SIMPLE-Monthly Pollutant Loading Model Results - Upper Myakka River TN

Section 1 TN Loading decreased by 93% from 2001-2016.

Septic System input was the component that saw the greatest decrease in loading from 2001-2016 (-100%)

-93%

2001 to 2016

Stormwater Runoff is the greatest contributor to TN in the Upper Myakka River basin, contributing 61% of

Section 2 the total load.

Section 3 The Upper Mykka River basin is not a major TN contributor to the Myakka River watershed.

Section 1

Upper Myakka River

Total Nitrogen

Decrease

Pollutant Loading Trend	
Components of the Trend	
	Stormwater Runoff
	Pasaflow

Stormwater Runoff	No change	0%	2001 to 2016
Baseflow	No change	0%	2001 to 2016
Septic Systems	Decrease	-100%	2001 to 2016
Point Source		Cannot Calculate	2001 to 2016
Irrigation	Decrease	-62%	2001 to 2016
Atmospheric Deposition	Not Modeled		2001 to 2016

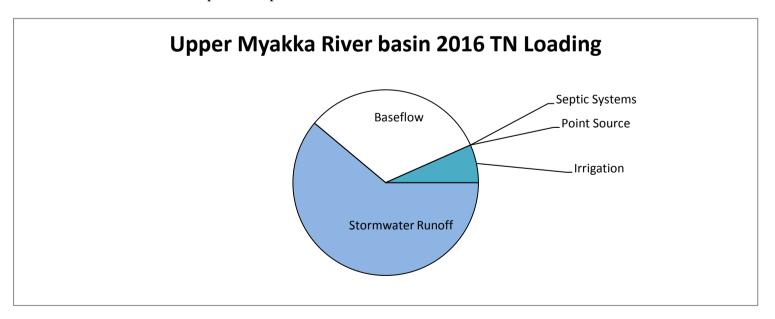
Year	Total	Runoff	Baseflow	Septic	Point Source	Irrigation	Atmospheric
2001	6980.94	316.49	167.25	1187.02	0.00	91.39	0.00
2006	11728.13	5867.58	3985.33	1190.47	0.00	684.76	0.00
2011	576.61	316.49	167.25	58.47	0.00	34.40	0.00
2016	518.13	316.49	167.25	0.00	0.00	34.40	0.00

Units are pounds per year and modeled using a typical rainfall year.

Jones Edmunds and Associates conducted this modeling for Sarasota County in 2017.

Modeling was conducted only for the parts of basins located within Sarasota County.

Pollutant loading from Atmospheric Deposition (wet and dry) was conducted only for bays.


Section 2

Upper Myakka River

Total Nitrogen

2016 Pollutant loading is influenced by some sources more than others

Stormwater Runoff61%Baseflow32%Septic Systems0%Point Source0%Irrigation7%Atmospheric DepositionNot Modeled

Section 3

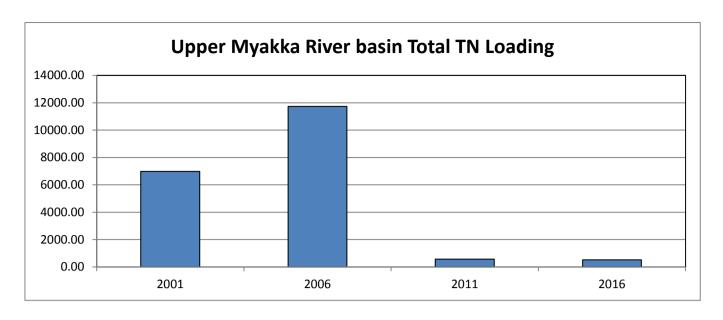
Upper Myakka River

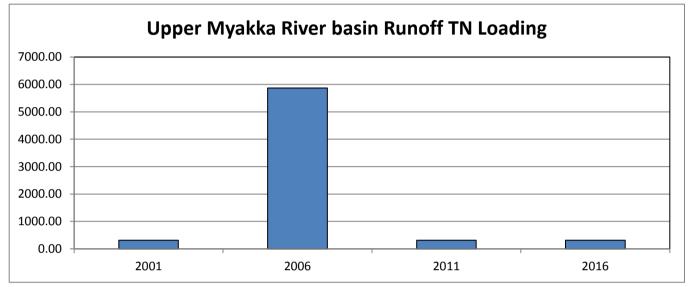
Total Nitrogen

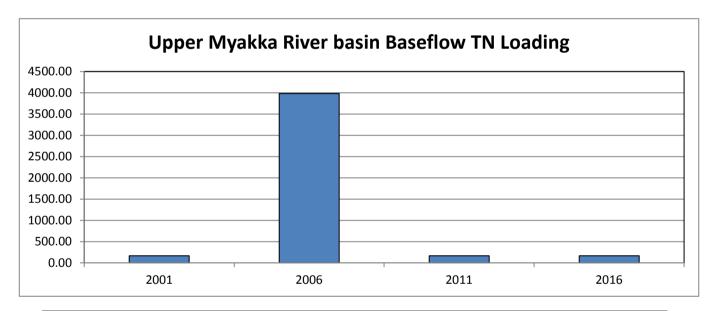
2016 Pollutant loading to the Myakka River Watershed has more than one source

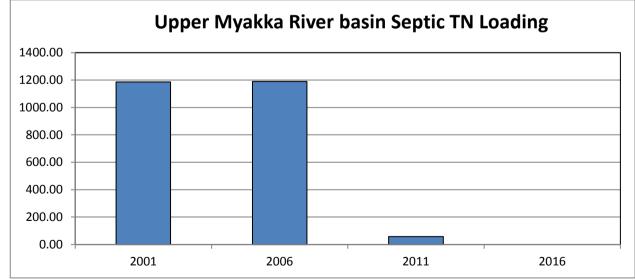
Proportion of loading is Low when % load is compared to % acreage.

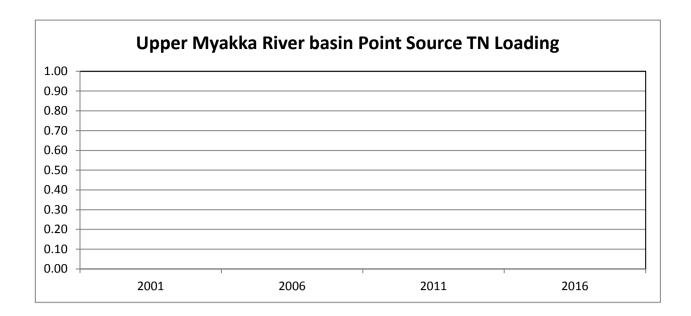
Upper Myakka River acreage is 2% and % loading is 0%


Upper Myakka River basin is a part of the Myakka River Watershed


	Pounds TN 2016	Acreage
Myakka River Watershed	973,132	202,785


The following basins contribue to the loading to the Myakka River Watershed


	Pounds TN 2016	% of Watershed Load	Acreage	% of Myakka River Watershed
Myakka River	471,337	48%	95,170	47%
Myakka River II*	48	0%	1,334	1%
Upper Myakka River	518	0%	3,699	2%
Big Slough	489,530	50%	84,625	42%
Deer Prairie Slough	11,486	1%	16,189	8%
Little Salt Creek	213	0%	1,769	1%


^{*}The Myakka River was modeled as two separate sections due to computer limitations with the model.

