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A Nonparametric Trend Test for Seasonal Data With Serial Dependence 
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Statistical tests for monotonic trend in seasonal (e.g., monthly) hydrologic time series are commonly 
confounded by some of the following problems: nonnormal data, missing values, seasonality, censoring 
(detection limits), and serial dependence. An extension of the Mann-Kendall test for trend (designed for 
such data) is presented here. Because the test is based entirely on ranks, it is robust against nonnormality 
and censoring. Seasonality and missing values present no theoretical or computational obstacles to its 
application. Monte Carlo experiments show that, in terms of type I error, it is robust against serial 
correlation except when the data have strong long-term persistence (e.g., ARMA (1, 1) monthly processes 
with 4• > 0.6) or short records (~ 5 years). When there is no serial correlation, it is less powerful than a 
related simpler test which is not robust against serial correlation. 

INTRODUCTION 

One of the problems in detecting and evaluating trends in 
hydrologic data is the confounding effect of serial dependence. 
When a data set shows a drift towards higher values (or lower 
values) over the period of record, one needs to ask the follow- 
ing question' Is this drift an indication of an underlying 
change or is it an indication of long-term persistence ? Wheth- 
er one is examining a data set by eye or døing a formal test, 
this question will arise. One part of the answer to the question 
may come from an analysis of the generating mechanism for 
the data. Perhaps the data are dependent on some process 
which is serially correlated. In this case, working with re- 
siduals may eliminate or reduce the persistence in the data. 
Where this is not possible or not appropriate, then one may 
need to consider serial dependence in the formal trend test. 
Parametric methods for doing this are well developed and 
documented [see Box and Jenkins, 1970; Box and Tiao, 1975; 
D'Astous and Hipel, 1979]. However, with some hydrologic 
data there may be compelling reasons for using a non- 
parametric approach to trend detection. Hirsch et al. [1982] 
•and Lettenmaier et al. [1982] discuss the reasons for using 
nonparametric procedures for water quality data. Lettenmaier 
[1979] discusses network design implications of serial depen- 
dence in conjunction with nonparametric testing but does not 
offer an operational scheme for adjusting trend tests for de- 
pendence. (Lettenmaier assumed the correlation structure to 
be known.) Sen [1963, !965] proposed some extensions of 
nonparameteric tests to data sets with certain types of depen- 
dence and showed that the test statistics were asymptotically 
normal. Lettenmaier [1976] found that for sample sizes and 
correlations encountered in practice, the normal approxi- 
mations were unacceptable. Hirsch et al. [1982] propose a 
modified version of the Mann-Kendall test, the Seasonal Ken- 
dall test, but note that it is not robust against serial depen- 
dence. That is, when serial dependence exists, the actual signif- 
icance level of the test exceeds the nominal significance level. 
In this paper we propose a modification of the original Sea- 
sonal Kendall test which is robust against serial dependence 
and, like the original, is based entirely on ranks. Missing 
values or censoring present no obstacles to its application. By 
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a Monte Carlo experiment we demonstrate that this modified 
test is robust against serial dependence (in terms of type I 
error) except when the data have very strong long-term per- 
sistence or when sample sizes are small (e.g., 5 years of 
monthly data). 

REASONS FOR USING NONPARAMETRIC TESTS 

This paper will not consider in detail the reasons for using 
nonparametric rather than parametric tests, and comparisons 
of power between the two types of tests will not be made [see 
Bradley, 1968; Hirsch et al., 1982]. The test described is in- 
tended for use with seasonal data which are suspected of being 
serially correlated and where one or more of the following 
conditions exist i•n the data set. 

1. The data are nonnormal, Many types of hydrologic 
data are distinctly nonnormal (usually positively skewed), in 
particular, discharge, and water quality variables related to 
washoff phenomena (sediment and nutrients attached to sedi- 
ment) or biological indicators (biomass, bacterial counts, and 
chlorophyll). Dissolved constituents concentrations are dis- 
tinctly nonnormal in some cases but not in others.' Among all 
the commonly measure d variables, only temperature, pH, and 
dissolved oxygen can be considered to be typically normal or 
near normal. When data sets are small, as is often the case 
with water quality data, the tests for normality will only reveal 
the most extreme violations. Using a test that relies on an 
assumption of normality, even when the hypothesis of nor- 
mality cannot be rejected, should probably be done only with 
considerable caution by checking for undue influence of ex- 
treme values on the outcome of the test. 

2. There are missing values in the data. The parametric 
procedures for trend detection, used when serial correlation 
exists [Box and Tiao, 1975; Hipel et al., 1975], depend on 
uniform sampling. Techniques exist to deal with a few isolated 
data gaps [Lettenmaier, 1976; D'Astous and Hipel, 1979] by 
estimating values for the missing data. However, if there are a 
lot of missing values, or one or more long gaps exist, the effect 
of data fill in on the identification of the stochastic process 
and the ultimate trend testing becomes very problematic. 
Harned et al. [1981] have employed various methods of aggre- 
gating seasonal data into annual summary values. This has 
the advantage that such annual series typically have only 
minimal serial dependence, and thus testing for trends can be 
carried out in straightforward fashion (either parametrically or 
nonparametrically). However, in the presence of missing 
values (or any irregular sampling schedule) and seasonality, 
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these annual summary values will be biased and trends may 
be detected which are simply artifacts of the year-to-year vari- 
ations in the sampling schedule. 

3. The data are censored. Censored data are those obser- 

vations reported as being "less than" or "greater than" some 
specific value. Typical examples include concentration values 
for metals, or organic compounds which fall below the limit of 
detection (LD) of the analytical procedure and are then re- 
ported as "less than LD." Censoring may also exist in flood 
data when long historical records are used. But this case 
would generally involve annual series data rather than season- 
al data. Where "less than LD" observations arise in a data set, 
parametric methods require substituting some numerical value 
for the "less than LD" observations. Whatever numerical 

value is used, it will make the parametric test inexact and will 
severely violate the assumption of normality. Provided that 
the LD has not changed over the period of record, non- 
parametric tests such as the one described here may be used 
with no difficulty. All "less than LD" values are considered 
tied with each other and are considered to be lower than any 
numerical value at or above LD. If LD has changed over the 
record from LDx to LD2 where LD2 < LDx, then all data 
indicated as "less than LD:," as well as any numerical values 
less than LDx, must be recoded to "less than LD•," and then 
the test may be run as described above. 

THE ORIGINAL SEASONAL KENDALL TEST 

We first describe the univariate test for trend described by 
Mann [1945-[. Let X•, Xa, -.- X, be a sequence of observa- 
tions ordered by time. We wish to test the null hypothesis Ho 
that the observations are randomly ordered versus the alter- 
native of monotone trend over time. Let 

sgn(x)= +1 x>0 

sgn (x) = 0 x = 0 (1) 

sgn (x) = -1 x < 0 

Then under Ho the test statistic 

S = • sgn (Xj- X,) (2) 
i<j 

has mean 0 and variance a2= n(n-1)(2n + 5)/18 and is 
asymptotically normal [Kendall, 1975]. 

Hirsch et al. [1982] defined a multivariate extension of this 
test, designed for seasonal data. We describe it initially here 
for the case where there are complete records for all n years 
and no ties. Let the matrix 

/X•x X•2 '" Xxp 
ß 

1 Xn2 ''' Xnp 

denote a sequence of observations taken over p seasons for n 
years. The null hypothesis Ho is that for each of the p seasons 
the n observations are randomly ordered, versus the alter- 
native of a monotone trend in one or more seasons. 
Let the matrix 

a • 

R• R•2 '" R•p 

Rill R• 2 '" R.2 p R1R•2 ... R'np 
be the matrix of ranks corresponding to the observations in X, 

where the n observations for each season are ranked among 
themselvesß Specifically, 

i=1 

Thus each column of R is a permutation of (1, 2, ..., n). The 
Mann-Kendall test statistic for each season is 

Sg = • sgn (X•g- Xig ) g = 1, 2,''', p 
i<j 

The Seasonal Kendall test statistic is 

p 

S'= •Sg 

and it is asymptotically normal with mean 0 and variance 

(4) 

where 

Kgh = • sgn [(Xjg- Xo)(X•h- Xih)] (7) 

3 
• sgn (X•g- X,g)(X•,- Xk,) (8) r ol• -- n 3 -- n i,j,k 

If there are no ties and no missing values, r• is Spearman's 
correlation coe•cient for seasons a and h IConover, 1980; 
Lehman, 1975]. If there are no missing values, (6) reduces to 

i=1 

Using these estimates of •s in the computation of the vari- 
ance of S', we have a test that does not rely on an assumption 
of independence. 

EMPIRICAL SIGNIFICANCE LEVEL 

FOR SMALL SAMPLES 

The trend test was performed on samples of size n = 5, 10, 
20, and p= 12 from an autoregressive moving average 
(ARMA) process [Box and Jenkins, 1970]; in particular, 

Xi,g = •Xi,g- 1 + Ui,a - OUi,a- 1 (10a) 

g=2,3,".,12 i=l, 2,.",n 

Xi,• = &Xi- •,• + U•,• - OUi_ •,• (10b) 

i= 1,2,.-',n 

where Ui,•/a. are independently and identically distributed 
according to the normal distribution with mean zero and vari- 
ance one IN(0, 1)], %2 = (1 - &2)/(1 - 2&0 + 0 •) and Xo.•2 
(the starting value) is N(0, 1). The process described here is an 

var [S'] = • %2 + • %• (5) 
g g,h 

g•h 

Where %2= var [Sg] and trgh =cov (Sg, S•). Hirsch et al. 
[1982] assume that the data are independent and thus all of 
the covariance terms equal zero. They also demonstrate that 
the normal approximation is quite accurate even for sample 
sizes as small as n = 2, p = 12. 

THE ESTIMATE OF THE COVARIANCE 

Dietz and Killeen [1981], in defining a related multivariate 
distribution-free test, develop a consistent estimator for 

8g• = Kg•/3 + (n 3 - n)%•/9 (6) 
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TABLE 1. Empirical Significance Level for the Modified Seasonal 
Kendall Test 

Nominal Level 

n ½ Pt 0.01 0.02 0.05 0.10 0.20 

5 0.0 0.0' 0.000 0.000 0.009 0.060 0.208 

0.2 0.2'• 0.000 0.000 0.010 0.077 0.222 
0.4 0.2 0.000 0.000 0.012 0.080 0.224 

0.4'[' 0.000 0.000 0.010 0.089 0.218 
0.6 0.2 0.000 0.000 0.014 0.081 0.228 

0.4 0.000 0.000 0.012 0.088 0.240 

0.6'[' 0.000 0.000 0.014 0.102 0.240 
0.9 0.2 0.000 0.000 0.034 0.191 0.395 

0.4 0.000 0.000 0.043 0.196 0.393 

0.6 0.000 0.000 0.044 0.204 0.382 

10 0.0 0.0' 0.003 0.010 0.041 0.094 0.198 

0.2 0.2'{' 0.002 0.009 0.044 0.101 0.205 
0.4 0.2 0.002 0.006 0.045 0.109 0.205 

0.4'[' 0.002 0.014 0.047 0.112 0.219 
0.6 0.2 0.002 0.016 0.056 0.114 0.220 

0.4 0.004 0.014 0.057 0.124 0.233 

0.6'[' 0.005 0.018 0.056 0.125 0.247 
0.9 0.2 0.026 0.066 0.156 0.264 0.400 

0.4 0.034 0.070 0.164 0.260 0.401 
0.6 0.034 0.076 0.163 0.256 0.399 

20 0.0 0.0' 0.008 0.017 0.047 0.102 0.198 

0.2 0.2'• 0.008 0.017 0.048 0.106 0.196 
0.4 0.2 0.010 0.020 0.052 0.110 0.204 

0.4'[' 0.010 0.024 0.054 0.110 0.214 
0.6 0.2 0.011 0.026 0.057 0.118 0.222 

0.4 0.012 0.026 0.064 0.124 0.224 

0.6'[' 0.013 0.029 0.066 0.125 0.240 
0.9 0.2 0.048 0.082 0.160 0.250 0.378 

0.4 0.060 0.093 0.168 0.262 0.379 
0.6 0.060 0.094 0.174 0.263 0.384 

cal level is affected only slightly by P x. This can be explained 
by the fact that P x describes the short-term (month-to-month) 
correlation, and the covariance terms in (4) adjust for much of 
this correlation. What they do not adjust for is the correlation 
between values a year (or multiplies of a year) apart in time. 
That is, (4) is based on an assumption of independence be- 
tween X•.g and Xi+ x,g, and where (/) is high (e.g., 0.9), this 
independence is severely violated. That this test should be 
rather inexact when q• = 0.9 is not surprising considering the 
fact that by almost any measure or technique it is very hard to 
distinguish strong persistence from trend. For example, a 
sample autocorrelation function (ACF) which does not decay 
to zero at high lags is one diagnostic indicator of trend 
[Nelson, 1973, p. 75], and yet this behavior in an ACF is 
precisely what one finds in stationary ARMA (1, 1) processes 
with high q• values. Our examination of a large number of 
sample ACF's for deseasonalized water quality and flow data 
indicates that the vast majority of cases have characteristics of 
AR(1) processes with 0.0 < p• < 0.6, and only a few show in- 
dications of ARMA (1, 1) behavior with q• > 0.6, and many of 
these may be explained by the presence of man-induced trend. 

Figure 1 summarizes the results in Table 1 for • - 0.05 and 
n = 10 and compares them with the empirical significance 
levels for the test described previously [Hirsch et al., 1982] 
where all 8gn values are set to zero on the basis of the indepen- 
dence assumption. A figure for n -- 20 would look very nearly 
identical. 

Based on these results, it appears that using (6) for esti- 
mating 8gn rather than setting 8•n to 0 results in a far more 
accurate test provided that n is about 10 or larger. However, 
for n - 5, the approximation is poor. 

Control limits • + 2[•(1 - •0/2000] 1/2 for the empirical level; for a 
nominal level • are' •c - 0.01, 0.006-0.014' • = 0.02, 0.014-0.026; 
• = 0.05, 0.040-0.060; •c - 0.10, 0.087-0.113' • - 0.20, 0.182-0.218. 

*Process is independent. 
•' Process is AR(1). 

ARMA (1, 1) process with mean zero and variance one. For 
purposes of description, the process is parameterized not by 
(•, 0) but by (•, p x), where 

(1 - •60X•6 - 0) 
Px= 1-2•0+02 (11) 

and is the lag one correlation coefficient. Note that when q• - 
p•, the process is AR(1), and when q• = p • = 0.0, the process is 
independent. 

Table 1 lists the empirical level of the test where empirical 
level is the ratio of number of rejections of H o to number of 
trials (2000) for a given nominal significance level. The nom- 
inal levels considered are • --0.01, 0.02, 0.05, 0.10, 0.20. Table 
1 shows that for n = 5 (5 years x 12 months- 60 observa- 
tions) the asymptotic normal distribution yields very conser- 
vative results especially where c• is low (0.01, 0.02, 0.05). Where 
the data are generated from a process with very high persist- 
ence (particularly q• = 0.9), the test is liberal at • - 0.1 and 0.2. 
For n -- 10, the test performs much better. It is conservative at 
•- 0.01 and 0.02 for all processes except those with q• = 0.9. 
For • = 0.05, 0.1, and 0.2 and q• < 0.9, the empirical and nom- 
inal levels generally match closely. For q•--0.9, it is again 
quite liberal, with empirical levels exceeding nominal levels by 
a factor of 2 or more. For n = 20 (a total of 240 observations), 
the empirical and nominal levels agree well except where 
q• = 0.9. In all cases (n = 5, 10, 20 for all q• and •) the empiri- 

POWER OF THE MODIFIED TEST 

This improvement in the robustness of the test is not with- 
out "cost." What one gives up by using the modified form of 
the test versus the original test is power. If the data being 
considered were a serially independent process added to a 
linear trend, then the probability of rejecting Ho for a given • 
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Fig. 1. Empirical level of the trend tests for ARMA(1, 1) data as a 
function of the autoregressive parameter 4•. Monthly data (p -- 12) for 
10 years (n - 10). Nominal significance level for test (•) is 0.05. Based 
on 2000 repetitions. 
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Fig. 2. Power of the trend tests. Percentage of trials in which 
trend was detected (500 repetitions) as a function of trend slope in 
percentage of the noise standard deviation per year. For independent 
monthly (p- 12) series of length 10 years (n = 10) for • = 0.05. The 
closed symbol is for the test with 6g h - 0; the open symbol is for the 
test with 6gh determined from (6). 

would be higher using the original formulation with all doh = 
0 than with the modified version given here. Figure 2 shows 
an empirical evalution of power for the two formulations of 
the test. The records are 10 years long and serially indepen- 
dent. There were 500 repetitions at each of nine amounts of 
added linear trend, including zero trend. Trend slopes are ex- 
pressed as a percentage of the trend-free standard deviation of 
the process. Expressed as a ratio, the most extreme difference 
in power occurs at a trend of 8% per year, where the power of 
the original test is 1.49 times the power of the modified test. 

Thus choosing between the two tests involves a trade-off. 
The original test is more powerful, but the significance level 
can be seriously in error if there is serial correlation. The 
modified test requires some sacrifice of power but offers a 
more nearly exact statement of significance for a wide variety 
of cases. 

MODIFICATIONS TO ACCOMMODATE MISSING VALUES 

To accommodate missing values, we extended the definition 
of the sgn function given in (1) to handle missing values. 
Define sgn (X•g - Xig) to be zero if either X• or Xi• is missing. 
In essence, we say that since we cannot tell whether a missing 
value is greater or less than any actual value, it is neither. In 
light of this, (3) becomes 

R•=I%+I+ •sgn(X•g-X•)]/2 (12) i=1 

where % is the number of nonmissing observations for season 
g. Now the ranks of the nonmissing observations are un- 
changed and each missing value is assigned the average or 
midrank (% + 1)/2. The Mann-Kendall test statistic S• is un- 
changed, and its variance remains the same, namely, 

%2= %(%_ 1)(2% + 5)/18 (13) 

Within (6) for 6•h, Kgn (equation (7)) remains unchanged, but 
r• (equation (8)) takes on a new value to give a revised (9) of 

6gt•=[Kgt•+4•-'•RigRin-rt(rtg+ 1)(nn + 1)]/3 (14) i=1 

EMPIRICAL EVALUATION OF SIGNIFICANCE 

WITH MISSING VALUES 

Data were generated as described above, but a specified 
fraction of the data were deleted from the record. The deleted 

values were selected randomly with each observation having 
an equal probability of deletion. Table 2 gives the results for 
missing value frequencies of 0, 10, 30, and 50% for indepen- 
dent series and AR(1) with •p = 0.4 for n = 10, and n = 20, 
p = 12. The number of repetitions was 2000. 

The results show no clear pattern of differences among the 
various amounts of missing data. Of the 60 results for a non- 
zero amount of missing data, only three show empirical levels 
which differ significantly (cz = 0.05) from the no missing data 
case. These significant differences were evaluated by the chi- 
square test for difference in probability IConover, 1980, p. 
144-146]. Note that in 60 results, the expected number of 
significant difference is 3 (0.05 x 60). These results indicate 
that the significance level of the modified test is not substan- 
tially affected by missing data at least up to a level of 50% 
missing. 

MODIFICATION TO ACCOMMODATE CENSORING 

AND TIES 

When data are reported as "less than" a limit of detection, 
they may be arbitrarily set to some constant value which is 
less than the limit of detection for purposes of nonparametric 
trend testng. This is because the nonparametric tests are based 
on ranks rather than magnitudes; all censored values may be 
viewed as sharing the same rank, and this rank is less than the 
rank of any noncensored value. Thus the problem of censoring 
reduces to a problem of dealing with ties. For purposes of this 
discussion we will assume that there are no missing values. 
When ties and missing values are both present, one must com- 
bine the modifications described in the last section with those 

described in this one. 

TABLE 2. Empirical Level for the Modified Seasonal Kendall Test 

Record Percent of Data Missing 
Nominal Length 

• p • in Years 0 10 30 50 

0.01 0 10 0.0030 0.0030 0.0025 0.0035 
0 20 0.0085 0.0060 0.0070 0.0055 
0.4 10 0.0020 0.0020 0.0030 0.0015 
0.4 20 0.0095 0.0050 0.0060 0.0060 

0.02 0 10 0.0105 0.0100 0.0100 0.0125 
0 20 0.0170 0.0170 0.0155 0.0165 
0.4 10 0.0145 0.0100 0.0110 0.0095 
0.4 20 0.0240 0.0150 0.0145 0.0165 

0.05 0 10 0.0410 0.0420 0.0420 0.0360 
0 20 0.0470 0.0380 0.0460 0.0460 
0.4 10 0.0470 0.0550 0.0580 0.0480 

0.4 20 0.0545 0.0540 0.0645 0.0770 

0.10 0 10 0.0945 0.1010 0.0905 0.0905 

0 20 0.1125 0.0885* 0.1005 0.0915 
0.4 10 0.1015 0.1150 0.0850* 0.0940 
0.4 20 0.1095 0.0965 0.0945 0.0960 

0.20 0 10 0.1980 0.2090 0.1980 0.1830 
0 20 0.2190 0.1815' 0.1970 0.2000 
0.4 10 0.1985 0.2165 0.2055 0.2000 
0.4 20 0.2140 0.1990 0.2095 0.2055 

2000 Monte Carlo trends, 10 or 20 years of monthly data, with O, 
10, 30, or 50% missing data. 

*Indicates that empirical level with missing values differs signifi- 
cantly (• = 0.05) from empirical level with nonmissing values. 
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The test statistics S 0, g = 1, 2,-.., p are computed as in (4), 
and S' is the sum of these S o values. Equation (5), giving the 
variance of S o , becomes 

[ m ag 2 = n(n -- 1)(2n + 5) -- • t•(t• -- 1)(2t• + 5) 18 (15) 
j=l 

where m is the number of tied groups among the Xig and tj is 
the size of the jth tied group [Kendall, 1975]. The formula for 
6gh remains the same except that midranks are used in as- 
signing the values of Rig for (9). Thus, if there are tj censored 
values, they all have rank t•(t• - 1)/2. 

EMPIRICAL EVALUATION OF SIGNIFICANCE 

WITH CENSORING 

Rather than consider the general case of ties, we have limit- 
ed our consideration here to the case of censoring. Data were 
generated as described in (10), but those values below a given 
value (LD) were assigned a value equal to LD. LD values were 
chosen for the simulation to achieve a certain percentage of 
censoring on the average. The following cases were con- 
sidered: n = 10, independent, and AR(1) with p• = 0.4, with 
10, 30, and 50% censored, and n - 20, independent, and AR(1) 
with p x = 0.4 with 50% censored. Two thousand replicates 
were used in all cases. At • levels of 0.01, 0.02, 0.05, 0.10, and 
0.20, there were no instances where the empirical level of the 
test differed significantly (at the 5% level) from the empirical 
level that was found when no censoring occurred. Significant 
differences were evaluated by the chi-square test for difference 
in probability IConover, 1980, p. 144-146-[. 

COMPARISON WITH A RELATED TEST 

Dietz and Killen [1981] propose a multivariate non- 
parametric test for monotone trend which is based on Ken- 
dall's tau. Their test statistic is the weighted sum of squares of 
the Sg values, where the matrix of weights is the inverse of the 
covariance matrix (the dg and dgh terms). The test statistic is 
asymptotically Z'• on p degrees of freedom. Dietz and Killeen 
examined the adequacy of the Z'• approximation for small 
samples. They found that the empirical level increased with 
increasing n and decreased with increasing p. We examined 
the empirical level of their test for p = 12 (the 12 variables 
corresponding to the 12 months), and we found that their test 
was quite conservative for n as large as 30. For example, at 
• = 0.05, with no trend and no serial dependence, there were 
two detections out of 200 trials. The expected number of de- 
tections was 10 (0.05 x 200). The modified seasonal Kendall 
test proposed in this paper detected trend in exactly 10 cases 
in the same set of Monte Carlo trials. For smaller values of n 

the conservativeness of their test was even more severe. For an 

n of 40, the empirical level rose, and there were six detections 
in 200 trials. 

Limited experiments with the power of their test show that 
for n = 10 in cases where trend is sufficiently large that trend 
is detected in our test (0• = 0.05) with a power of about 0.9, the 
Dietz and Killeen test has a power of about 0.01. As n is 
increased to 30 and beyond, the powers of the two tests ap- 
proach each other more closely. Thus, based on Monte Carlo 
experiments by Dietz and Killeen and ourselves, we see that 
the •2 approximation becomes reasonably close for n > 40 if 
p = 12, for n > 30 if p = 4, and for n > 20 if p = 2. In contrast, 
for our modified seasonal Kendall test, the normal approxi- 
mation is close for n > 10 for p = 12. 

The kind of situation Dietz and Killeen envision for apply- 

ing their test is a case where the several variables were differ- 
ent in kind, not just seasonal values of the same variable. The 
example they present is of several measures of blood chemis- 
try. They were implicitly concerned with the possibilities that 
some of these measures may show upward trends while others 
showed downward trends. Our test would be inappropriate 
for such a case. If upward trends in one or more seasons are 
counterbalanced by downward trends in an equal number of 
seasons, then the power of our test would equal 0• no matter 
how large the trends. This is because our test statistic is a sum 
of Kendall Sg statistics (which would tend to cancel each other 
out) and theirs is a weighted sum of squares of the Sg which 
would grow as the amount of trend grew. 

CONCLUSION 

The Seasonal Kendall test as originally presented by Hirsch 
et al. [1982] is robust against seasonality, departures from 
normality, and may be used in situations where there is cen- 
soring or many missing values. It is not, however, robust 
against serial dependence. That is, when the data arise from a 
stationary ARMA(1, 1) process, even one with monthly lag 1 
serial correlations as low as 0.2, the probability that significant 
trend will be detected (at the level 00 is substantially higher 
than 0•. The modification described here is to estimate the 

covariance between the Seasonal Kendall (Sg) statistics from 
the data, rather than setting it to zero. This estimate of the 
covariance was developed by Dietz and Killeen [1981]. When 
the modified test is applied to data that arise from a stationary 
ARMA(1, 1) process, with AR parameter •p < 0.6 and record 
length at least 10 years of 12 months each, the probability of 
detecting significant trend at (level 00 is close to 0•. The modi- 
fied test is not robust against highly persistent processes 
(•p > 0.6), but these may be atypical of hydrologic time series. 

The modified test does not work well at small sample sizes 
less than 10 years and is less powerful than the original test 
when data are, in fact, independent. The original test is a 
useful screening device (and computationally much less de- 
manding) but is inexact. The modified test is a more exact 
(conservative) and expensive test, useful for long seasonal time 
series. The test proposed by Dietz and Killeen is probably 
only applicable for data sets of greater than 40 years of 
monthly data but has the advantage of sensitivity to opposing 
trends in different seasons, which is true of neither the original 
or modified seasonal Kendall test. 
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