitoring program, as well as to secure agreement and cooperation of local agencies.

Deliverables: Four sites for the Baffle Box Monitoring Program.

Task 3: Quality Assurance Project Plan

Sutron, in cooperation with B&H and PBS&J, has prepared a QAPP for testing four baffle boxes in accordance with the requirements set forth in Section 62-160.110(6). No monitoring shall be performed until the QAPP has been approved by FDEP.

Deliverable: QAPP approved by FDEP.

Task 4: Baffle Box Monitoring

B&H will use Sutron Corporation (Sutron) and Sarasota County will use PBS&J as qualified sub-contractors to perform monitoring of the 4 baffle box sites chosen in Task 2. Sutron and PBS&J will follow FDEP specified QAPP and QA/QC procedures for performing the monitoring efforts. Seven to ten storm events of 0.2 inch of rainfall or greater will be sampled over a period of up to 2 years. Sampling will end once 10 storm events have been captured meeting the 0.2 inch depth, unless extreme weather conditions prevent the sampling of 10 events; in which case at least 7 events will be sampled. Two times during the study period, material from the bottom chambers of each baffle box will be sampled, trash and debris removed, a composite sample will be produced by a volume weighted procedure, and analyses performed on the composite sample. For the two Nutrient Separating Baffle Boxes, the material trapped on the screens will be collected two times during the study period. One NSBB collection event shall occur after 4 to 5 storms depending on material accumulation, and a second at the end of the monitoring period. At least one event shall occur during or immediately after the “wet” season. For each NSBB collection event, volume and mass will be calculated, a composite sample will be produced, and analyses will be performed on two subfractions of the composite sample.

Deliverables: Complete and thorough monitoring of 4 baffle boxes by Sutron and PBS&J with sampling for 7-10 storm events at each site. Sampling will follow FDEP QAPP requirements.

Task 5: Monitoring Oversight

B&H will develop an appropriate monitoring program to be used at each of the four locations to ensure that FDEP monitoring goals will be accomplished. B&H will ensure that the monitoring sub-contractors will provide proper QAPP and QA/QC procedures, that proper instrumentation is installed, and that the prerequisite numbers of complete samples are obtained at each site. B&H will make one site visit to each location during the monitoring process.

Deliverables: A thorough and complete monitoring program will be obtained at each of four sites. Sutron and PBS&J will provide quarterly monitoring reports that will be reviewed by
B&H and sent to Sarasota County and FDEP, along with preliminary stormwater monitoring reports and photographs. Preliminary and final project reports will be delivered to Sarasota County and FDEP. Project updates will be provided to participating communities.

Task 6: Final Report

Preliminary and final reports from the monitoring contractors will be reviewed by B&H and revised as necessary. B&H will prepare a draft summary report compiling the results of the four monitoring programs. The draft report will give the results of the Baffle Box monitoring program and recommendations for removal efficiencies to be used by FDEP for the two types of Baffle Boxes. It will also summarize other findings and recommendations from the individual sites. The draft report will be submitted to FDEP for review. Upon receipt of FDEP review comments, B&H will make revisions to the draft report and prepare the final report. Copies of the final report will be sent to FDEP.

Deliverables: B&H will provide three paper copies and one CD of the draft report to FDEP for review. Upon receipt of FDEP review comments, B&H will provide five paper copies and one CD of the final report to FDEP, and one paper copy of the final report to each of the participating communities.

Task 7: Project Management

Prudent project management will help minimize changes, ensure project continuity, and avoid delays in the project schedule. This type of project is highly specialized, requiring unusual equipment and services. Therefore it is crucial that adequate project management be used to ensure the success of the project. B&H will provide a high level of oversight and project coordination to facilitate a smooth flowing project.

Deliverable: B&H will provide monthly reports and invoices to Sarasota County.

Table 1 Scheduled Tasks

<table>
<thead>
<tr>
<th>Task/Activity</th>
<th>Start Date</th>
<th>Projected Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Initiate Project and Contract Sub-consultants</td>
<td>Month 1</td>
<td>Month 1</td>
</tr>
<tr>
<td>Task 2: Select Monitoring Sites</td>
<td>Month 1</td>
<td>Month 2</td>
</tr>
<tr>
<td>Task 3: Prepare Quality Assurance Project Plan and Submit to FDEP</td>
<td>Month 1</td>
<td>Month 3</td>
</tr>
<tr>
<td>Task 4: Baffle Box Monitoring</td>
<td>Month 3</td>
<td>Month 27</td>
</tr>
<tr>
<td>Task 5: Monitoring Oversight</td>
<td>Month 3</td>
<td>Month 27</td>
</tr>
<tr>
<td>Task 6: Prepare Final Report</td>
<td>Month 27</td>
<td>Month 29</td>
</tr>
<tr>
<td>Task 7: Project Oversight</td>
<td>Month 1</td>
<td>Month 29</td>
</tr>
</tbody>
</table>
Table 2 Parameters of Interest by Matrix

<table>
<thead>
<tr>
<th>Aqueous Samples</th>
<th>Sediment and Herbaceous Matter Collected in Baffle Box Chambers</th>
<th>Sediment Gathered from Nutrient Separating Screens</th>
<th>Herbaceous Matter /Solids Gathered from Nutrient Separating Screens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cadmium</td>
<td>Sample separation and preparation per description in Section 10</td>
<td>Sample separation and preparation per description in Section 10</td>
<td>Sample separation and preparation per description in Section 10</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>Sieve Analysis (5 screens)</td>
<td>Sieve Analysis (5 screens)</td>
<td>Sieve Analysis (5 screens)</td>
</tr>
<tr>
<td>Total Copper</td>
<td>Percent Organic Matter</td>
<td>Percent Organic Matter</td>
<td>Percent Organic Matter</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>Density</td>
<td>Density</td>
<td>Density</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>Total Nitrogen</td>
<td>Total Nitrogen</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>Chemical Oxygen Demand</td>
<td>Chemical Oxygen Demand</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>Total Ammonia</td>
<td>Total Phosphorus</td>
<td>Total Phosphorus</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Mercury</td>
<td>Mercury</td>
<td>Mercury</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>Barium</td>
<td>Barium</td>
<td>Barium</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>Chromium</td>
<td>Chromium</td>
<td>Chromium</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cadmium</td>
<td>Cadmium</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Iron</td>
<td>Iron</td>
<td>Iron</td>
<td>Iron</td>
</tr>
<tr>
<td>Nickel</td>
<td>Nickel</td>
<td>Nickel</td>
<td>Nickel</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zinc</td>
<td>Zinc</td>
<td>Zinc</td>
</tr>
<tr>
<td>Copper</td>
<td>Copper</td>
<td>Copper</td>
<td>Copper</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>Acenaphthylene</td>
<td>Acenaphthylene</td>
<td>Acenaphthylene</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>Benzo(a)pyrene</td>
<td>Benzo(a)pyrene</td>
<td>Benzo(a)pyrene</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>Benzo(g,h,i)perylene</td>
<td>Benzo(g,h,i)perylene</td>
<td>Benzo(g,h,i)perylene</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>Fluoranthene</td>
<td>Fluoranthene</td>
<td>Fluoranthene</td>
</tr>
<tr>
<td>Fluorene</td>
<td>Fluorene</td>
<td>Fluorene</td>
<td>Fluorene</td>
</tr>
<tr>
<td>1-Methylnaphthalene</td>
<td>1-Methylnaphthalene</td>
<td>1-Methylnaphthalene</td>
<td>1-Methylnaphthalene</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Naphthalene</td>
<td>Naphthalene</td>
<td>Naphthalene</td>
</tr>
<tr>
<td>Pyrene</td>
<td>Pyrene</td>
<td>Pyrene</td>
<td>Pyrene</td>
</tr>
</tbody>
</table>
D. Site Locations

1. Rockledge City

Figure 2 The Nutrient Separating Baffle Box Location at the Intersection of Little John Dr. and Rockledge Dr., Rockledge City
2. Stuart

Figure 3 Baffle Box Location at SE Lincoln Ave. and Dixie Hwy., Stuart
Figure 4 Baffle Box Location at the Intersection of the SE Parkway Dr. and SE 7th Street, Stuart
3. Sarasota

Figure 5 Baffle Box location at the intersection of Oriole Dr. and McClellan Pkwy, Sarasota
Section 7 **Quality Objectives and Criteria**

The objective of this monitoring program is to determine the effectiveness of baffle boxes in removing stormwater pollutants. These data will become part of FDEP’s BMP toolbox, with removal efficiencies to be used by communities in their TMDL compliance programs.

This project will evaluate performance of two Type 1 baffle boxes (no horizontal screens) and two Nutrient Separating Baffle Boxes (Type 2). The following will be performed:

- For each baffle box, flow monitoring and autosampler compositing of influent and effluent samples will be carried out during 7 to 10 storm events.
- For each baffle box, the bottom chambers will be initially cleaned at the start of the project. The volume of material accumulated in each chamber will be monitored after each of the 7 to 10 storm events.
- Two times during the project, the material in the bottom of each chamber of each baffle box will be completely removed. A series of sorting, drying, compositing, separating, and analytical procedures will be performed on a volume-weighted composited sample to determine mass, volume, density, particle size, and chemical constituents.
- For the two Nutrient Separating Baffle Boxes, the upper screens will be initially cleaned at the start of the project. The volume of material accumulated on each screen will be monitored after each of the 7 to 10 storm events by measuring the depth of accumulated material and using these measurements to calculate the volume of the material accumulated on the Nutrient Separating Baffle Box screens.
- The material trapped on the screens of the two Nutrient Separating Baffle Boxes will be completely removed two times during the project. A series of sorting, drying, compositing, separating, and analytical procedures will be performed to determine mass, volume, density, particle size, and chemical constituents for two subfractions of a composited sample.
- Additional floating material that collects behind skimmers will be removed during bottom chamber or screen cleanouts and quantified.

The monitoring data will be used to calculate:

1. total masses, event average concentrations, and event mass removal efficiencies of non-gross solids constituents (dissolved, colloidal, and suspended) entering and leaving the boxes for each of 7 to 10 storm events;
2. the total mass of gross solids and associated pollutants retained in the bottom chambers over the time period corresponding to the 7 to 10 storm events; and
3. for NSBB, the total mass of gross solids and associated pollutants retained on the screens over the time period corresponding to the 7 to 10 storm events.

A. Precision and Accuracy

Precision describes the reproducibility of results and will be determined through the collection of field and laboratory duplicate samples and/or duplicate spiked samples. Accuracy is the degree of agreement between an observed value and an accepted reference value. Accuracy will be evaluated through the analysis of surrogate spikes, Laboratory Control Samples (LCS),...
Laboratory Control Sample Duplicates (LCSD), matrix spike samples (MS/MSD) and laboratory internal blind audit samples. Precision and accuracy information is tracked by the laboratory, with acceptable ranges updated periodically. In addition, NELAC requirements include the analysis of proficiency test samples to evaluate precision and accuracy.

Precision and accuracy requirements for the target analytes and matrices are provided in Tables 7, 8 and 9.

B. Representativeness

Representativeness refers to the relationship of a sample taken from a site to be analyzed to the remainder of the sample matrix at the site. The use of FDEP approved procedures for collection, compositing and preservation of samples shall achieve representativeness.

C. Comparability

The use of FDEP approved procedures and consistent approved methodologies ensure the comparability of data sets generated by different laboratories.

D. Completeness

Completeness is defined as a measure of the extent to which the data fulfill the data quality objectives of the project. The completeness of the data will be determined during the data validation and verification process.
Section 8 **Special Training/Certifications**

Harbor Branch Environmental laboratory (HBEL), located in Ft. Pierce, FL, is FDOH NELAP certified laboratory # E96080. HBEL’s certification documentation is provided as Appendix A.

MACTEC Engineering in Jacksonville, FL. MACTEC is an FDEP approved materials testing laboratory.

Jupiter Environmental Laboratories, Inc. (JEL), located in Jupiter, FL., is FDOH NELAP certified laboratory # E86546. JEL’s certification documentation is provided in Appendix B.

Sanders Laboratories, Inc. (SL), located in Nokomis, FL., is FDOH NELAP certified laboratory # E84380. SL’s certification documentation is provided in Appendix C.
Section 9 **Documentation and Records**

Documentation procedures outlined in DEP-QA-001/01, and FD 1000 will be followed. In accordance with FDEP Rule, 62-160.240 & .340, F.A.C., all documentation archives will be kept for a minimum of 5 years after the date of project completion. Reports and deliverables will be submitted in Excel ’97 or Access 2000 format.

A. Field Procedure Documentation and Reporting

The following field related information will be reported to the FDEP project manager:

- Site and/or stormwater BMP name
- Field ID for each sample container and the associated analytes (test methods) for which the container was collected
- Date and time of sample collection
- Sample collection depth, if applicable
- Sample collection method identified by SOP number
- Indication of samples that were filtered
- Field test measurement results, if applicable:
 - FDEP SOP number
 - Parameter name
 - Result
 - Result unit
 - Applicable data qualifiers per Table 1 of Chapter 62-160, F.A.C.
- Narrative comments discussing corrective/preventive actions taken for any failed QC measure (e.g., blank contamination, meter calibration failure, split sample results, etc.), unacceptable field measurement or other problems related to the sampling event.

1. **Field Logs**

Field notes are documented using a permanent marker by field staff in a bound waterproof notebook. Logs will be maintained according to FD 1000.

2. **Sample Collection, Preservation and Transport**

All documentation procedures will be carried out in accordance with FD 5000. Chain of custody forms and sample tags will be supplied by the laboratory, copies of which are provided as Figures 5 and 6. Legal or evidentiary chain of custody, as defined in FD 1000 and the NELAC standards, will be executed.

3. **Equipment Decontamination, Calibration and Maintenance Logs**

Documentation of equipment decontamination will be carried out according to FD 2000. Certificates from vendors will be retained, whether from a laboratory or commercial vendor. Records of the lot numbers of reagents and other cleaning supplies, with the inclusive dates for use, will be recorded. Pre-cleaned container packing slips, lot numbers of shipments, and certification statements provided by the vendor will be retained. All local, state and federal
requirements pertaining to waste storage and disposal will be followed. Equipment maintenance documentation will be carried out according to FDEP SOP FD 3000.

B. Laboratory Documentation and Reporting

Laboratory deliverables will be submitted in Excel '97 or Access 2000 format. Laboratory reports will be issued in accordance with NELAC requirements. The data elements specified in DEP-QA-002/02, Table 2, will be included.

Quarterly progress reports submitted to FDEP shall include the following information:

- Laboratory sample identification (ID) and associated field ID
- Analytical/test method
- Parameter/analyte name
- Analytical result (including dilution factor)
- Result unit
- Applicable qualifiers per Table 1 of Chapter 62-160, F.A.C.
- Result comments to include corrective/preventive actions taken for any failed QC measure (e.g., QC sample, calibration failure, etc.) or other problem related to the analysis of the samples
- Date and time of sample preparation
- Date and time of sample analysis
- Results of laboratory verification of field preservation
- Sample matrix
- DoH ELCP certification number for each laboratory
- MDL
- PQL
- Sample type (blank type, duplicate type, etc.)
- Field and laboratory QC blank results:
 - Laboratory QC blank analysis results as required by the method, NELAC Chapter 5 and the QAPP
 - Field quality control results including trip blanks, field blanks, equipment blanks, and field duplicates (or replicates) as specified in the QAPP
- Results of sample matrix spikes, laboratory duplicates or matrix spike duplicates, as applicable
- Results of surrogate spike analyses
- Results of laboratory control samples (LCS)
- Link between each reported quality control measure (e.g., QC blanks, matrix spikes, LCS, duplicates, calibration failure, etc.) and the associated sample results
- Acceptance criteria used to evaluate each reported quality control measure

C. Archival of Electronically Stored Data

Reports generated will be maintained by Sutron, PBS&J and B&H.
D. QAPP Document Control

Upon the generation of a new revision of the QAPP, copies will be distributed to the individuals listed in Section 3 of the QAPP via email.

<table>
<thead>
<tr>
<th>Document/Record</th>
<th>Location</th>
<th>Retention Time</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAPP and revisions</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
<tr>
<td>QAPP distribution documentation</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
<tr>
<td>Field notebooks</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper</td>
</tr>
<tr>
<td>Field equipment calibration and</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper</td>
</tr>
<tr>
<td>maintenance logs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of custody</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper</td>
</tr>
<tr>
<td>Field SOPs</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
<tr>
<td>Laboratory QA manual</td>
<td>Laboratory</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
<tr>
<td>Laboratory SOPs</td>
<td>Laboratory</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
<tr>
<td>Laboratory data reports</td>
<td>Laboratory</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
<tr>
<td>Laboratory equipment maintenance logs</td>
<td>Laboratory</td>
<td>5 years after project completion</td>
<td>Paper</td>
</tr>
<tr>
<td>Laboratory calibration records</td>
<td>Laboratory</td>
<td>5 years after project completion</td>
<td>Paper</td>
</tr>
<tr>
<td>Audit/corrective action documentation</td>
<td>B&H, Sutron and PBS&J offices</td>
<td>5 years after project completion</td>
<td>Paper, electronic</td>
</tr>
</tbody>
</table>
Figure 6 Chain of Custody Forms
Chain-of-Custody and Agreement to Perform Services

Method(s) of Shipment:

<table>
<thead>
<tr>
<th>Standard Laboratory Turn Around Time</th>
<th>Rush in ___ Business Days Requires Laboratory Approval</th>
</tr>
</thead>
</table>

For Lab Use Only

- **LAB #**
- **Temperature**
 - Checked
 - Intact
- **pH**
 - Checked
- **Custody Seals**
 - Checked
- **PRESERVATIVE**
- **ANALYSES REQUESTED**
- **COMMENTS**

LAB ID

- **COLLECTION DATE**
- **TIME**
- **Sample Type**
- **MATERIAL**
- **# Containers**
- **SAMPLE DESCRIPTION**
 - As Will Appear On Report

* Sample Type: G=Grab, C=Composite
** Material: S=Sediment, SL=Sediment, DW=Drinking Water, GW=Ground Water, SW=Surface Water, WW=Wastewater, M=Marine

Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for SAMPLER

CHAIN PAGE ____ of ____
An example of the stickers that go onto bottles during "hit prep" prior to shipment to client. For use by client in the field. Can be pre-printed by lab, or can be filled out in field on put on bottles by techs.

An example of the labels generated by the Jupiter Environmental laboratories, Inc. LIMS system during sample log-in.

Samples use bar code for tracking thru departments and for disposal. Any samples with "hits" are flagged in LIMS and when scanned during sample disposal they are treated appropriately.

Labels contain all information required under FDEP/NEELAC guidelines.

- Customer
- Project ID
- Sample ID
- Sample location
- Sample description
- Disposal data
- Bottle type/size
- Preservation
- Project manager/lab
- Chain of Custody ID #
- Sample number and fraction number (COC+Sample number - Fraction code ABCD etc)
<table>
<thead>
<tr>
<th>Project</th>
<th>Sample Type</th>
<th>Matrix</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SANDERS ENVIRONMENTAL LABORATORIES EXAMPLE BOTTLE LABEL
Section 10 **Sampling Process Design**

A. Site Location
Two site locations will be in Stuart, one at the intersection of Lincoln St. and Dixie, and one on SE 7th St. One site location will be in Rockledge City, at the intersection of Little John Dr. and Rockledge Drive. One site location will be in Sarasota at the intersection of Oriole Dr. and McClellan Pkwy.

One baffle box has been installed at each site, for a total of four baffle boxes. Two autosamplers will be installed at each of the four baffle box sites, for a total of 8 autosamplers.

B. Monitoring and Sampling Frequency and Duration
At each site, 7 to 10 storm events will be sampled, where each storm event will have a minimum of 0.2 inch of rainfall. Sampling will end once 10 storm events have been captured meeting the 0.2 inch rainfall requirement, unless extreme weather conditions prevent the sampling of 10 events, in which case at least 7 events will be sampled.

Rain gauges will be installed at each site to keep continuous records of rainfall during the project period. Flow meters will be installed at each box to record volumes of water passing through the boxes.

Each baffle box will be equipped with one rain gauge, one flow meter, and two refrigerated autosamplers. One flow meter will be installed at the outflow of each baffle box to record flow. This flow meter will connect to one rain gauge and two autosamplers. The flow meter will be programmed to receive the rainfall information from the rain gauge and trigger the autosamplers, taking the samples when the rainfall value is greater than 0.2 inch by the flow weighted composite method. For each baffle box and each storm, the inflow autosampler will composite a single inflow sample and the outflow autosampler will composite a single outflow sample.

The plan area of each baffle box chamber will be ascertained before the initiation of the study, through drawings or direct measurement. The volume of material accumulated in each baffle box bottom chamber will be estimated following each storm event. Volume will be determined by multiplying the average depth of gross solids material in the chamber by the plan area. The average depth of material will be ascertained by one or more physical measurements of depth of the material surface or its distance below a vertical datum. A measuring rod with a small end plate that can rest on the material surface will be used to measure the depth of accumulated sediment in the baffle box chambers. Depth estimates along with visual observations of the pattern of the height of solids accumulation, will be used to estimate and average material depth.

The volume of material accumulated on the screens of NSBB will be estimated following each storm event. Volume will be determined by visual inspection of material trapped on the screens, and an estimate of volume based on an appropriate number of physical measurements to quantify depths and area of deposited material.
At the initiation of the study, all gross solids material in the baffle box bottom chambers, screens of the two NSBB, and any floating material, will be completely removed. During the duration of study (corresponding to the 7 to 10 monitored storm events), the material accumulated in the bottom chambers of each baffle box will be removed twice. The material accumulated on the screens of the two NSBB will be removed twice during the study period, at the same time as bottom chambers are cleaned out. Any floating material that accumulates behind skimmers, if any are installed, will also be removed.

C. Number of Samples and Matrices

Samples collected by Sutron will be sent to Harbor Branch Environmental Laboratory in Ft. Pierce, FL for analysis. Sieve analysis, percent organic matter and density analysis will be performed by MACTEC Engineering and Consulting, Inc. in Jacksonville, FL. Sutron will collect stormwater samples and sub-contract sediment/solid sampling to HBEL.

Stormwater samples collected by PBS&J will be shipped to Sanders Laboratories in Nokomis, FL, and Jupiter Environmental Laboratories in Jupiter, FL, for analysis. Solid samples collected by PBS&J will be shipped to Harbor Branch Environmental Laboratory in Ft. Pierce, FL for analysis. Sieve analysis, percent organic matter and density analysis will be performed by MACTEC Engineering and Consulting, Inc. in Jacksonville, FL.

Aqueous Samples

Refrigerated autosamplers will be used to collect flow weighted stormwater samples at the entrance and exit to the baffle boxes. Ten storm events will be sampled for each of the four site locations. One composite inflow and outflow sample will be analyzed per storm per site. A maximum of 80 samples collected via autosampler will be shipped to the laboratory for analysis. Fecal coliform grab samples will be collected by pouring the composite sample into a single sterile container at the end of the sampling event from each five gallon autosampler bottle after it has been thoroughly mixed.

Aqueous methodologies, precision and accuracy, MDL and PQL information for all laboratories is presented in Tables 8 and 9.

Samples Collected from Baffle Box Chambers

Volume Measurement

Each time water quality samples are taken, the volume of all material (trash and debris, herbaceous organic matter, and sediment) will be calculated for each baffle box chamber. Total accumulated volume will be calculated by multiplying the horizontal cross sectional area of each chamber by the average depth of the accumulated material in that chamber. The average depth of accumulation will be determined by measuring the depth of material at a sufficient number of locations to obtain a reasonable average depth estimate for the chamber.

Laboratory Analysis
Two times during the life of the project, samples of bottom chamber material (trash and debris, herbaceous material, and sediment) will be collected from each baffle box chamber. One sampling event will be performed after 4-5 storm events depending on material accumulation and the second at the end of water quality monitoring. At least one event will be performed during or immediately after the “wet” season.

The sample volumes from individual chambers must be great enough to form a composite sample volume that is sufficient for all subsequent analyses. For each baffle box, the material in each chamber will be combined to form a single volume-weighted composite sample. Compositing will be performed on a weighted basis in each respective laboratory, with weighing criterion based on the volume of herbaceous material and sediment accumulated in each chamber (trash and debris not included). With the weighted compositing procedure, chambers with greater accumulated volume (typically the upstream chambers) will contribute a greater amount of material to the composite. The volume-weighted composited (with trash and debris removed) samples will be analyzed for the parameters listed in Table 7.

Following each bottom chamber sampling event, all material in the boxes will be removed by the responsible municipal maintenance entity under the supervision of the consultants. The total volume, mass, and density of the herbaceous material/sediment will be calculated, and analyses will be performed in the composite sediment sample.

For baffle box bottom material, a total of 8 composite samples (4 baffle boxes x 2 samples per baffle box) will be collected and a total of 8 sets of analyses will be performed.

Material Collected on the Nutrient Separating Baffle Box Screens

Volume Measurement

Each time water quality samples are taken, the volume of all material (trash and debris, herbaceous organic matter, and sediment) will be estimated for the Nutrient Separating Baffle Box screen.

Total accumulated volume will be estimated by averaging horizontal cross section and depth measurements.

Laboratory Analysis

Two times during the life of the project, the material trapped on the screens (trash and debris, herbaceous matter, and sediment) will be completely removed. One sampling event will be performed after 4-5 storm events depending on material accumulation and the second at the end of water quality monitoring. At least one event will be performed during or immediately after the “wet” season.
The material removed from the screens will be spread out on a flat surface. Trash and debris (litter, paper, plastic, metal, glass, cups, styrofoam, bags, branches, 2x4, etc.) will be visually identified and removed by hand. The bulk volume of the removed material will be measured and the dry weight determined. At least three representative samples will be collected from the three baffle box screen sections of each baffle box, and a composite sample collected. A portion of the wet composite sample will be analyzed for PAHs.

The remaining material (herbaceous material and sediment) will be mixed and dried for 48 hours outside, spread out to a thickness less than ½ inch and dried for an additional 72 hours before mixing again. At least five samples collected from different locations will be combined into to a single composite sample. The individual sample volumes must be great enough to form a composite sample volume that is sufficient for all subsequent analyses. The composite sample will be dried again, weighed, and divided into two subfractions by using non-metallic screening (Florida Aquatic Ecosystems M1000, 1 mm) to separate the organic material from the inorganic material. The two subfractions of each composited sample (material retained on the 1 mm screen, and material passing through the 1 mm screen) will be sent to the lab to be analyzed for the parameters listed in Table 7. Sieve analysis will not be performed on the portion of the sample that is retained on the 1 mm screen since the particle sieves that will be used are less than 1 mm.

For NSBB screen material, a total of 4 dried composite samples and 8 dried composite sample subfractions (2 Type 2 baffle boxes x 2 samples per baffle box x 2 subfractions/sample) will be collected during the study and a total of 8 sets of analyses will be performed. In addition, 4 composite wet samples will be analyzed for PAHs.

The PAH dry weight (mg/kg) will be calculated for the wet composite sample, and compared to the PAH (mg/kg) dry weight for the two dry subsamples. Using the dry weight of the composite sample and each subsample, mg/kg dry weight will be calculated for the total composite and each of the two subsamples, and a mass balance calculation used to determine PAH loss from drying and sieving (1mm).
Section 11 **Sampling Methodology**

All sampling performed will conform to the requirements set forth in Chapter 62-160, Florida Administrative Code (F.A.C.) and the document “Requirements for Field and Analytical Work performed for the Department of Environmental Protection under Contract” (DEP-QA-002/02), February 2002, and “Standard Operating Procedures for Field Activities” (DEP-QA-001/01).

A. Aqueous Sample Collection

1. Equipment Specifications

The following equipment will be used during the collection of aqueous samples. The sampling equipment construction materials are summarized in Table 4.

 a) Rain Gauge

 One ISCO 674 rain gauge registers the precipitation information at each location.

 b) Flow Meters

 Three ISCO 750 Area-Velocity Flow Modules and one ISCO 730 Flow Module will be installed at the outflow pipes of the baffle boxes to record water flow rate. The ISCO 730 Flow Module measures depth of water in a pipe and calculates water flow rate using Manning’s Formula. Although this is a very reliable method of flow estimation, it can only be implemented when the pipe is dry unless runoff is present and the pipe discharge has a free surface with no surcharged tailwater condition. The baffle box location in Sarasota meets these requirements and therefore depth measurement will be used for flow measurement. The other 3 monitoring locations are different because pressurized flow conditions (full pipe flow) are expected at least 50% of the time that discharge is occurring. Because of this, discharge cannot be calculated from depth measurements alone via Manning’s formula; therefore, the ISCO 750 Area-Velocity Flow Module will be used to record flow at the two Stuart sites and the Rockledge site.

 c) Autosamplers

 Two refrigerated ISCO Portable Sequential Samplers will be deployed at each baffle box for taking samples from the inflow and the outflow pipes of each baffle box. Since influent and effluent samples will be flow composited, a single sample collection polyethylene bottle may be used for each sampler. Intake lines will use strainers and be mounted 2 inches above the pipe invert.

 d) Flowlink Software

 Flowlink operational and data analysis software will be used to program the ISCO flow meters to register the precipitation values from the ISCO 674 rain gauge, record the water levels and velocity and convert the flows using the flow continuity equation and Manning’s equation; and to trigger the ISCO autosamplers to take flow weighted samples at precipitation values greater than 0.2 inch.
2. Procedure for Collection and Preservation of Flow Weighted Composite Samples
Aqueous sampling will be carried out according to FDEP SOP FS 2100 and FS 2000. Preservation and filtration kits will be obtained from the laboratory. Filtration of orthophosphate samples will be carried out in the field in accordance with FDEP SOP FS 2000. Funnels will be dedicated to each baffle box and matrix.

Aqueous sample preservation and holding times are provided in Table 5.

3. Procedure for Collection and Preservation of Fecal Coliform Samples
Fecal coliform samples will be collected by pouring a well mixed portion of the contents of the autosampler-composited influent and effluent samples into a sterile container.

B. Herbaceous Material and Sediment Collection and Processing
The sampling equipment construction materials are summarized in Table 4.

1. Trash, Herbaceous Matter, and Sediment Samples In Baffle Box Chambers
Trash, herbaceous material, and sediment samples from the baffle box chambers will be collected in accordance with FDEP SOP FS 4000 using a stainless steel hand auger or petit ponar. Samples will be volume-weighted composited into one sample and processed in the lab for analysis.

The baffle box chambers will be vacuumed clean after each sediment sampling event by the responsible municipal maintenance entity under the supervision of the consultants and total volume and mass of removed sediment and total volume and mass of calculated. Sediment sample preservation and holding times are provided in Table 6.

2. Trash, Herbaceous Material and Sediment Gathered from NSBB Screens
For the NSBB, the trash, herbaceous material and sediment trapped in the screens will be removed and sorted. Sediment will be separated from the trash samples will be prepared according to the procedure in Section 10C described above and shipped to the laboratory in double sealed Ziploc bags. The total volume and mass of removed sediment and total volume and mass of debris will be calculated. Sediment and gathered from the screens will be tested separately from the debris.

Sample preservation and holding times are provided in Table 6.
C. Equipment Decontamination

All field equipment will be decontaminated using the procedures outlined in FDEP SOP FC 1000, including autosamplers, autosampler bottles and tubing, hand augers and petit ponars. Autosampler bottles, hand augers, petit ponars and the compositing equipment will be decontaminated after each sampling event. Sampling equipment will be dedicated to each location. Equipment decontamination will by carried out at the HBEL and JEL facilities.

Shipping coolers will be supplied and decontaminated by the laboratory.

All local, state and federal requirements pertaining to waste storage and disposal will be followed.
Section 12 **Sample Handling and Chain of Custody**

A. Sample Identification
Each sample container will be labeled with a unique field identification code according to FD 1000. The chain of custody labels are presented as Figure 7.

B. Chain of Custody Procedures
Legal or evidentiary chain of custody, as defined in FD 1000 and the NELAC standards, shall be executed. The chain of custody form is presented as Figure 6.

C. Shipping Procedures
Samples will be transported to the laboratory by the field technician immediately following collection. Samples will be stored in coolers and iced from time of collection to delivery at the laboratory.

D. Sample Containers, Preservation and Holding Times
Sample containers and preservation kits will be obtained from the laboratory. Filters and syringes used to filter orthophosphate samples will be obtained from the laboratory. Preservation, holding times, and container types will conform to the requirements in FS 1000.

Table 5 Aqueous Matrix Containers, Preservation, and Holding Times

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Container</th>
<th>Preservation</th>
<th>Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cadmium</td>
<td>250ml HDPE</td>
<td>HNO₃ to pH<2</td>
<td>6 months</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>250ml HDPE</td>
<td>HNO₃ to pH<2</td>
<td>6 months</td>
</tr>
<tr>
<td>Total Copper</td>
<td>250ml HDPE</td>
<td>HNO₃ to pH<2</td>
<td>6 months</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>250ml HDPE</td>
<td>HNO₃ to pH<2</td>
<td>6 months</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>125ml HDPE</td>
<td>4°C, H₂SO₄ to pH<2</td>
<td>28 days</td>
</tr>
<tr>
<td>TKN</td>
<td>125ml HDPE</td>
<td>4°C, H₂SO₄ to pH<2</td>
<td>28 days</td>
</tr>
<tr>
<td>Ammonia</td>
<td>125ml HDPE</td>
<td>4°C, H₂SO₄ to pH<2</td>
<td>28 Days</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>125ml HDPE</td>
<td>4°C, H₂SO₄ to pH<2</td>
<td>28 days</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>60ml HDPE</td>
<td>Filter with 0.45µ filter immediately then 4°C</td>
<td>48 hours</td>
</tr>
<tr>
<td>TSS</td>
<td>1 L HDPE</td>
<td>4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>Fecal Coliforms</td>
<td>120ml Sterile</td>
<td>4°C</td>
<td>6 hours</td>
</tr>
</tbody>
</table>
Table 6 Herbaceous Material/Sediment Matrix Containers, Preservation and Holding Times

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Container</th>
<th>Preservation</th>
<th>Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>1 gal. Ziploc bag</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Percent Organic Matter</td>
<td>1 gal. Ziploc bag</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Density</td>
<td>1 gal. Ziploc bag</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>Mercury</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>Aluminum</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Barium</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Chromium</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Cadmium</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Iron</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Nickel</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Zinc</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Copper</td>
<td>8 oz Glass Wide Mouth</td>
<td>4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>Fluorene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>1-Methylnaphthalene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
<tr>
<td>Pyrene</td>
<td>Glass, 8 oz. wide mouth with Teflon lined lid</td>
<td>4°C</td>
<td>7 days until extraction, 40 days after</td>
</tr>
</tbody>
</table>
Section 13 **Analytical Methodology**

A. Sediment/Solid Matrix

Table 7 HBEL/MACTEC Sediment/Solid Methodology, Precision and Accuracy, Detection Limits

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Matrix</th>
<th>Units</th>
<th>Method</th>
<th>Precision (% RSD)</th>
<th>Accuracy (% Recovery)</th>
<th>MDL</th>
<th>PQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Preparation</td>
<td>Sediment/Solid</td>
<td>N/A</td>
<td>Sample separation and preparation per description in §10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sieve Analysis (5 screens: #20, #40, #80, #100, <#200)</td>
<td>Sediment/Solid</td>
<td>N/A</td>
<td>ASTM D422</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Percent Organic Matter</td>
<td>Sediment/Solid</td>
<td>%</td>
<td>ASTM D2974</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Density</td>
<td>Sediment/Solid</td>
<td>g/cc</td>
<td>ASTM D2937</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA/CE81</td>
<td>12</td>
<td>64 - 136</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 410.4</td>
<td>12</td>
<td>71 - 136</td>
<td>500</td>
<td>2000</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 365.4</td>
<td>14</td>
<td>70 - 132</td>
<td>0.0094</td>
<td>0.0376</td>
</tr>
<tr>
<td>Mercury</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 7470</td>
<td>12</td>
<td>67 - 141</td>
<td>0.0035</td>
<td>0.014</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>15</td>
<td>80 - 116</td>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>Barium</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>9</td>
<td>88 - 111</td>
<td>0.09</td>
<td>0.36</td>
</tr>
<tr>
<td>Chromium</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>7</td>
<td>88 - 112</td>
<td>0.09</td>
<td>0.36</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>8</td>
<td>89 - 113</td>
<td>0.035</td>
<td>0.14</td>
</tr>
<tr>
<td>Iron</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>18</td>
<td>79 - 138</td>
<td>1.25</td>
<td>5</td>
</tr>
<tr>
<td>Nickel</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>7</td>
<td>85 - 111</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Zinc</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>18</td>
<td>80 - 125</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Copper</td>
<td>Sediment/Solid</td>
<td>mg/kg</td>
<td>EPA 6010</td>
<td>17</td>
<td>84 - 120</td>
<td>0.07</td>
<td>0.28</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>22</td>
<td>36 - 122</td>
<td>69</td>
<td>276</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>Sediment/Solid</td>
<td>µg/kg</td>
<td>EPA 8270</td>
<td>9</td>
<td>55 - 117</td>
<td>67</td>
<td>268</td>
</tr>
</tbody>
</table>
B. Aqueous Matrix

Table 8 HBEL Aqueous Methodology, Precision and Accuracy, Detection Limits

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Matrix</th>
<th>Units</th>
<th>Method</th>
<th>Precision (% RSD)</th>
<th>Accuracy (% Recovery)</th>
<th>MDL</th>
<th>PQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cadmium</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 200.7</td>
<td>6</td>
<td>84 - 107</td>
<td>0.0007</td>
<td>0.0028</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 200.7</td>
<td>6</td>
<td>88 - 106</td>
<td>0.0018</td>
<td>0.0072</td>
</tr>
<tr>
<td>Total Copper</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 200.7</td>
<td>7</td>
<td>85 - 113</td>
<td>0.0014</td>
<td>0.0056</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 200.7</td>
<td>11</td>
<td>78 - 130</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 353.2</td>
<td>12</td>
<td>72 - 126</td>
<td>0.0054</td>
<td>0.0216</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 351.2</td>
<td>12</td>
<td>70 - 130</td>
<td>0.048</td>
<td>0.192</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 350.1</td>
<td>10</td>
<td>71 - 126</td>
<td>0.009</td>
<td>0.036</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 365.1</td>
<td>14</td>
<td>71 - 128</td>
<td>0.0094</td>
<td>0.0376</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 365.1</td>
<td>7</td>
<td>84 - 110</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 160.2</td>
<td>20</td>
<td>79 - 126</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Fecal Coliforms</td>
<td>Aqueous</td>
<td>CFU/100ml</td>
<td>SM 18-9222D</td>
<td>15</td>
<td>Presence</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 9 JEL/SL Aqueous Methodology, Precision and Accuracy, Detection Limits

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Parameters</th>
<th>Matrix</th>
<th>Units</th>
<th>Method</th>
<th>Precision (% RSD)</th>
<th>Accuracy (% Recovery)</th>
<th>MDL</th>
<th>PQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEL</td>
<td>Total Cadmium</td>
<td>Aqueous</td>
<td>µg/L</td>
<td>EPA 200.8</td>
<td><20</td>
<td>75-125</td>
<td>0.091</td>
<td>0.18</td>
</tr>
<tr>
<td>JEL</td>
<td>Total Chromium</td>
<td>Aqueous</td>
<td>µg/L</td>
<td>EPA 200.8</td>
<td><20</td>
<td>75-125</td>
<td>0.038</td>
<td>0.076</td>
</tr>
<tr>
<td>JEL</td>
<td>Total Copper</td>
<td>Aqueous</td>
<td>µg/L</td>
<td>EPA 200.8</td>
<td><20</td>
<td>75-125</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>JEL</td>
<td>Total Zinc</td>
<td>Aqueous</td>
<td>µg/L</td>
<td>EPA 200.8</td>
<td><20</td>
<td>75-125</td>
<td>0.95</td>
<td>1.9</td>
</tr>
<tr>
<td>JEL</td>
<td>Nitrate + Nitrite</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 353.1</td>
<td><20</td>
<td>85-115</td>
<td>0.002</td>
<td>0.02</td>
</tr>
<tr>
<td>SL</td>
<td>Total Kjeldahl Nitrogen</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 351.2</td>
<td>20</td>
<td>75.2-127</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>JEL</td>
<td>Ammonia</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 350.1</td>
<td><10</td>
<td>90-110</td>
<td>0.012</td>
<td>0.02</td>
</tr>
<tr>
<td>JEL</td>
<td>Total Phosphorus</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>JEL ICP 002</td>
<td><20</td>
<td>85-115</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>SL</td>
<td>Orthophosphate</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 365.1</td>
<td>7</td>
<td>84-110</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td>SL</td>
<td>Total Suspended Solids</td>
<td>Aqueous</td>
<td>mg/L</td>
<td>EPA 160.2</td>
<td>20</td>
<td>79-126</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SL</td>
<td>Fecal Coliforms</td>
<td>Aqueous</td>
<td>CFU/100ml</td>
<td>SM 18-9222D</td>
<td>15</td>
<td>Presence</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Section 14 Quality Control

A. Field Quality Control Samples

All field QC samples will be collected in accordance with FDEP SOP FQ 1000. Blanks are not required for microbiological, or physical and aggregate properties.

Analyte free water for use in generating field blanks will be obtained from the laboratory. Field quality control samples evaluate the precision of sampling techniques, the effectiveness of decontamination, and address possible effects of sample handling and transport. All quality control samples will be prepared on-site in the field, preserved and submitted to the laboratory along with the routine samples. Field generated quality control blanks will be collected according to the requirements of FQ 1230.

1. Field Generated QC Blanks

Precleaned Equipment (EB)
These blanks are collected on sampling equipment that has been brought to the site pre-cleaned and ready for use. Blanks will be collected at a minimum of 5% of each reported result/matrix combination for the life of a project. At least one blank for each reported test result/matrix combination will be collected each year.

Field Cleaned Equipment (FCEB)
These blanks are collected for sampling equipment that has been cleaned in the field. These blanks will be collected should sampling equipment require field decontamination during the course of the event. Blanks will be collected at a minimum of 5% of each reported result/matrix combination for the life of a project. At least one blank for each reported test result/matrix combination will be collected each year.

Field Blanks (FB)
Field blanks are not required if equipment blanks are collected. Collect field blanks if no equipment except the sample container is used to collect the samples or if the sampling equipment is certified clean by the vendor or the laboratory providing the equipment. Field blanks are collected at a minimum of 5% of each reported test result/matrix combination for the life of a project. At least one blank for each reported test result/matrix combination will be collected each year.

Composite Sample Container Blanks
Equipment blanks will be collected on the composite sample containers at a minimum of 5% of each reported result/matrix combination for the life of a project. At least one blank for each reported test result/matrix combination will be collected each year.

Autosampler Tubing Equipment Blank
A blank is collected each time new tubing is installed on an auto sampler or group of autosamplers, or at a frequency of 5% of the tubing changes, whichever is less. If the tubing is
being replaced for multiple autosamplers at the same time, one equipment blank may be collected on a representative length of each batch (spool) of replacement tubing. At least one EB will be collected from each spool or bag of new tubing.

Table 10 Sample and Blank Collection Frequency Summary

<table>
<thead>
<tr>
<th>Sample Matrix</th>
<th>Maximum # Samples Over 2 years</th>
<th># EB</th>
<th># FCEB</th>
<th># FB</th>
<th># Composite Container Blanks</th>
<th># Autosampler Tubing Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water-Autosampler</td>
<td>80</td>
<td>4</td>
<td>0</td>
<td>N/A</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Material from Baffle Box Chambers</td>
<td>8</td>
<td>2</td>
<td>2*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Material Collected on Screens</td>
<td>12</td>
<td>2</td>
<td>2*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Material Collected Behind Skimmer (if present)</td>
<td>4</td>
<td>2</td>
<td>2*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Equipment decontamination is to be carried out at the HBEL facility. FCEBs will be collected in the event that field decontamination is necessary.

2. Evaluation of Field Blanks

If an analyte detected in the sample is also found in any field-generated QC blank that is associated with the sample, an attempt will be made to determine the cause of the QC blank contamination. The outcome of this investigation shall be reported and shall include a discussion of the corrective measures taken to minimize future occurrences of QC blank contamination.

If an analyte detected in the sample is also found in any field-generated QC blank that is associated with the sample, the analyte in the affected sample will be reported as estimated (“J” with a narrative explanation) unless the analyte concentration in the affected sample is at least 10 times the reported QC blank value concentration.

B. Laboratory Quality Control Samples

The laboratory shall ensure that the essential quality control measures, laboratory report content and documentation are consistent with Chapter 5 of the NELAC standards and DEP-QA-002/02. In addition, the quality control measures listed below shall be implemented.
1. Quality Control Requirements for Chemical Analyses

a) Matrix-Related Quality Control Samples
The laboratory will ensure that samples associated with this project are used for matrix spikes, and either laboratory duplicates or matrix spike duplicates. The laboratory shall analyze these samples:

- The first time samples from a sample collection matrix (see Table FA 1000-1) are submitted to the laboratory for this project for analysis. The laboratory shall select one or more of the received samples for use in composition of the matrix spike and duplicates.
- The last time samples from the sample collection matrix are received and analyzed. The laboratory shall select one or more of the received samples for use in composition of the matrix spike and duplicates.
- Spike levels must be at the concentrations specified in item c below.
- If the selected sample concentration is expected to be below the specified practical quantitation limit (PQL), then matrix spike duplicates must be used.

b) Laboratory Control Sample
Per NELAC Chapter 5 requirements, as least one Laboratory Control Sample (LCS; also known as Laboratory Fortified Blank) shall be prepared, analyzed and evaluated with each batch of 20 samples or less.

- The acceptance criteria for the LCS, according to the laboratory’s Quality Manual, are either obtained from the methodology or may be determined by the laboratory using control charting. In general a failing LCS shall be re-run. If the re-run fails, the matrix spike/matrix spike duplicate may be substituted if the recoveries are within the limits of the LCS with a narration qualifying this. If both the LCS and MS/MSD fail, the data shall be reported and qualified.
- If the LCS is unacceptable, the samples associated with the LCS shall be reprocessed with a new LCS. If the samples cannot be reprocessed, the data must be appropriately qualified.

c) Spiking/Fortification Requirements
All spike fortifications must take place prior to any required sample preparation steps (e.g., sample extraction, sample digestion, pH adjustment, etc.). The final concentration of any spike fortification shall be at the applicable level identified below.

- If any of the samples in the preparation batch are non-detect (i.e., below the MDL specified herein), the spiking level must not be greater than 2 times the PQL.
- The concentration of a spiked sample cannot exceed 5 times the highest concentration of any contracted sample in the preparation batch.
d) Evaluation of Matrix Spikes
The results of matrix spikes must meet the acceptance criteria specified in the methodology or the data must be appropriately qualified.

- If the failure is reported to be due to sample matrix interference, the laboratory shall document the process by which this conclusion is determined.

e) Evaluation of Laboratory Duplicate/Replicate Samples
All replicate samples (sample duplicates, matrix spike duplicates, LCS duplicates or other replicates) must be evaluated for a precision criterion not to exceed 20 % RPD.

- In the event that laboratory replicate agreement is not observed, the laboratory must investigate the poor precision and report the results with appropriate qualifiers and/or comments.

f) Instrument Calibration
In addition to calibration procedures specified in the analytical methods, the laboratory shall ensure that the following requirements are met:

- All sample results shall be chronologically bracketed between acceptable calibration verifications.
- Initial Calibration Requirements
 (i) The minimum number of calibration standards required to calibrate each instrument used for the contracted analyses shall conform to the analytical method approved in the QAPP. If the minimum number of calibration standards is not specified in the method, the number must be specified in the QAPP and shall be consistent with the NELAC Chapter 5 standards.
 (ii) Unless otherwise specified by the method, all sample results shall be based on the initial calibration curve responses.
 (iii) If linear regressions are used, the correlation coefficient shall be equal to or greater than 0.995 for all regressions.
 (iv) Immediately after performing an initial calibration, the accuracy of the calibration shall be verified using a second source. A second source may be a standard, a Standard Reference Material (SRM), or other sample type with a verified concentration such as a QC Check Sample. Standards must have been prepared from a different lot or vendor.
 (v) The acceptance criteria for second-source verifications shall be specified in the QAPP.
 (vi) Sample analysis cannot proceed if an initial calibration is unacceptable.
- Continuing Calibration Requirements:
 (i) When an initial calibration is not performed on the day of analysis, a continuing calibration standard shall be analyzed, evaluated and determined to be acceptable prior to analyzing samples.
(ii) A continuing calibration standard shall be analyzed and evaluated at the end of the analytical run.

(iii) The acceptance criteria for continuing calibration verifications shall be specified in the QAPP.

(iv) For each analytical run, the analytical sensitivity must be evaluated using a continuing calibration standard prepared at the PQL. The analyzed value of this standard must be within 70% – 130% of the expected value. If this PQL check fails, the blank and associated sample results must be reported as “estimated” per Chapter 62-160, F.A.C. unless the affected results are at least 10 times the absolute value of the observed bias of the PQL check.

(v) If a continuing calibration verification fails, samples not chronologically bracketed by acceptable calibration verifications must be reanalyzed or appropriately qualified.

- Sample results below the PQL and above the highest calibration standard shall be appropriately qualified.

g) Quality Control Blanks

- If a Contracted analyte is detected in any analytical QC blank, the sample results that are associated with the blank must be reported with the appropriate qualifier from Chapter 62-160, F.A.C., unless the affected sample concentrations are at least 10 times higher than the calculated QC blank concentration.

- Sample results must be chronologically bracketed with acceptable beginning and ending analytical QC blanks.

- If a Contracted analyte is detected in the field blank, equipment blank or trip blank, the result must be confirmed by reanalyzing a new aliquot of the blank unless the sample concentration results associated with the blank are at least 10 times the calculated blank concentration. The laboratory must investigate the blank contamination to determine that positive blank results are not due to a laboratory error and report the affected samples and field-generated blank results with appropriate qualifiers and/or comments.

h) Quality Control Failure

If any quality control measure or calibration verification fails (including those specified above), samples that are associated with the failure must be reanalyzed, if possible. Sample data that are associated with a failed quality control measure or calibration must be appropriately qualified as specified in Chapter 62-160, F.A.C. An explanatory comment must be attached to the final report for each result that has a qualifier code other than U, I, or A. Any additional qualifier codes used but not explicitly listed in Chapter 62-160, F.A.C. will be identified and defined in the report.

i) MDL/PQL Adjustment

The reported MDL and PQL for each sample must be adjusted for dilution factors and any relevant preparation weights and volumes.
2. Quality Control Requirements for Microbiological Testing

In addition to the quality control requirements outlined in Chapter 5 of the NELAC Standards, the following quality control measures shall be implemented for this project.

All microbiological analyses must conform to the requirements for facilities, personnel qualifications, equipment specifications and quality control measures discussed in *AWWA Standard Methods 20th edition, section 9020*.

a) Quality Control Blanks

- If the membrane filter technique is used, the sample set(s) shall be associated with a beginning and ending filtration blank.
- The results of any blank must be < 1 CFU/100 mL or the associated sample results must be reported with the appropriate qualifier from Chapter 62-160, F.A.C.

b) Laboratory Quality Control Duplicates

- At least 10% of the samples (or one per test run) shall be duplicated.
- All duplicate results shall be evaluated per method specifications using the precision criterion. The range of the transformed duplicates shall not exceed the precision criterion established by the laboratory. In the event that laboratory duplicate agreement is not observed, the laboratory must investigate the poor precision and report the results with appropriate qualifiers and/or comments.
- Field Quality Control Duplicates or Replicates - In the event that agreement (less than or equal the laboratory established precision criterion) is not observed between results from field-generated replicate samples, the laboratory must investigate the replicate analyses to determine that poor precision is not due to a laboratory error and report the results with appropriate qualifiers and/or comments. The laboratory shall use the analytical method specifications for precision control as a guide to evaluation of the field-generated replicate results.

c) Colony Counts

- In addition to the requirements listed below, all analytical results shall be calculated by the procedures established in the microbiological method(s) approved and listed in the QAPP.
- The laboratory shall make every attempt to ensure that colony counts are in the ideal range of 20 – 60 colonies per plate. Reported values from colony plate counts outside this range shall be qualified with a “B” (unless the reported value is from a 100 mL sample and the count is less than 20).
- If all counts are above 60, the result shall be calculated and reported from the highest dilution. This result must be reported as “estimated”.
- The laboratory shall follow the reporting requirements specified in the method for other results that are outside the ideal range.
- If the sample result is “too numerous to count (TNTC)” the laboratory shall report the filtration volume with the data qualifier “Z”.
Colony counts from samples that have been verified shall be adjusted based on the verification results as specified in the analytical method approved for this Agreement and listed in the QAPP.
Section 15 Instrument/Equipment Decontamination, Testing, Inspection and Maintenance

A. Equipment Requiring Maintenance, Testing or Inspection

Autosamplers
Approximately one monthly maintenance trip will be taken to each of the baffle sites by the technicians. Over a two year period this will result in 24 trips.

B. Equipment Decontamination
All sampling equipment and autosampler bottles will be decontaminated according to FDEP SOP FC 1000. All equipment will be decontaminated at the HBEL, SL, and JEL facilities.

C. Equipment Maintenance

Autosamplers
The autosampler tubing will be inspected each time the sample containers are picked up. If there is evidence of loss of elasticity or discoloration or other conditions that would impact the quality of the sample (such as algal growth), or the pumping flow rate, then the tubing will be replaced. The tubing will be inspected and replaced at a minimum of every six months or when applicable, as discussed above. If the tubing is being replaced for multiple autosamplers at the same time, one equipment blank may be collected on the entire length of replacement tubing.

Equipment preventive and routine maintenance will be documented according to FS 1000.
Section 16 **Field Instrument/Equipment Calibration and Frequency**

The ISCO autosamplers will be calibrated after installation on-site and after samples have been collected for each storm event. Calibration will be carried out according procedures found in the ISCO Portable Sampler manual as well as procedures in FS 2100.

The procedure described in the ISCO sampler manual is as follows:

Use a graduated cylinder for volume measurement.
• The sampler clears the previous calibration setting when you reinitialize the sampler.
• You cannot calibrate while the sampler is running a program.
• When the sampler delivers the sample, it runs through a complete sampling cycle, using the current settings for volume line rinses and retries. If it is a two part program, the sampler uses the volume setting for part A.
To calibrate:
1. Disconnect the pump tube from the bulkhead fitting.
2. Place the end of the tube over a collection container.
3. Follow the steps in Calibrating Sample Volumes in the margin.
4. Reconnect the pump tube to the bulkhead fitting.
Section 17 **Inspection/Acceptance of Supplies and Consumables**

A. **Sample Containers**
To be provided by the laboratory prior to each sampling event.

B. **Sample Coolers**
To be provided by the laboratory prior to each sampling event.

C. **Field Filtration Apparatus**
To be provided by the laboratory prior to each sampling event.

D. **Sample Preservation Kits**
To be provided by the laboratory prior to each sampling event.

E. **Analyte-Free Water**
To be provided by the laboratory prior to each sampling event.

F. **Equipment Decontamination Reagents**

1. **Liqui-Nox Detergent**
Liqui-Nox will be provided by the laboratories for decontamination performed at their facilities.

2. **Pesticide Grade Solvents**
Pesticide grade isopropanol will be provided by the laboratories for decontamination performed at their facilities.

3. **Reagent Grade Hydrochloric Acid**
Reagent grade hydrochloric acid will be provided by the laboratories for decontamination performed at their facilities.

Lot numbers and manufacturers of all reagents will be documented according to FD 1000.
Section 18 **Non-Direct Measurements**

Not applicable.
Section 19 **Data Management**

The documentation procedures described in FD 1000 will be followed.

A. Record Retention
All laboratory and field records as outlined in Rules 62-160.240 and .340, F.A.C. will be retained for a minimum of five years after the project completion.

B. Field Logs
Notebooks generated in the field by each contractor will be maintained in the West Palm Beach offices.

C. Chain of Custody Records
Chain of custody documentation will be maintained in the Sutron and PBS&J offices and by the laboratories.

D. Laboratory Data
Hardcopy and electronic reports generated by the laboratory will be retained for five years.

E. Data Archival
Electronic deliverables and final reports will be maintained by Berryman & Henigar.
Section 20 **Assessments and Response Actions**

A. Planning Review Audits

Initial: Within 15 days of the completion of the first sampling and analysis event the planning document shall be reviewed relative to the completed field and laboratory activities to determine if the data quality objectives are being met, identify any improvements to be made to the process, and refine the sampling and/or analytical design or schedule. Within one month of the review, a summary of the review, including any corrective action plans or amendments to the planning document, shall be sent to the DEP project manager and a copy shall be maintained with the permanent project records.

Ongoing: Planning reviews as described above shall occur annually.

B. Quality Systems Audits

B&H will make one site visit to each location during the monitoring process for the purpose of assessing the conformance of field activities to the QAPP.

C. Corrective Action

Any deviations from the approved QAPP procedures determined as a result of the site assessment visit will be documented and reported to the B&H project manager. In the event that QAPP procedures were not followed, the data will be considered unusable for inclusion in the final reports.

D. Statements of Usability

As a part of the audit process and the final report, statements about data usability shall be provided relative to the contract Data Quality Objectives and Data Quality Indicators specified in the QAPP.
Section 21 **Reports to Management**

A. Quarterly Reports

The results of the field audits and data validation/verification will be reported to the B&H project manager and will be incorporated into the summary reports to FDEP.

Quarterly reports will be sent to Sarasota County and FDEP, along with preliminary stormwater monitoring results and photographs, and preliminary and final project reports. Project updates will be provided to participating communities.

B. Final Reports

Preliminary and final reports from the monitoring contractors will be reviewed by B&H and revised as necessary. B&H will prepare a draft summary report compiling the results of the four monitoring programs. The draft report will give the results of the four baffle box monitoring programs and recommendations for removal efficiencies to be used by FDEP for the two types of baffle box. It will also summarize other findings and recommendations from the individual sites. The draft report will be submitted to FDEP for review, including three paper copies and one CD. Upon receipt of FDEP review comments, B&H will make revisions to the draft report and prepare the final report. B&H will provide five paper copies and one CD of the final report to FDEP and one paper copy to each participating community.
Section 22 **Data Review, Verification and Validation**

A. Data Verification

Data verification is the process for evaluating the completeness, correctness, and conformance of the data set against the methodology and contractual specifications.

Sampling, analyses, and data verification will be performed according to the requirements set forth in “Requirements for Field and Analytical Work Performed for the Department of Environmental Protection Under Contract” (DEP-QA-002/02), February 2002, and the quality control requirements discussed in Section 14 of the QAPP.

B. Data Validation

Data validation is an analyte and sample specific process that determines the quality of the data set relative to the end use. Any data deemed to be unusable for the stated objectives will be identified as such in the summary reports.
Section 23 **Verification and Validation Methods**

Data verification and validation will be carried out by the Sutron Corp. and PBS&J project managers and quality assurance officers according to the requirements set forth in “Requirements for Field and Analytical Work Performed for the Department of Environmental Protection Under Contract” (DEP-QA-002/02), February 2002 and according to the requirements included in Sections 7 and 14 of this QAPP.
Section 24 **Reconciliation with User Requirements**

Statements of Usability
As a part of the audit process and the final report, statements about data usability relative to the Data Quality Objectives specified in Section 7 and Quality Control requirements in Section 14 of the QAPP shall be submitted in the reports to management. The results of all quality control measures will be evaluated according to “Requirements for Field and Analytical Work Performed for the Department of Environmental Protection Under Contract” (DEP-QA-002/02), February 2002 and according to the requirements included in this QAPP.
Appendix A

HBEL Certification Documentation
State of Florida
Department of Health, Bureau of Laboratories
This is to certify that
E90090
Harbor Branch Environmental Laboratory
5600 U.S. 1 North
Ft. Pierce, FL 34946
has complied with Florida Administrative Code 64E-1, for the examination of Environmental samples in the following categories:

DRINKING WATER - Group I Unregulated Contaminants, Group II Unregulated Contaminants, Group III Unregulated Contaminants, Microbiology, Other Regulated Contaminants, Primary Inorganic Contaminants, Secondary Inorganic Contaminants, Synthetic Organic Contaminants

NON-POTABLE WATER - Extractable Organics, General Chemistry, Metals, Microbiology, Pesticides-Herbicides-PCB's, Volatile Organics

SOLID and CHEMICAL MATERIALS - Extractable Organics, General Chemistry, Metals, Microbiology, Pesticides-Herbicides-PCB's, Volatile Organics

BIOLOGICAL TISSUES - Extractable Organics, Metals, Pesticides-Herbicides-PCB's

Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory’s certification status in Florida for particular methods and analytes.

EFFECTIVE JULY 1, 2005 THROUGH JUNE 30, 2006

[Signature]

Ming S. Chen, Ph.D.
Bureau Chief, Bureau of Laboratories
Florida Department of Health
DH Form 1687, 7/94
NON-TRANSFERABLE 06/13/2005 E90090
Laboratories Certified Under NELAP by the Florida Department of Health
Listing of Organization FOAs Query Results

Database Version:
2/25/2006 5:30:15 AM

Laboratory Name Harbor Branch Environmental Laboratory
DOH ID: E96080

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Category</th>
<th>Method</th>
<th>Analyte</th>
<th>Certification Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Acenaphthene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Acenaphthylene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Anthracene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Benzo(a)anthracene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Benzo(a)pyrene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Benzo(b)fluoranthene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Benzo(g h i)perylene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Benzo(k)fluoranthene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Chrysene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Dibenz(a h) anthracene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Fluoranthene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Fluorene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Indeno(1 2 3-cd)pyrene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Naphthalene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 610</td>
<td>Pyrene</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>1, 2, 4-Trichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>1, 2-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>1, 3-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>1, 4-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2, 4, 6-Trichlorophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2, 4-Dichlorophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2, 4-Dimethylphenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2, 4-Dinitrophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2, 4-Dinitrotoluene (2, 4-DNT)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2, 6-Dinitrotoluene (2, 6-DNT)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2-Chlorophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>2-Methyl-4, 6-dinitrophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>3, 3’-Dichlorobenzidine</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>4-Bromophenyl phenyl ether</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>4-Chloro-3-methylphenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>4-Chlorophenyl phenylether</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>4-Nitrophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>Organics</td>
<td>Date</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzo(a)anthracene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzo(a)pyrene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzo(b)fluoranthene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzo(g h i)perylene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzo(k)fluoranthene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Butyl benzyl phthalate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chrysene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Di-n-butyl phthalate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Di-n-octyl phthalate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dibenzo(a h) anthracene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diethyl phthalate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dimethyl phthalate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoranthe</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluorene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hexachlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hexachlorobutadiene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hexachlorocyclopentadiene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hexachloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indeno(1 2 3-cd)pyrene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Isophorone</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Naphthalene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pentachlorophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>bis(2-Chloroethoxy)methane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>bis(2-Chloroethyl) ether</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>bis(2-Chloroisopropyl) ether (2 2'-Oxybis(1-chloropropane))</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>bis(2-Ethylhexyl) phthalate (DEHP)</td>
<td>3/14/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 625</td>
<td>n-Nitrosodimethylamine</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2 4-Trichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Dichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Diphenylhydrazine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 3-Dichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 3-Dinitrobenzene (1 3-DNB)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 4-Dichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4 5-Trichlorophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4 6-Trichlorophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dichlorophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dimethylphenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dinitrophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dinitrotoluene (2 4-DNT)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Substance</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,6-Dinitrotoluene (2,6-DNT)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Chloronaphthalene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Chlorophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Methyl-4,6-dinitrophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Methylnaphthalene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Methylphenol (o-Cresol)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Nitroaniline</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Nitrophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,3'-Dichlorobenzidine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-Nitroaniline</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Bromophenyl phenyl ether</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Chloro-3-methylphenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Chloroaniline</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Chlorophenyl phenylether</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Methylphenol (p-Cresol)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Nitroaniline</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Nitrophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acenaphthene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acenaphthylene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aniline</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anthracene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzidine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzo(a)anthracene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(a)pyrene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(b)fluoranthenone</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(g h i)perylene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(k)fluoranthenone</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzoic acid</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzyl alcohol</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Butyl benzyl phthalate</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Chrysene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Di-n-butyl phthalate</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Di-n-octyl phthalate</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Dibenz(a h) anthracene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Dibenzofuran</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Diethyl phthalate</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Dimethyl phthalate</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Fluoranthene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Fluorene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachlorobenzene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachlorobutadiene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachlorocyclopentadiene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachloroethane</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Indeno(1 2 3-cd)pyrene</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Isophorone</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Naphthalene</td>
<td></td>
</tr>
</tbody>
</table>
| Non-Potable Water | Extractable Organics | EPA 8270 | Analyte Description | Date
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pentachlorophenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phenanthrene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phenol</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pyrene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pyridine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bis(2-Chloroethoxy)methane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bis(2-Chloroethyl) ether</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bis(2-Chloroisopropyl) ether (2,2'-Oxybis(1-chloropropane))</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bis(2-Ethylhexyl) phthalate (DEHP)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n-Nitrosodipropylamine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n-Nitrosodimethylamine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n-Nitrosodiphenylamine</td>
<td>7/1/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FL-PRO</td>
<td>Total Petroleum Hydrocarbons (TPH)</td>
<td>11/12/2004</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>DEP SOP 10/03/83</td>
<td>Un-ionized Ammonia</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 110.2</td>
<td>Color</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 120.1</td>
<td>Conductivity</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 130.2</td>
<td>Hardness</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 150.1</td>
<td>pH</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 160.1</td>
<td>Residue-filterable (TDS)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 160.2</td>
<td>Residue-nonfilterable (TSS)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td>General Chemistry</td>
<td>EPA 160.3</td>
<td>Residue-total</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 160.4</td>
<td>Residue-volatile</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 180.1</td>
<td>Turbidity</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Bromate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Bromide</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Chlorate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Chloride</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Chlorite</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Fluoride</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Nitrate as N</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Nitrate-nitrite</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Nitrite as N</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Orthophosphate as P</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 300.0</td>
<td>Sulfate</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 310.1</td>
<td>Alkalinity as CaCO3</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 335.2</td>
<td>Cyanide</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 350.1</td>
<td>Ammonia as N</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 351.2</td>
<td>Kjeldahl nitrogen - total</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 351.2 - EPA 350.1</td>
<td>Organic nitrogen</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Nitrate as N</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Nitrate-nitrite</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Nitrite as N</td>
<td>7/23/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 354.1</td>
<td>Nitrite as N</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 360.1</td>
<td>Oxygen dissolved</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.1</td>
<td>Orthophosphate as P</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.1</td>
<td>Phosphorus total</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.4</td>
<td>Phosphorus total</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 370.1</td>
<td>Silica-dissolved</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 376.1</td>
<td>Sulfide</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 405.1</td>
<td>Biochemical oxygen demand</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 410.4</td>
<td>Chemical oxygen demand</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 413.1</td>
<td>Oil & Grease</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 415.1</td>
<td>Total organic carbon</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 418.1</td>
<td>Total recoverable petroleum hydrocarbons (TRPH)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 420.1</td>
<td>Total phenolics</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 425.1</td>
<td>Surfactants - MBAS</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 7196</td>
<td>Chromium VI</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 9014</td>
<td>Total cyanide</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 9040</td>
<td>pH</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 9060</td>
<td>Total organic carbon</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 9065</td>
<td>Total phenolics</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 9070</td>
<td>Oil & Grease</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 10200 H</td>
<td>Chlorophylls</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 2120 B</td>
<td>Color</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 2320 B</td>
<td>Alkalinity as CaCO3</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>Method</td>
<td>Parameter</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 2340 B</td>
<td>Hardness</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 2540 C</td>
<td>Residue-filterable (TDS)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 2540 D</td>
<td>Residue-nonfilterable (TSS)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 4500 F-C</td>
<td>Fluoride</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 4500-Si D</td>
<td>Silica-dissolved</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 5210 B</td>
<td>Biochemical oxygen demand</td>
<td>9/23/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 5210 B</td>
<td>Carbonaceous BOD (CBOD)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Aluminum</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Antimony</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Arsenic</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Barium</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Beryllium</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Boron</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Cadmium</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Calcium</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Chromium</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Cobalt</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Copper</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Iron</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Lead</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Magnesium</td>
<td></td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA</td>
<td>Metal</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Manganese</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Molybdenum</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Nickel</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Potassium</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Selenium</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Silver</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Sodium</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Thallium</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Tin</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Titanium</td>
<td>7/23/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Vanadium</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Zinc</td>
<td>3/25/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 245.1</td>
<td>Mercury</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 279.2</td>
<td>Thallium</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Aluminum</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Antimony</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Arsenic</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Barium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Beryllium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Boron</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cadmium</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Calcium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Chromium</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cobalt</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Copper</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Iron</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Lead</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Magnesium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Manganese</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Molybdenum</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Potassium</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Silver</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Sodium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Strontium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Thallium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Tin</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Titanium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Vanadium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Zinc</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 7841</td>
<td>Thallium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>EPA 1600</td>
<td>Enterococci</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9215 B</td>
<td>Heterotrophic plate count</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9221 B</td>
<td>Total coliforms</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9221 E</td>
<td>Fecal coliforms</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9222 B</td>
<td>Total coliforms</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9222 D</td>
<td>Fecal coliforms</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>4,4’-DDD</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>4,4’-DDE</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>4,4’-DDT</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Aroclor-1232 (PCB-1232)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Aroclor-1254 (PCB-1254)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Chlordane (tech.)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Endosulfan I</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Endosulfan II</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Endrin</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Endrin aldehyde</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Heptachlor epoxide</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>Toxaphene (Chlorinated camphene)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>delta-BHC</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 608</td>
<td>gamma-BHC (Lindane gamma-Hexachlorocyclohexane)</td>
<td>8/19/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 615</td>
<td>2 4-D</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 615</td>
<td>Silvex (2,4,5-TP)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 631</td>
<td>Benomyl</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>4,4’-DDD</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>4,4’-DDE</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>4,4’-DDT</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Aldrin</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Chlordane (tech.)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Dieldrin</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan I</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan II</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan sulfate</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin aldehyde</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Heptachlor</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Heptachlor epoxide</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Methoxychlor</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Toxaphene (Chlorinated camphene)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>alpha-BHC (alpha-Hexachlorocyclohexane)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>beta-BHC (beta-Hexachlorocyclohexane)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>delta-BHC</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>gamma-BHC (Lindane gamma-Hexachlorocyclohexane)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 3 3’ 4 4’ 5-Heptachlorobiphenyl (BZ 170)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 3 4 4’ 5’-Hexachlorobiphenyl (BZ 138)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 3 5’-Tetrachlorobiphenyl (BZ 44)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 4 4’ 5’-Hexachlorobiphenyl (BZ 153)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 4 5 5’-Pentachlorobiphenyl (BZ 101)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 4 5’-Tetrachlorobiphenyl (BZ 49)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 5 5’-Tetrachlorobiphenyl (BZ 52)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 5-Trichlorobiphenyl (BZ 18)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 3’ 4’-Tetrachlorobiphenyl (BZ 66)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1016 (PCB-1016)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1221 (PCB-1221)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1232 (PCB-1232)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1248 (PCB-1248)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1254 (PCB-1254)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1260 (PCB-1260)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Azinphos-methyl (Guthion)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Chlorpyrifos</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Coumaphos</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Demeton-s</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Diazinon</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Dichlorovos (DDVP Dichlorvos)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8141</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Dimethoate</td>
<td>7/1/2003</td>
<td>Ethion</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Ethion</td>
<td>7/1/2003</td>
<td>Ethoprop</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Ethoprop</td>
<td>7/1/2003</td>
<td>Fensulfothion</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Malathion</td>
<td>7/1/2003</td>
<td>Mevinphos</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Mevinphos</td>
<td>7/1/2003</td>
<td>Naled</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Naled</td>
<td>7/1/2003</td>
<td>Parathion ethyl</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Parathion ethyl</td>
<td>7/1/2003</td>
<td>Phorate</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Phorate</td>
<td>7/1/2003</td>
<td>Ronnel</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Ronnel</td>
<td>7/1/2003</td>
<td>2 4 5-T</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>2 4 5-T</td>
<td>7/1/2003</td>
<td>2 4-D</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>2 4-D</td>
<td>7/1/2003</td>
<td>2 4-DB</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>2 4-DB</td>
<td>7/1/2003</td>
<td>Dalapon</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Category</td>
<td>Subcategory</td>
<td>EPA Code</td>
<td>Compound</td>
<td>Date</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------</td>
<td>----------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>Dicamba</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>Dichloroprop (Dichlorprop)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>Dinozob (2-sec-butyl 4 6-dinitrophenol DNBP)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>MCPA</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>MCPP</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>Silvex (2 4 5-TP)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 1 1-Trichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 1 2 2-Tetrachloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 1 2-Trichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 1-Dichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 2-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 2-Dichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 2-Dichloropropane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 3-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>1 4-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>2-Chloroethyl vinyl ether</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>Acrolein (Propenal)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 624</td>
<td>9/23/2002</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromodichloromethane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromoform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon tetrachloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chloroethane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chloroform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dibromochloromethane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methyl bromide (Bromomethane)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methyl chloride (Chloromethane)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methylene chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetrachloroethylene (Perchloroethylene)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trichloroethene (Trichloroethylene)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trichlorofluoromethane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vinyl chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xylene (total)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cis-1 3-Dichloropropene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-1 2-Dichloroethylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-1 3-Dichloropropylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 2-Dibromo-3-chloropropane (DBCP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 8011</td>
<td>1 2-Dibromoethane (EDB Ethylene dibromide)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2-Tetrachloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1-Trichloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2 2-Tetrachloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2-Trichloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethylene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Dichloropropene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trimethylbenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromo-3-chloropropane (DBCP)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromoethane (EDB Ethylene dibromide)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloropropane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-5-Trimethylbenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 4-Dichloropropene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2 2-Dichloropropane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Butanone (Methyl ethyl ketone MEK)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Chloroethyl vinyl ether</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Chlorotoluene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Hexanone</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Chlorotoluene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acetone</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acetonitrile</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Allyl chloride (3-Chloropropene)</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Benzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromochloromethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromodichloromethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromoform</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Carbon disulfide</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Carbon tetrachloride</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chlorobenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroform</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroprene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromochloromethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromomethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dichlorodifluoromethane</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethyl methacrylate</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethylbenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>7/1/2003</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Type</td>
<td>Method</td>
<td>Compound</td>
<td>Date</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>n-Propylbenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>p-Isopropyltoluene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>sec-Butylbenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>tert-Butylbenzene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 2-Dichloroethylene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 3-Dichloropropylene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 4-Dichloro-2-butene</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2 4-Trichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 3-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 4-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dichlorophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dimethylphenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dinitrophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dinitrotoluene (2 4-DNT)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methyl-4 6-dinitrophenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>Method</td>
<td>Compound</td>
<td>Date</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Bromophenyl phenyl ether</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chloro-3-methylphenol</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chlorophenyl phenylether</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Methylphenol (p-Cresol)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Nitroaniline</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(a)anthracene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(a)pyrene</td>
<td>4/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(b)fluoranthene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(g h i)perylene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(k)fluoranthene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Analyte</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chrysene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Indeno(1 2 3-cd)pyrene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Chloroethoxy)methane</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Chloroethyl) ether</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Chloroisopropyl) ether (2,2'-Oxybis(1-chloropropane))</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Ethylhexyl) phthalate (DEHP)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>FL-PRO</td>
<td>Total Petroleum Hydrocarbons (TPH)</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 350.1</td>
<td>Ammonia as N</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 351.2</td>
<td>Kjeldahl nitrogen - total</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Total nitrate-nitrite</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 365.4</td>
<td>Phosphorus total</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 9014</td>
<td>Total cyanide</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 9040</td>
<td>pH</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>SM 2540 G</td>
<td>Residue-total</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>SM 2540 G</td>
<td>Residue-volatile</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>SM 2710 B</td>
<td>Specific Oxygen Uptake Rate (SOUR)</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Barium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Beryllium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Boron</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Chromium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cobalt</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Manganese</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Molybdenum</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Selenium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Strontium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Thallium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Tin</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Titanium</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Vanadium</td>
<td></td>
</tr>
</tbody>
</table>

9/23/2002
<table>
<thead>
<tr>
<th>Solids</th>
<th>Metals</th>
<th>EPA</th>
<th>Substance</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids</td>
<td>Microbiology</td>
<td>SM 9221 E</td>
<td>Fecal coliforms</td>
<td>11/12/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 3 4 4’ 5’ 6-Heptachlorobiphenyl (BZ 187)</td>
<td>5/14/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 3 5’-Tetrachlorobiphenyl (BZ 44)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 4 4’ 5 5’-Hexachlorobiphenyl (BZ 153)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 4 5 5’-Pentachlorobiphenyl (BZ 101)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2 2’ 4 5’-Tetrachlorobiphenyl (BZ 49)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2,2’ 5,5’-Tetrachlorobiphenyl (BZ 52)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2,2’ 5-Trichlorobiphenyl (BZ 18)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>2,3’ 4,4’-Tetrachlorobiphenyl (BZ 66)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1016 (PCB-1016)</td>
<td>5/14/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1221 (PCB-1221)</td>
<td>5/14/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1232 (PCB-1232)</td>
<td>5/14/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1254 (PCB-1254)</td>
<td>5/14/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1260 (PCB-1260)</td>
<td>5/14/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>2,4 5-T</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>2,4-D</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8151</td>
<td>Silvex (2,4 5-TP)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1 2-Tetrachloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1-Trichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2 2-Tetrachloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2-Trichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethylene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloropropene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichloropropane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trimethylbenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromo-3-chloropropene (DBCP)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromoethane (EDB Ethylene dibromide)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloroethane</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloropropene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3 5-Trimethylbenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichlorobenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichloropropene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2,2-Dichloropropene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Butanone (Methyl ethyl ketone MEK)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Chlorotoluene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromoform</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromochloromethane</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethylbenzene</td>
<td>1/7/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>Method</td>
<td>Compound</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 8260</td>
<td>Hexachlorobutadiene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Iodomethane (Methyl iodide)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Isobutyl alcohol (2-Methyl-1-propanol)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl bromide (Bromomethane)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl chloride (Chloromethane)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl tert-butyl ether (MTBE)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Tetrachloroethylene (Perchloroethylene)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Trichloroethene (Trichloroethylene)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Xylene (total)</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 2-Dichloroethylene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 3-Dichloropropene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>n-Propylbenzene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 2-Dichloroethylene</td>
<td>9/23/2002</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
Appendix B

JEL Certification Documentation
Laboratories Certified Under NELAP by the Florida Department of Health
Listing of Organization FOAs Query Results

Database Version:
4/1/2006 5:30:16 AM

Laboratory Name Jupiter Environmental Laboratories Inc.
DOH ID: E86546

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Category</th>
<th>Method</th>
<th>Analyte</th>
<th>Certification Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2 4 5-Tetrachlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2 4-Trichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Dichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Dinitrobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 3 5-Trinitrobenzene (1 3 5-TNB)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 3-Dichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 3-Dinitrobenzene (1 3-DNB)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 4-Dichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 4-Dinitrobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 4-Naphthoquinone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 4-Phenylenediamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1-Naphthylamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 3 4 6-Tetrachlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4 5-Trichlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4 6-Trichlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2 4-Dichlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dimethylphenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dinitrophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dinitrotoluene (2,4-DNT)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,6-Dichlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,6-Dinitrotoluene (2,6-DNT)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Acetylaminofluorene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Chloronaphthalene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Chlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methyl-4,6-dinitrophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methylnaphthalene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methylphenol (o-Cresol)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Nitroaniline</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Nitrophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Picoline (2-Methylpyridine)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3,3’-Dichlorobenzidine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3,3’-Dimethylbenzidine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3-Methylcholanthrene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3-Methylphenol (m-Cresol)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3-Nitroaniline</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Aminobiphenyl</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Bromophenyl phenyl ether</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chloro-3-methylphenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chloroaniline</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chlorophenyl phenylether</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Dimethyl aminoazobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Methylphenol (p-Cresol)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Nitroaniline</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Nitrophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5-Nitro-o-toluidine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>7 12-Dimethylbenz(a) anthracene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Acenaphthene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Acenaphthylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Acetophenone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Aniline</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Anthracene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Aramite</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(a)anthracene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(a)pyrene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(b)fluoranthene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(g h i)perylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(k)fluoranthene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzyl alcohol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butyl benzyl phthalate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzilate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chrysene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-octyl phthalate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibenz(a h) anthracene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibenzofuran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyl phthalate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimethyl phthalate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diphenylamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methanesulfonate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluoranthene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorobenzene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorobutadiene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorocyclopentadiene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachloroethane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorophene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachloropropene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeno(1 2 3-cd)pyrene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isophorone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Substance</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isosafrole</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methapyrilene</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl methanesulfonate</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naphthalene</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrobenzene</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitroquinoline-1-oxide</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentachloronitrobenzene</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentachlorophenol</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phenacetin</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phenanthrene</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phenol</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pronamide (Kerb)</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrene</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyridine</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safrole</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a-a-Dimethylphenethylamine</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>beta-Naphthylamine</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bis(2-Chloroethoxy)methane</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bis(2-Chloroethyl) ether</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bis(2-Chloroisopropyl) ether (2 2’-Oxybis(1-chloropropane))</td>
<td>5/4/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bis(2-Ethylhexyl) phthalate (DEHP)</td>
<td></td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitroso-di-n-butylamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodi-n-propylamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodimethylamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodiphenylamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosomethylamine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosomorpholine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosopiperidine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>o-Toluidine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Extractable Organics</td>
<td>FL-PRO</td>
<td>Total Petroleum Hydrocarbons (TPH)</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 150.1</td>
<td>pH</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 310.2</td>
<td>Alkalinity as CaCO3</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 325.2</td>
<td>Chloride</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 340.1</td>
<td>Fluoride</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 350.1</td>
<td>Ammonia as N</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.1</td>
<td>Nitrate as N</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.1</td>
<td>Total nitrate-nitrite</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 354.1</td>
<td>Nitrite as N</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.3</td>
<td>Orthophosphate as P</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 375.4</td>
<td>Sulfate</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 420.1</td>
<td>Total phenolics</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 7196</td>
<td>Chromium VI</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 1631</td>
<td>Mercury</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Aluminum</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Antimony</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Arsenic</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Barium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Beryllium</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Cadmium</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Chromium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Cobalt</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Copper</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Lead</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Manganese</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Mercury</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Molybdenum</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Nickel</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Selenium</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Silver</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Thallium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Thorium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Uranium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Vanadium</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.8</td>
<td>Zinc</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>JEL ICP-002</td>
<td>Phosphorus total</td>
<td>10/29/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>4′-DDD</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>4′-DDE</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>4′-DDT</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Aldrin</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Chlordane (tech.)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Dieldrin</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan I</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan II</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan sulfate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin aldehyde</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin ketone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Heptachlor</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Heptachlor epoxide</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Methoxychlor</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Toxaphene (Chlorinated camphene)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>alpha-Chlordane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>delta-BHC</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>gamma-BHC (Lindane gamma-Hexachlorocyclohexane)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>gamma-Chlordane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1221 (PCB-1221)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1232 (PCB-1232)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1242 (PCB-1242)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1248 (PCB-1248)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1254 (PCB-1254)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1260 (PCB-1260)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>4 ´-DDD</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>4 ´-DDE</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>4 ´-DDT</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Aldrin</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Azinphos-methyl (Guthion)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Carbophenothion</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Chlorfenvinphos</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Coumaphos</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demeton-o</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demeton-s</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diallate</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorovos (DDVP Dichlorvos)</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicrotophos</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethoate</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinoseb (2-sec-butyl-4 6-dinitrophenol DNBP)</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxathion</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disulfoton</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPN</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>5/4/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Category</th>
<th>Method</th>
<th>Chemical</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Endrin</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Endrin aldehyde</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Ethion</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Fampthur</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Fensulfathion</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Fenthion</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Heptachlor</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Heptachlor epoxide</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Isodrin</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Kepone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Leptophos</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Malathion</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>EPA 8270</td>
<td>Methoxychlor</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Methyl parathion (Parathion methyl)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Mevinphos</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Monocrotophos</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Naled</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Parathion ethyl</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Phorate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Phosmet (Imidan)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Phosphamidon</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Sulfotepp</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Terbufos</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Tetrachlorvinphos (Stirophos Gardona)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Thionazin (Zinophos)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>PCB’s</td>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>gamma-BHC (Lindane gamma-Hexachlorocyclohexane)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>o o o-Triethyl phosphorothioate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1 2-Tetrachloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1-Trichloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2 2-Tetrachloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2-Trichloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloropropene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichloropropane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trimethylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromo-3-chloropropane (DBCP)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromoethane (EDB Ethylene dibromide)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloropropane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3 5-Trimethylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichloropropane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 4-Dichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2 2-Dichloropropane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Butanone (Methyl ethyl ketone MEK)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Chloroethyl vinyl ether</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Chlorotoluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Hexanone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Chlorotoluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acetone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acrolein (Propenal)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acrylonitrile</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Benzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromochloromethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromodichloromethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromoform</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Carbon disulfide</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Carbon tetrachloride</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroform</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromochloromethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromomethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dichlorodifluoromethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethyl methacrylate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Hexachlorobutadiene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Iodomethane (Methyl iodide)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Isopropylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl bromide (Bromomethane)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl chloride (Chloromethane)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl tert-butyl ether (MTBE)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methylene chloride</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Naphthalene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Styrene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Tetrachloroethylene (Perchloroethylene)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Toluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Trichloroethene (Trichloroethylene)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Trichlorofluoromethane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Category</td>
<td>Type</td>
<td>Method</td>
<td>Compound</td>
<td>Date</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Vinyl acetate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Vinyl chloride</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Xylene (total)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 2-Dichloroethylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 3-Dichloropropene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 4-Dichloro-2-butene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>m-Xylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>n-Butylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>n-Propylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>o-Xylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>p-Isopropyltoluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>p-Xylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>sec-Butylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>tert-Butylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 2-Dichloroethylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 3-Dichloropropylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 4-Dichloro-2-butene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2 4 5-Tetrachlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2 4-Trichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Dichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1 2-Dinitrobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,2-Diphenylhydrazine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,3,5-Trinitrobenzene (1,3,5-TNB)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,3-Dichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,3-Dinitrobenzene (1,3-DNB)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,4-Dichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,4-Dinitrobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1,4-Naphthoquinone</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>1-Naphthylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4,5-Trichlorophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4,5-Trimethylaniline</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4,6-Trichlorophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dichlorophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dimethylphenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dinitrophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,4-Dinitrotoluene (2,4-DNT)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,6-Dichlorophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2,6-Dinitrotoluene (2,6-DNT)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Acetylaminofluorene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Chloronaphthalene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Chlorophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methyl-4 6-dinitrophenol</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methylnaphthalene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Methylphenol (o-Cresol)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Nitroaniline</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Nitrophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>2-Picoline (2-Methylpyridine)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3 3′-Dichlorobenzidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3 3′-Dimethylbenzidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3-Methylcholanthrene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3-Methylphenol (m-Cresol)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>3-Nitroaniline</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Aminobiphenyl</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Bromophenyl phenyl ether</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chloro-3-methylphenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chloroaniline</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Chlorophenyl phenylether</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Dimethyl aminoazobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Methylphenol (p-Cresol)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Nitroaniline</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>4-Nitrophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>5-Nitro-o-toluidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>7 12-Dimethylbenz(a) anthracene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Acenaphthene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Acenaphthylene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Acetophenone</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Aniline</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Anthracene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Aramite</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(a)pyrene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(b)fluoranthene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(g h i)perylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzo(k)fluoranthene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Benzyl alcohol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Butyl benzyl phthalate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Carbazole</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Chrysene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Di-n-butyl phthalate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Di-n-octyl phthalate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Dibenz(a h) anthracene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Dibenzofuran</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Diethyl phthalate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Compound Name</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Dimethyl phthalate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Diphenylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Ethyl methanesulfonate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Fluoranthene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Fluorene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachlorobutadiene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachlorocyclopentadiene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Hexachloropropene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Indeno(1 2 3-cd)pyrene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Isophorone</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Isosafrole</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Methapyrilene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Methyl methanesulfonate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Naphthalene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Nitrobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Pentachlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Pentachloronitrobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Pentachlorophenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Substance</td>
<td>Date</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Phenacetin</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Phenanthrene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Phenol</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Pyrene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Pyridine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>Safrole</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>beta-Naphthylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Chloroethoxy)methane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Chloroethyl) ether</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Chloroisopropyl) ether (2'2'-Oxybis(1-chloropropane))</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>bis(2-Ethylhexyl) phthalate (DEHP)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitroso-di-n-butylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodi-n-propylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodiethylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodimethylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosodiphenylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosomethylamine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosomorpholine</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosopiperidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>n-Nitrosopyrrolidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>EPA 8270</td>
<td>o-Toluidine</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Extractable Organics</td>
<td>Method</td>
<td>Analyte</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 9045</td>
<td>pH</td>
<td>10/18/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Aluminum</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Antimony</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Arsenic</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Barium</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Beryllium</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Cadmium</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Calcium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Chromium</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Cobalt</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Copper</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Lead</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Magnesium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Manganese</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Nickel</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>Method</td>
<td>Analyte</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Silver</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Sodium</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Thallium</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6020</td>
<td>Zinc</td>
<td>2/26/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>JEL ICP-002</td>
<td>Phosphorus total</td>
<td>10/29/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Chlordane (tech.)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endosulfan I</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>2/3/2003</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin aldehyde</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Endrin ketone</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Heptachlor</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Heptachlor epoxide</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Methoxychlor</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>Toxaphene (Chlorinated camphene)</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>alpha-BHC (alpha-Hexachlorocyclohexane)</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>alpha-Chlordane</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>beta-BHC (beta-Hexachlorocyclohexane)</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>delta-BHC</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>gamma-BHC (Lindane gamma-Hexachlorocyclohexane)</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8081</td>
<td>gamma-Chlordane</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1016 (PCB-1016)</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1221 (PCB-1221)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1232 (PCB-1232)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1242 (PCB-1242)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1248 (PCB-1248)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1254 (PCB-1254)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8082</td>
<td>Aroclor-1260 (PCB-1260)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>4 4’-DDD</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>4 4’-DDT</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Azinphos-methyl (Guthion)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Carbophenothion</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Chlordane (tech.)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Chlorfenvinphos</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Coumaphos</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Crotopyrophos</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Demeton-o</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Demeton-s</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Dichlorovos (DDVP Dichlorvos)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Dicrotophos</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Dimethoate</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Dinoexp (2-sec-butyl-4 6-dinitrophenol DNBP)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Dioxathion</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Disulfotan</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>EPN</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Endosulfan I</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Endrin</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Ethion</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Fensulfothion</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Fenthion</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Heptachlor epoxide</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Hexamethylphosphoramide (HMPA)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Kepone</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2/3/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Leptophos</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Malathion</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Methoxychlor</td>
<td></td>
</tr>
<tr>
<td>2/3/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Methyl parathion (Parathion methyl)</td>
<td></td>
</tr>
<tr>
<td>2/3/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Mevinphos</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Monocrotophos</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Naled</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Parathion ethyl</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Phorate</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Phosmet (Imidan)</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Phosphamidon</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Sulfotepp</td>
<td></td>
</tr>
<tr>
<td>10/15/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Terbufos</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Tetrachlorvinphos (Stirophos Gardona)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Tetraethyl pyrophosphate (TEPP)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>Thionazin (Zinophos)</td>
<td>10/15/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>delta-BHC</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Pesticides-Herbicides-PCB’s</td>
<td>EPA 8270</td>
<td>o o o-Triethyl phosphorothioate</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1 2-Tetrachloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 1-Trichloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2 2-Tetrachloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1 2-Trichloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloroethylene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 1-Dichloropropene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichlorobenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 3-Trichloropropane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2 4-Trimethylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromo-3-chloropropane (DBCP)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dibromoethane (EDB Ethylene dibromide)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 2-Dichloropropane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3 5-Trimethylbenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 3-Dichloropropane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 4-Dichlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>1 4-Dioxane (1 4-Diethyleneoxide)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2 2-Dichloropropane</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Butanone (Methyl ethyl ketone MEK)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Chloroethyl vinyl ether</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Chlorotoluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>2-Hexanone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Chlorotoluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>Method</td>
<td>Compound</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acetone</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acrolein (Propenal)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Acrylonitrile</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Benzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromochloromethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromodichloromethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Bromoform</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Carbon disulfide</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Carbon tetrachloride</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chlorobenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Chloroform</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromochloromethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dibromomethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Dichlorodifluoromethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethyl methacrylate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Ethylbenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Hexachlorobutadiene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Iodomethane (Methyl iodide)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Isopropylbenzene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>Method</td>
<td>Substance Name</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl bromide (Bromomethane)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl chloride (Chloromethane)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methyl tert-butyl ether (MTBE)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Methylene chloride</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Naphthalene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Styrene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Tetrachloroethylene (Perchloroethylene)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Toluene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Trichloroethene (Trichloroethylene)</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Trichlorofluoromethane</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Vinyl acetate</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Vinyl chloride</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>Xylene (total)</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 2-Dichloroethylene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 3-Dichloropropene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>cis-1 4-Dichloro-2-butene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>n-Butylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>n-Propylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>p-Isopropyltoluene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>tert-Butylbenzene</td>
<td>5/4/2005</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 2-Dichloroethylene</td>
<td>2/3/2003</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Solids</td>
<td>Volatile Organics</td>
<td>EPA 8260</td>
<td>trans-1 4-Dichloro-2-butene</td>
<td>5/4/2005</td>
</tr>
</tbody>
</table>
Appendix C

SL Certification Documentation
State of Florida
Department of Health, Bureau of Laboratories

This is to certify that

EB4380
Sanders Laboratories, Inc. - Nokomis
1050 Endeavor Ct.
Nokomis, FL 32275

has complied with Florida Administrative Code 64E-1, for the examination of Environmental samples in the following categories:

DRINKING WATER - Microbiology, Primary Inorganic Contaminants, Secondary Inorganic Contaminants

NON-POTABLE WATER - General Chemistry, Metals, Microbiology

SOLID and CHEMICAL MATERIALS - General Chemistry, Metals

Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analyses certified are cited in the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analyses.

EFFECTIVE JULY 1, 2005 THROUGH JUNE 30, 2006

[Signature]
Ming S. Chan, Ph.D.
Bureau Chief, Bureau of Laboratories
Florida Department of Health
DH Form 1697, 704
NON-TRANSFERABLE 06/01/2005-EB4380
Laboratories Certified Under NELAP by the Florida Department of Health

Listing of Organization FOAs Query Results

Database Version:
4/1/2006 5:30:16 AM

Laboratory Name: Sanders Laboratories Inc. - Nokomis

DOH ID: E84380

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Category</th>
<th>Method</th>
<th>Analyte</th>
<th>Certification Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking Water</td>
<td>Microbiology</td>
<td>SM 9215 B</td>
<td>Heterotrophic plate count</td>
<td>4/15/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Microbiology</td>
<td>SM 9221 E</td>
<td>Fecal coliforms</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Microbiology</td>
<td>SM 9222 B</td>
<td>Total coliforms</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Microbiology</td>
<td>SM 9223 B</td>
<td>Total coliforms & E. coli</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Arsenic</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Barium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Beryllium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Cadmium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Calcium</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Chromium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Magnesium</td>
<td>3/7/2005</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Nickel</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Sodium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 200.9</td>
<td>Thallium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 310.1</td>
<td>Alkalinity as CaCO3</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA Code</td>
<td>Test Parameter</td>
<td>Test Date</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 330.5</td>
<td>Total residual chlorine</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 353.2</td>
<td>Nitrate as N</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 353.2</td>
<td>Nitrite as N</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 353.2</td>
<td>Total nitrate-nitrite</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>EPA 354.1</td>
<td>Nitrite as N</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 2510 B</td>
<td>Conductivity</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 3111 B</td>
<td>Nickel</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 3111 B</td>
<td>Sodium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 3112 B</td>
<td>Mercury</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 3113 B</td>
<td>Antimony</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 3113 B</td>
<td>Lead</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 3113 B</td>
<td>Selenium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Primary Inorganic Contaminants</td>
<td>SM 4500-CI G</td>
<td>Chlorine</td>
<td>12/30/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 130.2</td>
<td>Total hardness as CaCO3</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 150.1</td>
<td>pH</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 160.1</td>
<td>Total dissolved solids</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 180.1</td>
<td>Turbidity</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Aluminum</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Manganese</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Category</td>
<td>Method/Standard</td>
<td>Parameter</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Silver</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Zinc</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 215.2</td>
<td>Calcium hardness as CaCO₃</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 375.4</td>
<td>Sulfate</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 2120 B</td>
<td>Color</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 2150 B</td>
<td>Odor</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 3111 B</td>
<td>Manganese</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 3111 B</td>
<td>Silver</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 3111 B</td>
<td>Zinc</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 3111 D</td>
<td>Aluminum</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 4500 Cl- B</td>
<td>Chloride</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>EPA 200.7</td>
<td>Copper</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 3111 B</td>
<td>Copper</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Secondary Inorganic Contaminants</td>
<td>SM 4500 F-C</td>
<td>Fluoride</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>DEP SOP 10/03/83</td>
<td>Un-ionized Ammonia</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 120.1</td>
<td>Conductivity</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 130.2</td>
<td>Hardness</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 150.1</td>
<td>pH</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA</td>
<td>Residue-filterable (TDS)</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 160.2</td>
<td>Residue-nonfilterable (TSS)</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 160.3</td>
<td>Residue-total</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 160.4</td>
<td>Residue-volatile</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 180.1</td>
<td>Turbidity</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 310.1</td>
<td>Alkalinity as CaCO3</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 330.5</td>
<td>Total residual chlorine</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 350.3</td>
<td>Ammonia as N</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 351.2</td>
<td>Kjeldahl nitrogen - total</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 351.2 - EPA 350.3</td>
<td>Organic nitrogen</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Nitrate as N</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Nitrite as N</td>
<td>10/8/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 353.2</td>
<td>Total nitrate-nitrite</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 354.1</td>
<td>Nitrite as N</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 360.1</td>
<td>Oxygen dissolved</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.2</td>
<td>Orthophosphate as P</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.2</td>
<td>Phosphorus total</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 365.4</td>
<td>Phosphorus total</td>
<td>10/8/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 370.1</td>
<td>Silica-dissolved</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 375.4</td>
<td>Sulfate</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 405.1</td>
<td>Biochemical oxygen demand</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>EPA 410.4</td>
<td>Chemical oxygen demand</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 10200 H</td>
<td>Chlorophylls</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 2120 B</td>
<td>Color</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 2520 B</td>
<td>Salinity</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 2540 G</td>
<td>Total fixed and volatile residue</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 2710 B</td>
<td>Specific Oxygen Uptake Rate (SOUR)</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 3500-Cr D</td>
<td>Chromium VI</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 4500 Cl- B</td>
<td>Chloride</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>General Chemistry</td>
<td>SM 5210 B</td>
<td>Carbonaceous BOD (CBOD)</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Aluminum</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Antimony</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Arsenic</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Barium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Beryllium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Cadmium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Calcium</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Chromium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Cobalt</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Copper</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Iron</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Metals</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Magnesium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Manganese</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Molybdenum</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Nickel</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Phosphorus total</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Potassium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Selenium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Silver</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Sodium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Thallium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Vanadium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 200.7</td>
<td>Zinc</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 202.1</td>
<td>Aluminum</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 206.2</td>
<td>Arsenic</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 213.1</td>
<td>Cadmium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 215.1</td>
<td>Calcium</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 215.2</td>
<td>Calcium hardness as CaCO3</td>
<td>10/8/2004</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 218.1</td>
<td>Chromium</td>
<td>3/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 236.1</td>
<td>Iron</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 239.2</td>
<td>Lead</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA Rule</td>
<td>Metal</td>
<td>Date</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 242.1</td>
<td>Magnesium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 245.1</td>
<td>Mercury</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 249.1</td>
<td>Nickel</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 258.1</td>
<td>Potassium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 273.1</td>
<td>Sodium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 289.1</td>
<td>Zinc</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Aluminum</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Antimony</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Arsenic</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Barium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Beryllium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cadmium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Chromium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cobalt</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Copper</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Iron</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Lead</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Magnesium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Manganese</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Molybdenum</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Nickel</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Category</td>
<td>Type</td>
<td>Method</td>
<td>Parameter</td>
<td>Date</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Potassium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Selenium</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Silver</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Sodium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Thallium</td>
<td>7/1/2003</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Vanadium</td>
<td>7/13/2005</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Zinc</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Metals</td>
<td>EPA 7470</td>
<td>Mercury</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9221 C</td>
<td>Fecal coliforms</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9222 B</td>
<td>Total coliforms</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9222 D</td>
<td>Fecal coliforms</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Non-Potable Water</td>
<td>Microbiology</td>
<td>SM 9230 C</td>
<td>Fecal streptococci</td>
<td>1/18/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>General Chemistry</td>
<td>EPA 9045</td>
<td>pH</td>
<td>8/25/2004</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Aluminum</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Antimony</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Arsenic</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Barium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Beryllium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cadmium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Chromium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Cobalt</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Metals</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Copper</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Lead</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Magnesium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Manganese</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Molybdenum</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Potassium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Silver</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Sodium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Thallium</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Vanadium</td>
<td>12/8/2003</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 6010</td>
<td>Zinc</td>
<td>6/13/2002</td>
</tr>
<tr>
<td>Solids</td>
<td>Metals</td>
<td>EPA 7470</td>
<td>Mercury</td>
<td>7/1/2003</td>
</tr>
</tbody>
</table>