In 2010, in partnerships with the local National Estuary Programs, the County has agreed on seagrass targets for each of the bay segments within Sarasota County. These targets were created as a means to measure the status of water quality in the bays as a function of management actions within watersheds discharging to them. Sarasota County is a partner with all three (3) local programs: the Tampa Bay Estuary Program (TBEP), Sarasota Bay Estuary Program (SBEP) and the Charlotte Harbor National Estuary Program (CHNEP). Here, we’ll look at the SBEP and CHNEP only.

SBEP study area includes those waters from Anna Maria Sound in Manatee County south through Blackburn Bay (Figure 1). The CHNEP has an extensive study area, but for this analysis, it includes the Coastal Venice and Lemon Bay within Sarasota County (Figure 2). Both programs used similar methodologies to derive the targets which are described in the Janicki, 2009 and Janicki, 2010. In summary the targets were set at either ca. 1950 seagrass coverage or the average of 2004-2006, whichever was greater. The targets are listed in Table 1.
In 2010, the Southwest Florida Water Management District conducted the most recent acquisition of aerial photographs to estimate the seagrass coverage of the seagrass as part of their SWIM program. Sarasota County provided extensive ground-truthing information to assist in the interpretation of those photographs. The results from were compared to the target and displayed in Table 1.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Target</th>
<th>2010 aerial coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarasota Bay</td>
<td>7,269</td>
<td>9917</td>
</tr>
<tr>
<td>Roberts Bay</td>
<td>348</td>
<td>329</td>
</tr>
<tr>
<td>Little Sarasota Bay</td>
<td>883</td>
<td>891</td>
</tr>
<tr>
<td>Blackburn Bay</td>
<td>447</td>
<td>382</td>
</tr>
<tr>
<td>Coastal Venice</td>
<td>112</td>
<td>78</td>
</tr>
<tr>
<td>Upper Lemon Bay</td>
<td>1,009</td>
<td>2664</td>
</tr>
</tbody>
</table>

Table 1

The targets were exceeded in 3 of the segments and deficient in the other 3 segments. Field work conducted by Sarasota County were used to verify the accuracy of the these coverages and can directly account for the deficiency in the Coastal Venice by correctly identifying previously mapped seagrass as attached algae. Methods of evaluation of these targets are still undergoing scrutiny as to define the significant levels of change. The Southwest Florida Water Management District is currently planning to update the seagrass coverages later during the winter of 2011-2012.

The following documents describe the approaches used to derive the seagrass targets for each estuary program.
SEAGRASS TARGETS FOR THE SARASOTA BAY ESTUARY

Prepared for:

Sarasota Bay Estuary Program
111 South Orange Avenue Suite
200W Sarasota, FL 34236

Prepared by:

Anthony Janicki, Michael Dema, and Ravic Nijbroek
1155 Eden Isle Drive
NE St. Petersburg, FL
33704

December
2008
EXECUTIVE SUMMARY

The objective of this project is to provide technically-defensible quantitative restoration and protection targets for seagrasses in the Sarasota Bay ecosystem. Establishment of seagrass targets provides a necessary basis for management decisions regarding water quality and other issues that can influence the distribution and persistence of this resource. The primary goal of this project is to maintain and/or restore seagrass coverage to its historic extent. Restoration targets were defined through an analysis of historic and recent aerial surveys of the study area. Historic photos of the area were taken in 1950; as many alterations have occurred to the shoreline in the study area, as well as channelization of the Intracoastal Waterway (ICW), the following analyses have accounted for these changes as non-restorable areas. Additionally, trends in seagrass coverage throughout the SBEP based on recent surveys have been identified.

The methodology employed for this project is GIS-based. Historic aerial photos were used to establish a baseline extent of seagrass in the study area circa 1950. Recent trends in and persistence of seagrass throughout the SBEP were determined through analysis of GIS shapefiles based on aerial surveys executed by the SWFWMD since 1988. Due to anthropogenic modifications in the estuary such as shoreline build-out and the dredging of the Intracoastal Waterway (ICW), certain areas have been altered to the extent that they have no reasonable potential for restoration; these so-called non-restorable areas have been identified and removed from the analyses contained in this report.

The results of these analyses varied by bay segment. The trend analyses show that Sarasota Bay is currently at its highest seagrass level since the 1950 and exceeds the baseline extent. The seagrass coverage in Roberts Bay and Blackburn also increased since the baseline period. In Palma Sola Bay, the seagrass coverage has remained very similar over the entire period of record. In contrast, Little Sarasota Bay has shown a decline in seagrasses since 1950.

Given the differences among bay segments when baseline and current seagrass coverages are compared, the definition of seagrass targets will vary among segments. Five potential seagrass target definitions have been identified. These include:

- the maximum areal extent observed in any of the recent survey years,
- the mean areal extent over all recent survey years,
- the mean areal extent over the last three survey years,
- the most recent areal extent, i.e., 2006, or
- the total observed extent.

The definition of the most appropriate seagrass targets will be reached with input from the Technical Advisory Committee.
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

1.1 Objective ... 3

2.0 METHODOLOGY .. 4

2.1 Data Sources and Description ... 5

2.2 Description of GIS Analysis .. 6

2.3 Approach and Rationale ... 7

3.0 RESULTS – HISTORICAL SEAGRASS ... 7

4.0 RESULTS – RECENT TRENDS IN SEAGRASS COVERAGE .. 11

5.0 ESTABLISHMENT OF TARGETS ... 13

6.0 LITERATURE CITED ... 19

Appendix A – 9999 Analysis

Appendix B – Annual Seagrass Coverages

Appendix C – Non-Restorable Areas
1.0 INTRODUCTION

Seagrasses are an important marine resource, functioning as keystones in healthy estuaries. Seagrasses are sessile organisms that are effective integrators of water quality and function as sentinel species in estuarine and marine environments (Orth et al., 2006). The strong link between water quality and seagrass distribution makes seagrass a good indicator of ecosystem health (Moore et al., 2004). Healthy seagrass populations are critical resources that provide a multitude of benefits to estuarine ecosystems, including:

- providing structural habitat for recreationally and commercially important fish and invertebrate species and stabilization of submerged shoreline sediments,
- providing support for epiphytic and macro algae, and
- functioning as an important component of nutrient cycles (Dawes et al., 2004; Janicki et al., 1995).

In addition to providing habitat and food for invertebrates, small vertebrate marine organisms, and large grazing herbivores, seagrass beds also support epiphytic and macro algae as substrata for their development. Seagrass communities constitute highly productive and diverse ecosystems, in part due to the presence of these epiphytes, which include diatoms, green algae, and cyanobacteria (Moncreiff and Sullivan, 2001). The epiphytic algal assemblage present on the surface of seagrass leaves functions as a primary food source within these communities, in addition to the seagrasses and their detrital material (Moncreiff and Sullivan, 2001). Macro algae also attach themselves to seagrasses for stability, and thus increase diversity within these systems (Janicki et al., 1995).

Nutrient cycling and assimilation is another of the many ecosystem services that seagrass communities provide. Seagrasses filter nutrients and contaminants, which helps improve water quality and support adjacent habitats and fisheries (Dawes et al., 2004). They are hotspots for organic-matter accumulation and nutrient regeneration and recycling, which support primary production and sustain food webs (Dawes et al., 2004). They can also serve as sinks for nitrogenous loads from watershed sources, which can aid attenuation to nutrient polluting when seagrasses are located in abundance.

Anthropogenic nitrogen loads can lead to excessive algae growth, which adversely affects light penetration to submerged seagrasses (Dennison et al., 1993; SBEP, 1995; Chesapeake Bay Program, 2000; Morris and Virnstein, 2004; Greening and Janicki, 2006). Sediment deposition related to development of shorelines and the watershed also negatively impact seagrass growth (Moore et al., 2004). As seagrasses live in the shallow, protected coastal waters that are directly proximal to the shore and watershed, these systems are highly susceptible to nutrient and sediment inputs (Orth, et al., 2006).

In Florida, a vast array of estuarine and marine organisms relies upon seagrass habitats for a portion or all of their life cycles (Dawes et al., 2004). The canopy structure of a seagrass bed provides protection and cover for fish in their fry and juvenile stages, essentially serving as a nursery ground (Dawes et al., 2004; Orth et al., 2006). Primary production within seagrass beds provides food for recreationally and commercially important fish species and serves as a trophic foundation for the ecosystem. Additionally, megaherbivores such as sea turtles and manatees graze on seagrasses as an important food source (Orth et al., 2006). The stability for these valuable habitats is provided by the hearty root systems of seagrasses (Janicki et al., 1995). These root systems provide stability not
only for the seagrass and lotic communities, but also for sediments and the benthic production that is found at the sea floor (Dawes et al., 2004).

Seagrass restoration is a major focus in the management of many estuarine resources including the following estuaries:

- Chesapeake Bay,
- Long Island Sound,
- Indian River Lagoon, and
- Tampa Bay.

A common pattern in seagrass coverage has emerged throughout each region. As the shorelines and watersheds proximal to seagrass beds become more developed, anthropogenic loadings of nitrogen and sediments have increased. These load increases have had detrimental effects on water quality; of particular importance to seagrass health are the resultant algal blooms from nitrogenous loads and increased turbidity from sedimentation. Algal blooms and increased turbidity each negatively impact light attenuation in seagrass communities, which is devastating to green leafy plants. Seagrass populations have declined as such.

As researchers and managers within these systems began to identify this pattern, the notion of seagrass as an ecological bellwether developed. As sentinel species, due to the effectiveness of seagrasses to integrate water quality parameters, these communities were soon realized to be *in-situ* indicators of estuarine health and thus employed as components of watershed-based management and planning tools. Bay-wide water quality was inherently linked to seagrass health, which was then used as an indicator of the success of efforts to reduce watershed pollutant loads, in estuaries as diverse as Chesapeake Bay, the Indian River Lagoon, and Tampa Bay.

Chesapeake Bay was perhaps the first major estuary in the United States to make seagrass restoration and protection a key cog within a greater water pollution control framework. The 1987 Chesapeake Bay Agreement identified the "need to determine the essential elements of habitat quality and environmental quality necessary to support living resources and to see that these conditions are attained and maintained" as instrumental to overall bay health. Researchers in Chesapeake Bay estimate that only about 15% of the bay’s historical seagrass distribution presently exists (Moore et al., 2004). Having reviewed aerial photography dating back to 1937, the researchers suggested that these declines in seagrass are linked to deteriorating water quality conditions in Chesapeake Bay (Moore et al., 2004). The Chesapeake Bay Program (2002) established seagrass restoration targets and defined water quality and habitat-based requirements for seagrasses in Chesapeake Bay.

Similar to Chesapeake Bay, the Indian River Lagoon (IRL) on Florida’s east coast has witnessed a dramatic decrease in seagrass coverage since development strains in the watershed have manifest in water quality drop-offs. Since 1980, some regions within the IRL have lost up to 95% of their coverage (Virnstein et al., 2007; Rey and Rutledge, 2001). This trend has also prompted the Indian River Lagoon National Estuary Program (1996) to initiate a seagrass restoration program within its boundaries, in recognition of the unique and valuable function these communities contribute (Morris and Virnstein, 2004. It is estimated that, within the IRL, seagrasses form the foundation of a fishery industry worth approximately one billion dollars annual (Rey and Rutledge, 2001).
The model for the current project in the SBEP is from Tampa Bay. After decades of losses, seagrass meadows were identified by the Tampa Bay Estuary Program (TBEP) as critical estuarine habitats for fish and wildlife targeted for protection and restoration (Janicki et al., 1995). In addition to the proximity that Sarasota Bay and Tampa Bay have with one another, similar patterns of development and urbanization also make Tampa Bay a conducive model for restoration target setting in Sarasota Bay. The methodology employed in the present study is based largely on work done by the TBEP in 1995.

Multiple studies have been completed on seagrass communities in Sarasota Bay in recent years, with a focus on water quality studies and spatial and temporal trends in seagrasses. Tomasko et al. (1996) analyzed the impacts of anthropogenic nutrient loads on distribution patterns within four turtle grass meadows in Sarasota Bay. Turtle grass biomass and productivity were negatively correlated with watershed nitrogen inputs (Tomasko et al., 1996). Additionally, light attenuation has been studied in relation to Sarasota Bay’s seagrass communities (Dixon and Kirkpatrick, 1995). The researchers have asserted that light limitation is a major factor in losses of seagrasses at the deep edge of once-extensive meadows (Dixon and Kirkpatrick, 1995). The Sarasota Bay Estuary Program has identified light attenuation as a controlling abiotic factor in the density and distribution of seagrass beds within Sarasota Bay (Dixon and Kirkpatrick, 1995).

Kurz et al. (1999) examined recent trends in seagrass distribution in coastal waters throughout Southwest Florida, including Sarasota Bay. Tomasko et al. (2005) observed that there is more extensive seagrass coverage in 2002 than in the 1980s, linked to decreases in anthropogenic nitrogen loads in the Sarasota Bay watershed and greater water clarity. Similar trends were observed in Tampa Bay, but seagrass was constant in adjacent Lemon Bay and Charlotte Harbor, which suggests that a system-specific approach is an appropriate resource management strategy (Tomasko et al., 2005).

1.1 Definition of Study Area

The SBEP is comprised of five bay segments (Figure 1-1):

- Palma Sola Bay,
- Sarasota Bay,
- Roberts Bay,
- Little Sarasota Bay, and
- Blackburn Bay.

The analyses for this project were performed by bay segment, as defined in Figure 1-1, and are presented as such in this report.

1.2 Objective

The objective of this project is to provide technically-defensible quantitative restoration and protection targets for seagrasses in the Sarasota Bay ecosystem. Establishment of seagrass targets provides a necessary basis for management decisions regarding water quality and other issues that can influence the distribution and persistence of this resource. This analysis is not an assessment of the quality of seagrass currently or historically present in Sarasota Bay nor is intended to identify potential reasons for the observed changes in seagrass distribution over time. Rather, the primary goal of this project is to establish targets designed to maintain and/or restore seagrass coverage to its
historic extent. Restoration targets were defined through an analysis of historic and recent aerial surveys of the study area. Historic photos of the area were taken in 1950; as many alterations have occurred to the shoreline in the study area, as well as channelization of the Intracoastal Waterway (ICW), the following analyses have accounted for these changes as non-restorable areas. Additionally, trends in seagrass coverage throughout the SBEP based on recent surveys have been identified.

![Figure 1-1. Location of bay segments of Sarasota Bay Estuary Program (SBEP).](image)

2.0 METHODOLOGY

The methodology employed for this project is GIS-based, using ArcGIS v 9.2. Seagrass targets are proposed to be based on the spatial extent of 1950 baseline seagrass coverage in Sarasota Bay. The 1950 baseline provides an estimate of pre-development distribution of this critical resource and will be assumed to be the maximum potential current extent. This baseline level was also used to establish seagrass targets for similar work in Tampa Bay in the mid-1990s (Greening and Janicki, 2006) and are currently being used to establish seagrass targets for the Charlotte Harbor National Estuary Program (Janicki et al., in prep.).
Aerial photography of seagrasses in the bay has been gathered approximately every two years since 1988 by the SWFWMD. Some of the 1988 areas mapped as seagrasses were later found to actually represent attached macro-algae. From 1990 on, the aerial photography was field checked to verify presence of seagrasses (Kurz et al., 1999). For the purposes of this data report, only the SWFWMD seagrass coverages for 1988, 1994, 1999, 2001, 2004 and 2006 are utilized.

The SWFWMD aerial photography was 1:24,000-scale true color and were generally obtained during the late fall/early winter time period (November-February) when water clarity in West-Central Florida estuaries is typically greatest (Kurz et al., 1999). To develop GIS coverages from the aerial photography, the SWFWMD analyzed the photos using zoom transfer methodology registered to U.S. Geological Survey (USGS) 7.5-minute quadrangles. The minimum mapping unit for seagrasses was 0.5 acres. Seagrass polygons were delineated on mylar overlays and transferred to an ARC/INFO database.

In 2006, seagrass GIS coverages were developed from 1:24K natural color digital aerial photography using stereoscopic photo-interpretation. Digital photogrammetric workstations are utilized with software that allow for the direct capture of digital data for later importation to an ArcGIS geodatabase. The minimum mapping unit for delineating features was 0.5 acres.

The post-1988 SWFWMD coverages contain two classes of seagrass coverage, patchy and continuous. For the purposes of this data report, the acreages of both classes were combined to yield total seagrass acreage.

Previous work on seagrasses in Sarasota Bay has shown that of six available seagrass survey years, different areas show seagrass occurrence at different times. A persistence rule will be used to determine what the areal extent is where seagrass coverage is most constant over the period of record. The persistence rule involves converting the seagrass cover into a grid format. Each grid cell will be designated as having seagrass if more than 50% of the grid cell contained seagrass. Next, we determine which grid cells had seagrasses in all survey years to identify the most persistent seagrass areas. Section 4 presents the results of this analysis.

The current extent of seagrass is defined as the 2006 extent, the most recent completed seagrass survey in the study area. By comparing the current extent with the maximum potential extent, candidate areas for protection and restoration can be identified. The Sarasota Bay basin has experienced major urban development since 1950, and some areas have been altered to the extent that they have no reasonable potential for restoration. It is quite possible that certain anthropogenic modifications or areas that have changed as a result of natural processes have led to new areas where seagrasses are currently present but were not in the 1950 baseline extent. Such areas will be identified and targeted for protection as well.

2.1 Data Sources and Description

To set seagrass targets, the following data sources were used:

- baseline (historic) seagrass coverage,
- current and recent seagrass coverages, and
- current shoreline extent.

Baseline seagrass coverage was determined through photo-interpretation of aerial photos of the study area from circa 1950 obtained from the National Archives in Washington, DC. A contract to
Photo Science for photo-interpretation services provided GIS coverage of the area of interest for the Sarasota Bay Estuary Program. The baseline data from 1950 include a category for areas that may have potentially been seagrasses, but could not be classified as seagrasses as a result of limitations to the photo interpretation process. These areas were instead classified as ‘9999’ and were investigated further before proceeding with the analysis (Appendix C).

The Southwest Florida Water Management District (SWFWMD) has also produced a series of seagrass GIS coverages performed at intermittent intervals since 1988. These coverages were developed through photo interpretation work performed by Photo Science, Inc. GIS shapefiles for seagrass extent in the SBEP, in addition to the baseline, were available for the following years:

- October, 1988,
- January, 1994,
- December, 1999,
- January, 2001,
- January, 2004, and

Trends in seagrass coverage in each bay segment were identified through analysis of these shapefiles.

Current shoreline extent was also provided by GIS data obtained from SWFWMD (Kaufman, pers. Comm.). Two candidate shorelines were considered, including one developed by Photo Science and a second based on the most recent SWFWMD land use/cover database. A comparison of the two extents was performed, and little difference was seen between the two shapefiles.

Additionally, bay segment boundaries and ICW spatial data were needed for this analysis. A shapefile containing bay segment boundary data was provided by the SBEP. A shapefile of the ICW extent was developed through digitization of its current location based on topographical maps and was categorized in this analysis as non-restorable areas.

2.2 Description of GIS Analysis

Seagrass acreages were calculated by survey year and by bay segment:

- In order to assign bay segment, the seagrass shapefiles were joined with the bay segment shapefile.
- The area of each seagrass polygon was then calculated in ArcGIS, and summed by bay segment.

Non-restorable areas were also calculated in ArcGIS:

- The 1950 seagrass coverage was intersected with the SWFWMD shoreline coverage and the ICW coverage. The resultant shapefile consisted of only the non-restorable areas, or areas that had been altered so significantly since 1950 that restoration could not be considered an option.
- The non-restorable areas shapefile was then joined with the bay segment shapefile.
The area of each non-restorable area polygon was then calculated in ArcGIS, and summed by bay segment.

2.3 Approach and Rationale

In order to determine seagrass targets, the 1950 baseline seagrass coverage, the 2006 current seagrass coverage, and the non-restorable areas were overlain in ArcGIS. Clipping the non-restorable areas from the baseline coverage leaves the area of restorable seagrass.

Ultimately, the goal of this exercise is to compare recent trends in seagrass coverage throughout the SBEP with historical estimates in order to determine what needs to be protected, how much can be restored, and on what basis should the target be made. By comparing 2006 with the baseline, or, if pertinent, averages or more recent maxima, we can determine what these restoration goals should be. These five different options will be examined, with the most conservative estimate (i.e., the estimate that leads to the greatest amount of seagrass targeted for protection and restoration) being the final recommendation:

- the maximum areal extent observed in any of the recent survey years,
- the mean areal extent over all recent survey years,
- the mean areal extent over the last three survey years,
- the most recent areal extent, i.e., 2006, or
- the total observed extent.

The rationale behind evaluating each of these scenarios is as follows. By looking at the most recent coverage first, the current seagrass spatial extent can be compared to past extents; if the maximum is occurring now, a target consisting of the total of these acres surveyed in 2006 can be chosen. If this number is less than the baseline or a more recent index, a restoration target can be set based on some metric of past seagrass coverage.

If the maximum coverage occurred at some point in the past, a couple of options exist. One is to determine restoration targets based on averages of some or all of the recent surveys. Using the average acknowledges both the year-to-year variability in seagrass coverage, particularly in terms of water quality and precipitation and how they can impact light attenuation, as well as the variability in consistency of the methodology employed in identifying acreages of seagrass from survey to survey. The maximum past coverage approach recognizes that if this coverage was met at one time, then it could plausibly be met once more. The total observed extent represents the amount of seagrass in each of the recent surveys overlain with one another to determine all areas where seagrass has been observed recently. Use of the total observed extent sets a restoration target that is the most conservative in terms of total seagrass acreage.

3.0 RESULTS – HISTORICAL SEAGRASS

Estimates of the historical seagrass acreages used as the baseline in this project are presented by bay segment. Historical seagrass coverage, in acres, were:

- Palma Sola Bay: 1,087 acres
- Sarasota Bay: 7,557 acres
- Roberts Bay: 342 acres
- Little Sarasota Bay: 958 acres
- Blackburn Bay: 302 acres

In total, 10,246 acres are estimated to have been present historically in the SBEP. Figures 3-1 through 3-5 present maps depicting the location of historical seagrass circa 1950, as estimated from the photointerpretation process described in Section 2.

Additionally, approximately 6,450 acres were classified as 9999s, primarily in Sarasota Bay proper. Appendix A provides a more detailed explanation of the process of determining these so-called 9999 areas and presents a map detailing where these areas were located.

Figure 3-1. Baseline seagrass coverage in Palma Sola Bay.
Figure 3-2. Baseline seagrass coverage in Sarasota Bay.

Figure 3-3. Baseline seagrass coverage in Roberts Bay.
Figure 3-4. Baseline seagrass coverage in Little Sarasota Bay.

Figure 3-5. Baseline seagrass coverage in Blackburn Bay, ca. 1950.
4.0 RESULTS – RECENT TRENDS IN SEAGRASS COVERAGE

Recent seagrass coverage data throughout the five embayments within the SBEP are presented in Table 4-1. Trends in seagrass coverage between 1988 and 2006 were identified in each embayment:

- Palma Sola Bay - Areal seagrass coverage peaked in 1988 and remained at relatively similar extents from 1994 through 2006.
- Sarasota Bay - From 1988 through 2004 seagrass coverage was very similar, ranging between 6,323 and 6,862 acres. In 2006, more than 7,400 acres of seagrass were observed.
- Roberts Bay - Similar to both Palma Sola and Sarasota bays, seagrass extent in Roberts Bay remained fairly consistent through the recent survey years.
- Little Sarasota Bay - Seagrass extent varied in the recent survey years relatively more in Little Sarasota Bay than in other bay segments.
- Blackburn Bay - Seagrass coverage varied between 301 and 468 acres during the recent survey years.

Maps depicting seagrass coverage for each year of the recent surveys, by bay segment, can be found in Appendix B.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Palma Sola</td>
<td>1111</td>
<td>1089</td>
<td>1025</td>
<td>1046</td>
<td>1002</td>
<td>1028</td>
</tr>
<tr>
<td>Sarasota</td>
<td>6323</td>
<td>6910</td>
<td>6750</td>
<td>6862</td>
<td>6646</td>
<td>7436</td>
</tr>
<tr>
<td>Roberts</td>
<td>334</td>
<td>347</td>
<td>332</td>
<td>273</td>
<td>371</td>
<td>325</td>
</tr>
<tr>
<td>Little Sarasota</td>
<td>533</td>
<td>592</td>
<td>770</td>
<td>699</td>
<td>737</td>
<td>640</td>
</tr>
<tr>
<td>Blackburn</td>
<td>411</td>
<td>411</td>
<td>374</td>
<td>301</td>
<td>468</td>
<td>425</td>
</tr>
<tr>
<td>Total</td>
<td>8712</td>
<td>9349</td>
<td>9251</td>
<td>9181</td>
<td>9250</td>
<td>9854</td>
</tr>
</tbody>
</table>

Persistence maps were also created based on the recent surveys (1988-2006) used to characterize trends in seagrass within the SBEP. Figures 4-1 through 4-5 present the results of the persistence analysis, where persistence is based on presence in a grid cell in a given survey year. For example, if seagrass was present 5 out of 6 years, it signifies that a location showed seagrass in 5 of the 6 surveys used for this analysis. Also, persistence in 5 out of 6 years does not mean 5 consecutive years. Note that the most persistent seagrass areas are located near the shore in the shallowest portions of the estuary, whereas the least persistent areas are in the middle of the channel, where light attenuation is at its lowest levels, due to the increased depths in these locations. Additionally, the results of the persistence analysis show that some areas never have been, nor will be, well-suited for seagrass growth.
Figure 4-1. Map showing seagrass persistence throughout Palma Sola Bay, 1988-2006.

Figure 4-2. Map showing seagrass persistence throughout Sarasota Bay, 1988-2006.
Figure 4-3. Map showing seagrass persistence throughout Roberts Bay, 1988-2006.

Figure 4-4. Map showing seagrass persistence throughout Little Sarasota Bay, 1988-2006.
5.0 ESTABLISHMENT OF TARGETS

Seagrass target establishment also relies upon the determination of areas which are unable to be included as potential targets due to build-out, dredging, or other anthropogenic development. These areas, referred to as non-restorable areas, include shoreline development and the Intracoastal Waterway (ICW), and are removed from baseline acreages when they are assessed as potential targets. Non-restorable areas in each bay segment are as follows:

- Palma Sola Bay: 56 acres
- Sarasota Bay: 288 acres
- Roberts Bay: 59 acres
- Little Sarasota Bay: 75 acres
- Blackburn Bay: 29 acres

Maps depicting non-restorable areas for each bay segment can be found in Appendix C.

Having determined the extent of the baseline seagrass coverages, identified trends in recent seagrass coverages, and delineated the non-restorable areas in the SBEP, potential restoration targets can be calculated. Figures 5-1 through 5-5 present both the baseline and recent seagrass acreages for each bay segment. From these histograms, baseline, mean, maximum, and most recent seagrass acreages can be determined. These key statistics, along with total observed extent, are presented in Table 5-1.
Figure 5-1. Annual seagrass acreages in Palma Sola Bay.

Figure 5-2. Annual seagrass acreages in Sarasota Bay.
Figure 5-3. Annual seagrass acreages in Roberts Bay.

Figure 5-4. Annual seagrass acreages in Little Sarasota Bay.
Figure 5-5. Annual seagrass acreages in Blackburn Bay.

Table 5-1. Baseline, non-restorable, and adjusted baseline seagrass extents and potential seagrass targets.

<table>
<thead>
<tr>
<th></th>
<th>Palma Sola Bay</th>
<th>Sarasota Bay</th>
<th>Roberts Bay</th>
<th>Little Sarasota Bay</th>
<th>Blackburn Bay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1087</td>
<td>7557</td>
<td>342</td>
<td>958</td>
<td>302</td>
<td>10246</td>
</tr>
<tr>
<td>Non-restorable Areas</td>
<td>56</td>
<td>288</td>
<td>59</td>
<td>75</td>
<td>29</td>
<td>507</td>
</tr>
<tr>
<td>Adjusted Baseline</td>
<td>1031</td>
<td>7269</td>
<td>283</td>
<td>883</td>
<td>273</td>
<td>9739</td>
</tr>
<tr>
<td>Maximum Annual Extent</td>
<td>1089</td>
<td>7436</td>
<td>371</td>
<td>770</td>
<td>468</td>
<td>10134</td>
</tr>
<tr>
<td>Mean Annual Extent – all years</td>
<td>1038</td>
<td>6921</td>
<td>330</td>
<td>693</td>
<td>396</td>
<td>9378</td>
</tr>
<tr>
<td>Mean Annual Extent – last 3 years</td>
<td>1025</td>
<td>6981</td>
<td>323</td>
<td>701</td>
<td>398</td>
<td>9428</td>
</tr>
<tr>
<td>Most Recent Annual Extent</td>
<td>1028</td>
<td>7436</td>
<td>325</td>
<td>640</td>
<td>425</td>
<td>9854</td>
</tr>
<tr>
<td>Total Observed Extent</td>
<td>1395</td>
<td>8946</td>
<td>592</td>
<td>1116</td>
<td>539</td>
<td>12588</td>
</tr>
</tbody>
</table>

Assuming that the most conservative estimate for seagrass targets are chosen in each bay segment, the potential targets would be as follows:
• Palma Sola Bay – Three of the potential targets exceed the 1031 acres of restorable seagrass represented by the adjusted baseline. The total observed extent of seagrass, 1395 acres, is the most conservative of the potential targets.

• Sarasota Bay - The annual maximum observed seagrass was 7436 acres in 2006 and exceeds the estimated 7269 acres of restorable seagrass from the baseline period. Although seagrass coverage has increased since the baseline, the most conservative seagrass target for Sarasota Bay would be 8946 acres, the total observed seagrass extent.

• Roberts Bay - All potential targets exceed the 283 acres of restorable seagrass. The most conservative target would be 592 acres, the total observed seagrass extent.

• Little Sarasota Bay - The restorable seagrass observed in the adjusted baseline is 883 acres and exceeds the seagrass extent observed in each of the recent survey years. The most conservative restoration target is the total observed extent of 1116 acres.

• Blackburn Bay - All potential targets exceed the 273 acres of restorable seagrass. The most conservative target would be 539 acres, the total observed seagrass extent.

Please note that the seagrass restoration goals established are segment-wide acreage numbers and that they do not identify locations within each segment which are suitable for restoration. Additionally, the final decision for which of the five potential targets to use if the current seagrass extent exceeds the baseline extent will be made based on input received from the Technical Advisory Committee.
6.0 LITERATURE CITED

Chesapeake Bay Program. 2000. Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets. 217 pp.

The 9999s represent the areas within the photos that Photo Science was not inclined to define as seagrass or not. This total area of approximately 6,450 acres is located primarily in Sarasota Bay (Figure A-1). Further investigation using current known seagrass locations as well as historic and current aerial photographs suggest that these areas likely were not seagrasses. The patch of 9999s in Sarasota Bay is especially suspect given the depth of the bay in this location and the actual, irregular shape of the 9999 area. The greatest potential for 9999s as historic seagrass are those areas which are directly proximal to the near-shore seagrasses, but the available 1950s/historical imagery for some areas of Sarasota Bay was not of sufficient quality to determine/photo-interpret features in those areas with the required confidence for inclusion with the baseline coverage.

Figure A-1. Sarasota Bay historic seagrass coverage highlighting areas of uncertainty (pink: 9999) and areas of certainty (green).
TAC Subcommittee: Little Sarasota Bay Seagrass Target Re-evaluation Meeting

At the August 14, 2009 TAC meeting, members discussed the previously adopted Little Sarasota Bay (LSB) interim seagrass target. This agenda item and subsequent discussion was based on the motion passed by the Policy Board at its previous meeting stating that “the recommended target be adopted with consideration given to hydrologic/circulation alterations that have taken place”. If the TAC were to adopt the 1950 acreage as the target for LSB, the Policy Board wanted reasoning/justification for doing so. The TAC discussion led to several motions. The motion that passed unanimously- put forth by Kris Kaufman- was as follows: The interim seagrass target for Little Sarasota Bay (1950 acreage of 883 acres) is not an appropriate target. This decision and subsequent rationale needed to be shared with agency representatives responsible for setting numeric nutrient criteria for this water body. The TAC recommended forming a subcommittee to review methods and justification for any recommended target that is selected. All TAC members were invited to participate.

A subcommittee meeting was held on September 16, 2009 at the Sarasota County BOB building. In attendance were: John Ryan, Jack Merriam, Mike Jones, Jon Perry, Rene Janneman and Amanda Dominguez (Sarasota County); Kris Kaufman and Lizanne Garcia (SWFWMD); Tony Janicki (JEA) and Jay Leverone (SBEP).

The decision matrix for setting bay segment seagrass targets states that the target for a particular bay segment will either be:

1) The 1950 baseline acreage or

2) The 2004-2006 average, whichever is higher.

In the case of LSB, this meant the adoption of the 1950s value of 883 acres. This acreage total was based on circa 1950 aerial photography; a period when the pass was open and prior to dredging of the Intracoastal Waterway. Since that time, Midnight Pass was closed and appears likely to stay that way for the foreseeable future. Subcommittee members agreed that the closure of Midnight Pass must be considered a permanent physical alteration. This alteration cannot be directly related to the loss of seagrass at any particular location(s) in LSB- such as direct dredge and fill activities of the past could be accounted for as non-restorable areas. The impacts to seagrass habitats from the permanent closing of Midnight Pass are an indirect effect due to permanent changes in circulation, flushing and other hydrodynamic effects. This means that exact seagrass acreage cannot be deducted from the historical maps to account for this alteration.

The subcommittee considered that the decision matrix provides two options for setting seagrass targets- either the 1950 or 04-06 acreages. Since the first option (1950s acreage) is no longer consistent with the present-day physical conditions of Midnight Pass, the second option (04-06 acreage) should be the default interim target. The subcommittee proposed that this argument, along with other lines of evidence, is sufficient to support this conclusion.
Justification for adopting the alternative interim seagrass target for LSB is based on evidence that shows the 1950s acreage is “inappropriate” because of the unrecoverable differences in the bay segment conditions. This means the argument falls on completing an exercise focusing on depicting differences in residence time and circulation between open and current closed pass conditions. The subcommittee proposed that the hydrodynamic model run (paid for by SWFWMD for the Dona Bay Watershed Model Development) be compared to a newly run model with the pass open. The second line of evidence is the seagrass persistence maps, created by JEA and based on SWFWMD data. These maps show high spatial variability in seagrass distribution in LSB, which supports the absence of trends in the LSB acreages for use in target consideration. An argument could be made that, since the 2008 acreage in LSB was 837, a target of 702 acres would be too low, and not protective of seagrass in LSB. However, since LSB acreages over the past twenty years are not trending towards a consistent increase, there is not sufficient evidence to support a higher acreage target. Finally, the argument has been put forth that the closing of Midnight Pass might have been responsible for increases in seagrass acreage in the adjacent (Blackburn and Roberts) bay segments. If this were the case- and our ability to support that argument scientifically would be difficult and complicated- then that argument would be satisfied by the establishment of higher targets for these adjacent bay segments; the committee has already done this by selecting the 2004-2006 average for both segments.

The results of the subcommittee deliberations and the recommendation of adopting the alternate seagrass target of 702 acres (2004-2006 average) for Little Sarasota Bay will be brought back to the full TAC on October 16, 2009 for consideration and approval.
SARASOTA BAY SEAGRASS TARGETS

The TAC offered and passed two motions regarding the seagrass target setting process for Sarasota Bay.

Motion 1: Seagrass targets shall be set by bay segment. Motion passed unanimously.

Motion 2: The seagrass target for each segment shall be the adjusted baseline coverage (in acres) or the average of the past two surveys (2004 and 2006), whichever is greater. Seagrass targets will be revisited every five years. Motion passed. The Policy Board made the following motion after hearing a summary of TAC and MB board input.

Motion: Adopt the seagrass targets as interim targets with consideration given by the MB and TAC to the hydrographic conditions that may change the targets prior to them going into the regulatory arena. Motion passed unanimously.

TABLE 1. Seagrass Coverage and Target (In Acres) for Each Bay Segment.

<table>
<thead>
<tr>
<th>Bay Segment</th>
<th>Seagrass Coverage (Acres)</th>
<th>1950 (Historical)</th>
<th>2004</th>
<th>2006</th>
<th>2004 – 2006 Average</th>
<th>Seagrass Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palma Sola Bay</td>
<td></td>
<td>1,031</td>
<td>1,002</td>
<td>1,028</td>
<td>1,015</td>
<td>1,031</td>
</tr>
<tr>
<td>Sarasota Bay</td>
<td></td>
<td>7,269</td>
<td>6,646</td>
<td>7,436</td>
<td>7,041</td>
<td>7,269</td>
</tr>
<tr>
<td>Roberts Bay</td>
<td></td>
<td>283</td>
<td>371</td>
<td>325</td>
<td>348</td>
<td>348</td>
</tr>
<tr>
<td>Little Sarasota Bay</td>
<td></td>
<td>883</td>
<td>763</td>
<td>640</td>
<td>702</td>
<td>883*</td>
</tr>
<tr>
<td>Blackburn Bay</td>
<td></td>
<td>273</td>
<td>468</td>
<td>425</td>
<td>447</td>
<td>447</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>9,739</td>
<td>9,250</td>
<td>9,854</td>
<td>9,552</td>
<td>9,978</td>
</tr>
</tbody>
</table>
At August 23, 2009 TAC meeting, two motions were presented regarding the LSB seagrass target.

Motion 1: Use the 2004 – 2006 average for LSB. Motion failed.

Motion 2: The 1950 acreage should not be the target for setting WQ targets in LSB. Motion was passed unanimously.

A subcommittee was created to further discuss the LSB seagrass target and report back to the full TAC.
At the August 14, 2009 TAC meeting, members discussed the previously adopted Little Sarasota Bay (LSB) interim seagrass target. This agenda item and subsequent discussion was based on the motion passed by the Policy Board at its previous meeting stating that “the recommended target be adopted with consideration given to hydrologic/circulation alterations that have taken place”. If the TAC were to adopt the 1950 acreage as the target for LSB, the Policy Board wanted reasoning/justification for doing so. The TAC discussion led to several motions. The motion that passed unanimously- put forth by Kris Kaufman- was as follows: The interim seagrass target for Little Sarasota Bay (1950 acreage of 883 acres) is not an appropriate target. This decision and subsequent rationale needed to be shared with agency representatives responsible for setting numeric nutrient criteria for this water body. The TAC recommended forming a subcommittee to review methods and justification for any recommended target that is selected. All TAC members were invited to participate.

A subcommittee meeting was held on September 16, 2009 at the Sarasota County BOB building. In attendance were: John Ryan, Jack Merriam, Mike Jones, Jon Perry, Rene Janneman and Amanda Dominguez (Sarasota County); Kris Kaufman and Lizanne Garcia (SWFWMD); Tony Janicki (JEA) and Jay Leverone (SBEP).

The decision matrix for setting bay segment seagrass targets states that the target for a particular bay segment will either be:

1) The 1950 baseline acreage or
2) The 2004-2006 average, whichever is higher.

In the case of LSB, this meant the adoption of the 1950s value of 883 acres. This acreage total was based on circa 1950 aerial photography; a period when the pass was open and prior to dredging of the Intracoastal Waterway. Since that time, Midnight Pass was closed and appears likely to stay that way for the foreseeable future. Subcommittee members agreed that the closure of Midnight Pass must be considered a permanent physical alteration. This alteration cannot be directly related to the loss of seagrass at any particular location(s) in LSB- such as direct dredge and fill activities of the past could be accounted for as non-restorable areas. The impacts to seagrass habitats from the permanent closing of Midnight Pass are an indirect effect due to permanent changes in circulation, flushing and other hydrodynamic effects. This means that exact seagrass acreage cannot be deducted from the historical maps to account for this alteration.
The subcommittee considered that the decision matrix provides two options for setting seagrass targets—either the 1950 or 04-06 acreages. Since the first option (1950s acreage) is no longer consistent with the present-day physical conditions of Midnight Pass, the second option (04-06 acreage) should be the default interim target. The subcommittee proposed that this argument, along with other lines of evidence, is sufficient to support this conclusion.

Justification for adopting the alternative interim seagrass target for LSB is based on evidence that shows the 1950s acreage is “inappropriate” because of the unrecoverable differences in the bay segment conditions. This means the argument falls on completing an exercise focusing on depicting differences in residence time and circulation between open and current closed pass conditions. The subcommittee proposed that the hydrodynamic model run (paid for by SWFWMD for the Dona Bay Watershed Model Development) be compared to a newly run model with the pass open. The second line of evidence is the seagrass persistence maps, created by JEA and based on SWFWMD data. These maps show high spatial variability in seagrass distribution in LSB, which supports the absence of trends in the LSB acreages for use in target consideration. An argument could be made that, since the 2008 acreage in LSB was 837, a target of 702 acres would be too low, and not protective of seagrass in LSB. However, since LSB acreages over the past twenty years are not trending towards a consistent increase, there is not sufficient evidence to support a higher acreage target. Finally, the argument has been put forth that the closing of Midnight Pass might have been responsible for increases in seagrass acreage in the adjacent (Blackburn and Roberts) bay segments. If this were the case—and our ability to support that argument scientifically would be difficult and complicated—then that argument would be satisfied by the establishment of higher targets for these adjacent bay segments; the committee has already done this by selecting the 2004-2006 average for both segments.

The results of the subcommittee deliberations and the recommendation of adopting the alternate seagrass target of 702 acres (2004-2006 average) for Little Sarasota Bay will be brought back to the full TAC on October 16, 2009 for consideration and approval.
WATER QUALITY TARGET REFINEMENT PROJECT

Task 2: Seagrass Target Development

Interim Report 2

Prepared for:

Charlotte Harbor National Estuary Program
1926 Victoria Avenue
Fort Myers, FL 33901-3414

Prepared by:

Anthony Janicki, Michael Dema, and Mike Wessel

St. Petersburg, FL

Approved: August, 2009
TABLE OF CONTENTS

1. INTRODUCTION .. 1
 1.1 Purpose .. 1
 1.2 Location ... 1
 1.3 Background .. 3
 1.4 Study Area ... 6

2. METHODS ... 8
 2.1 Data Sources .. 8
 2.1.1 Baseline Seagrass Coverage ... 8
 2.1.2 Recent Seagrass Coverages ... 8
 2.1.3 Shorelines .. 9
 2.2 Description of GIS Analysis .. 9

3. RESULTS ... 10
 3.1 Historical Seagrass Acreages ... 10
 3.2 Recent Seagrass Acreages ... 14
 3.3 Persistence of Seagrass Acreages .. 18
 3.4 Non-Restorable Seagrass Acreages ... 22
 3.5 Establishing Seagrass Targets .. 26

4. NEXT STEPS AND RECOMMENDATIONS .. 30

5. REFERENCES .. 32

APPENDIX A: Analysis of 9999 Areas ... 35

APPENDIX B: Annual Seagrass Coverage Maps for Each Harbor Segment .. 2

APPENDIX C: May 28 TAC Subcommittee Meeting Summary and Attendees 57
1. INTRODUCTION

1.1 Purpose

The Charlotte Harbor National Estuary Program (CHNEP) identified the need to develop water quality targets that preserve and restore seagrass health throughout the estuarine system. The resource-based water quality targets address the Priority Problems identified in the CHNEP Comprehensive Conservation and Management Plan (CCMP) of Hydrologic Alterations and Water Quality Degradation. Initial resource-based water quality targets were developed based on measured depth of seagrass growth and percent light requirements (CHNEP, 2006).

CHNEP recently contracted with Janicki Environmental, Inc. to complete the "Water Quality Target Refinement Project." The purpose of this project is to develop resource-based water quality targets based on seagrass targets. The project includes four tasks:

1. refine CHNEP harbor segmentation scheme;
2. determine seagrass targets based on historical acreage;
3. develop water clarity targets; and
4. develop pollutant loading estimates.

This is Interim Report 2, which summarizes the results of Task 2.

Establishment of seagrass targets provides a necessary basis for management decisions regarding water quality and other issues that can influence the distribution and persistence of this valuable submerged habitat. The primary goal of this project is to establish targets designed to maintain and/or restore seagrass acreage to its historical extent. Restoration targets are defined through an analysis of historic and recent aerial surveys of the study area. Historic photos of the area were taken around 1950. As many alterations have occurred to the shoreline in the study area, as well as channelization of the Intracoastal Waterway (ICW), the following analyses have accounted for these changes as non-restorable areas. Additionally, trends in seagrass coverage throughout the CHNEP, based on recent aerial surveys, have been identified. These analyses are not an assessment of the quality of seagrasses currently or historically present in Charlotte Harbor, nor are they intended to identify causal explanations for the observed changes in seagrass distribution over time.

1.2 Location

The Charlotte Harbor estuarine system is located in southwest Florida (Figure 1-1) and includes 224,000 acres (230 square miles) of estuaries downstream from a 3,008,000 acre (4,700 square mile) watershed. The CHNEP is a partnership of citizens, elected officials, resource managers and commercial and recreational resource users working to improve the water quality and ecological integrity of the greater Charlotte Harbor watershed. A cooperative decision-making process is used within the program to address diverse resource management concerns in the study area.
Figure 1-1. Location of CHNEP estuaries and watershed.
1.3 Background

Seagrasses are an important marine resource, functioning as keystone species in healthy estuaries. Seagrasses are sessile organisms that are effective integrators of water quality and function as sentinel species in estuarine and marine environments (Orth et al., 2006). The strong link between water quality and seagrass distribution makes seagrass a good indicator of ecosystem health (Tomasko et al., 1996; Dawes et al., 2004; Moore et al., 2004; and Greening and Janicki, 2006). Healthy seagrass populations are critical resources that provide a multitude of benefits to estuarine ecosystems (Dawes et al., 2004) including:

- providing structural habitat for recreationally and commercially important fish and invertebrate species and stabilization of submerged shoreline sediments,
- providing support for epiphytic and macro algae, and
- functioning as an important component of nutrient cycles.

In addition to providing habitat and food for invertebrates, small vertebrate marine organisms, and large grazing herbivores, seagrass beds also support epiphytic and macro algae as substrata for their development. Seagrass communities constitute highly productive and diverse ecosystems, in part due to the presence of these epiphytes, which include diatoms, green algae, and cyanobacteria (Moncreiff and Sullivan, 2001). The epiphytic algal assemblage present on the surface of seagrass leaves functions as a primary food source within these communities, in addition to the seagrasses and their detrital material (Moncreiff and Sullivan, 2001). Macro algae also attach themselves to seagrasses for stability, and thus increase diversity within these systems (Janicki et al., 1995).

Nutrient cycling and assimilation is another of the many habitat function that seagrass communities provide. Seagrasses filter nutrients and contaminants, which helps improve water quality and support adjacent habitats and fisheries (Dawes et al., 2004). They are hotspots for organic-matter accumulation and nutrient regeneration and recycling, which support primary production and sustain food webs (Dawes et al., 2004). They can also serve as sinks for nitrogenous loads from watershed sources, which can aid attenuation of nutrient loads when seagrasses are found sufficiently abundant.

Anthropogenic nitrogen loads can lead to excessive algae growth, which adversely affects light penetration to submerged seagrasses (Dennison et al., 1993; SBEP, 1995; CHNEP, 2000; Chesapeake Bay Program, 2000; Morris and Virmstein, 2004; Greening and Janicki, 2006). Sediment deposition related to development of shorelines and the watershed also negatively impact seagrass growth (Moore et al., 2004). As seagrasses live in the shallow, protected coastal waters that are generally directly proximal to the shore and watershed, these systems are highly susceptible to nutrient and sediment inputs (Orth, et al., 2006).

A vast array of estuarine and marine organisms relies upon seagrass habitats for a portion or all of their life cycles (Dawes et al., 2004). The canopy structure of a seagrass bed provides protection and cover for fish in their fry and juvenile stages, essentially serving as a nursery ground (Dawes et al., 2004; Orth et al., 2006). Primary production within seagrass beds provides food for recreationally and commercially important fish species and serves as a trophic foundation for the ecosystem. Additionally, megaherbivores such as sea turtles and manatees graze on seagrasses as an important food source (Orth et al., 2006). The stability for these valuable habitats is provided by the hearty root systems of seagrasses (Janicki et al., 1995). These root systems provide stability not only for the seagrass communities, but also for sediments and the benthic production that is found at the sea floor (Dawes et al., 2004).
Seagrass restoration is a major focus in the management of many estuarine resources including the following estuaries:

- Chesapeake Bay,
- Long Island Sound,
- Indian River Lagoon,
- Tampa Bay, and
- Sarasota Bay.

A common pattern in seagrass coverage has emerged throughout each region. As the shorelines and watersheds proximal to seagrass beds become more developed, anthropogenic loadings of nitrogen and sediments have increased. These increases in loadings have had detrimental effects on water quality; of particular importance to seagrass health are the resultant algal blooms from nitrogenous loads and increased turbidity from sedimentation. Algal blooms and increased turbidity each negatively impact light attenuation in the water column above seagrass communities, which is devastating to green leafy plants. Seagrass populations have declined as such.

As researchers and managers within these systems began to identify this pattern, the notion of seagrass as an ecological bellwether developed. As sentinel species, due to the effectiveness of seagrasses to integrate water quality parameters, these communities were soon realized to be in-situ indicators of estuarine health and thus employed as components of watershed-based management and planning tools. Harbor-wide water quality was inherently linked to seagrass health, which was then used as an indicator of the success of efforts to reduce watershed pollutant loads, in estuaries as diverse as Chesapeake Bay, Long Island Sound, the Indian River Lagoon, Tampa Bay, and Sarasota Bay.

The Chesapeake Bay program was the first major estuary in the United States to make seagrass restoration and protection a vital component of their water pollution control framework. The 1987 Chesapeake Bay Agreement identified the "need to determine the essential elements of habitat quality and environmental quality necessary to support living resources and to see that these conditions are attained and maintained" as instrumental to overall bay health. Researchers in Chesapeake Bay estimated that only about 15% of the bay’s historical seagrass distribution presently exists (Moore et al., 2004). Having reviewed aerial photography dating back to 1937, the researchers suggested that these declines in seagrass were linked to deteriorating water quality conditions in Chesapeake Bay (Moore et al., 2004). The Chesapeake Bay Program (2002) established seagrass restoration targets and defined water quality and habitat-based requirements for seagrasses in Chesapeake Bay.

Similar to Chesapeake Bay, the Indian River Lagoon (IRL), on Florida’s east coast, witnessed a dramatic decrease in seagrass coverage. This decline is seagrass coverage occurred while development of the watershed increased and water quality declined. Since 1980, some regions within the IRL have lost up to 95% of their coverage (Virnstein et al., 2007; Rey and Rutledge, 2001). This trend prompted the Indian River Lagoon National Estuary Program (1996) to initiate a seagrass restoration program within its boundaries, in recognition of the unique and valuable contribution of these communities to overall ecosystem health (Morris and Virnstein, 2004). It is estimated that, within the IRL, seagrasses form the foundation of a fishery industry worth approximately one billion dollars annual (Rey and Rutledge, 2001).
The conceptual model for this current CHNEP study was originally developed for the Tampa Bay Estuary Program. After decades of losses, seagrass meadows were identified by the Tampa Bay Estuary Program (TBEP) as critical estuarine habitats for fish and wildlife targeted for protection and restoration (Janicki et al., 1995). In addition to the proximity that Charlotte Harbor and Tampa Bay have with one another on Florida’s west coast, similar patterns of development and urbanization also make Tampa Bay a relevant framework for establishing seagrass protection and restoration targets in Charlotte Harbor. The methodology employed in the present study is based largely on work done by the TBEP in 1995.

Multiple studies have been completed on seagrass communities in Sarasota Bay in recent years, with a focus on water quality and spatial and temporal and trends in seagrasses. Sarasota Bay is of particular importance to the present study due to its proximal location to the CHNEP. Tomasko et al. (1996) analyzed the impacts of anthropogenic nutrient loads on distribution patterns within four turtle grass meadows in Sarasota Bay. Turtle grass biomass and productivity was negatively correlated with watershed nitrogen inputs (Tomasko et al., 1996). Additionally, light attenuation has been studied in relation to Sarasota Bay’s seagrass communities (Dixon and Kirkpatrick, 1995). The researchers have asserted that light limitation is a major factor in losses of seagrasses at the deep edge of once-extensive meadows (Dixon and Kirkpatrick, 1995). The Sarasota Bay Estuary Program has identified light attenuation as a controlling abiotic factor in the density and distribution of seagrass beds within Sarasota Bay (Dixon and Kirkpatrick, 1995).

Five species of seagrasses have been observed in the Charlotte Harbor ecosystem, and are generally found in waters less than 6 ft deep (CHNEP, 1999). The seagrasses found in Charlotte Harbor are likely depth limited by water transparency as in other Floridian estuaries, including Tampa Bay and Indian River Lagoon (CHNEP, 1999). Variability in seagrass distribution has been observed in Charlotte Harbor seagrasses since 1945, on both a long-term and year-to-year basis (CHNEP, 1999). A recent study of seagrass communities in Charlotte Harbor has documented observable decreases in acreage on the order of 29% throughout the ecosystem from 1945 to 1982, with an overall 6% decrease in the period from 1982 to 1999 (Corbett, 2006). Corbett (2006) stressed the importance of watershed alterations, in addition to anthropogenic nutrient loading, which were likely causative in the long-term decrease of seagrasses, including dredging and construction programs, such as the Intracoastal Waterway (ICW) and the Sanibel Bridge, and freshwater inflow alterations from the Myakka, Peace, and Caloosahatchee rivers. Interannual variability in rainfall is directly related to freshwater inflows, with wet years resulting in lost seagrass coverage and drier years leading to gains (CHNEP, 1999).

As in other West Central Florida estuaries, reduced availability of light has been linked to loss of seagrasses, particularly in deeper waters, in Charlotte Harbor (McPherson and Miller, 1994; Dixon and Kirkpatrick, 1999). Increasing turbidity and total suspended solids can account for up to half of all light attenuation in Charlotte Harbor, having a direct impact on the health of seagrass communities (Dixon and Kirkpatrick, 1999). McPherson and Miller (1994) cited these factors, as well as nutrient and color loads from the freshwater inflow coming from the Peace River, as major causes of light attenuation in Charlotte Harbor, particularly the northern portions of the system.

Kurz et al. (1999) examined recent trends in seagrass distribution in coastal waters throughout Southwest Florida, including Charlotte Harbor. Tomasko et al. (2005) observed that seagrass remained relatively constant in Lemon Bay and Charlotte Harbor from the 1980s through 2002. However, the researchers also observed more extensive seagrass coverage in 2002 in
Sarasota Bay and Tampa Bay than in the 1980s, linked to decreases in anthropogenic nitrogen loads in these watersheds and greater water clarity. These results suggest that a system-specific approach is an appropriate resource management strategy (Tomasko et al., 2005).

1.4 Study Area

The CHNEP is comprised of 14 harbor segments (Figure 1-2), as defined in Task 1:

- Coastal Venice,
- Upper Lemon Bay,
- Lower Lemon Bay,
- Tidal Myakka River,
- Tidal Peace River,
- West Wall,
- East Wall,
- Cape Haze,
- Bokeelia,
- Pine Island Sound,
- Matlacha Pass,
- San Carlos Bay,
- Tidal Caloosahatchee River, and
- Estero Bay.

The analyses for this project were performed by harbor segment, as defined in Figure 1-1, and are presented as such in this report.
Figure 1-2. Location of harbor segments of the Charlotte Harbor National Estuary Program.
2. METHODS

The following section summarizes the methodology defined by Janicki et al. (2008) for the development of seagrass targets in the Charlotte Harbor estuary system. To set seagrass targets, the following data are required:

- baseline (historic) seagrass coverage,
- current and recent seagrass coverages, and
- current shoreline extent.

The seagrass targets are based on the spatial extent of 1950 baseline seagrass coverage in Charlotte Harbor. The 1950 baseline provides the best available estimate of pre-development seagrass distribution since a consistent set of aerial photos and photo-interpretation were used. A similar baseline was used to establish seagrass targets for Tampa Bay in the mid-1990s (Greening and Janicki, 2006) and more recently, Sarasota Bay (Janicki et al., 2009).

It should be noted that the use of aerial photography provides a repeatable, quantitative tool that can be used to estimate seagrass coverage in the harbor. The estimates derived using this tool should be considered as a consistent but relative estimate rather than an estimate of absolute seagrass acreage. It is likely that the actual seagrass coverage is greater than that derived from aerial photography due to some minimum but unknown density of seagrass required to be identified by this method. The method does not differentiate seagrasses based on density, species, or quality.

2.1 Data Sources

Below is a description of the data sources used as the foundation for establishing seagrass protection and restoration targets.

2.1.1 Baseline Seagrass Coverage

Baseline seagrass coverage was determined through photo-interpretation of aerial photos of the study area from circa 1950 obtained from the National Archives in Washington, DC. A contract to Photo Science for photo-interpretation services provided electronic data coverage of the area of interest for the CHNEP using ArcGIS (ESRI 2009). The time of the year in which these photos were taken is variable, however, the recent rainfall in the Charlotte Harbor watershed is not known.

The baseline data from 1950 include a category for areas that may have potentially been seagrasses, but could not be classified as seagrasses as a result of limitations to the photo interpretation process. These areas were instead classified as ‘9999’ and are documented in Appendix A.

2.1.2 Recent Seagrass Coverages

Recent seagrass coverages are provided by the Southwest Florida Water Management District (SWFWMD) for the northern segments of the harbor system and by the South Florida Water Management District (SFWMD) for the southern segments.
SWFWMD has produced a series of seagrass GIS coverages performed at intermittent intervals since 1988. These coverages were developed through photo interpretation work performed by Photo Science, Inc. GIS shapefiles for seagrass extent in the northern segments of Charlotte Harbor are available for the following years:

- October, 1988,
- January, 1994,
- December, 1999,
- January, 2002,
- January, 2004 , and

Current seagrass extent is available from the SFWMD. The projects conducted to provide these data included:

- 2003 seagrass extent is available from the SFWMD Lower Charlotte Harbor Seagrass Mapping and Estero Bay Seagrass Mapping Project.
- 1999 seagrass extent is available from the Southwest Florida Seagrass Project, produced for the Florida Marine Research Institute (FMRI) in partnership with SFWMD.

2.1.3 Shorelines

SWFWMD and SFWMD provide the current shoreline data for the harbor system. Additionally, harbor segment boundaries and ICW spatial data were needed for this analysis. A shapefile containing harbor segment boundary data was provided by CHNEP. A shapefile of the ICW extent was developed through digitization of its current location based on topographical maps.

2.2 Description of GIS Analysis

Seagrass acreages were calculated by survey year and by harbor segment. The post-1988 GIS coverages contain two classes of seagrass coverage, patchy and continuous. No distinction was made between patchy and continuous seagrasses. The seagrass acreage estimates represent the sum of both classes which is consistent with the methodology used by the TBEP and the SBEP. This was accomplished by joining the seagrass shapefiles with the harbor segment shapefile defined in Task 1. The areal estimate within each harbor segment was then calculated using ArcGIS V9.3 (ESRI 2009).

Non-restorable areas were also calculated using ArcGIS. The 1950 seagrass coverage was intersected with the shoreline and ICW coverages (Janicki et al., 2008). These areas include filled and dredged areas. The resultant shapefile includes areas where seagrass recovery cannot reasonably be expected to occur. The non-restorable areas shapefile was then joined with the harbor segment shapefile. The area of each non-restorable area polygon was then calculated and summed by harbor segment.
The results of these analyses yield a baseline seagrass extent, an estimate of non-restorable areas, and recent estimates of seagrass coverage in the system, which will be used to determine seagrass restoration targets in the Charlotte Harbor system.

3. RESULTS

This section presents the results of the analysis of historical seagrass acreages, recent seagrass acreages, persistence in seagrass coverage, and non-restorable areas.

3.1 Historical Seagrass Acreages

The estimates of the historical seagrass acreages are:

- Coastal Venice - 133 acres
- Upper Lemon Bay - 1,005 acres
- Lower Lemon Bay - 3,114 acres
- Tidal Myakka River - 350 acres
- Tidal Peace River - 1,039 acres
- East Wall - 3,986 acres
- West Wall - 2,117 acres
- Cape Haze - 5,798 acres
- Bokeelia - 3,058 acres
- Pine Island Sound - 24,113 acres
- Matlacha Pass - 9,577 acres
- San Carlos Bay - 3,243 acres
- Tidal Caloosahatchee River - 211 acres
- Estero Bay - 3,769 acres

In total, 61,513 acres are estimated to have been present historically in the CHNEP. Figures 3-1a through 3-1n present maps depicting the spatial extent of historical seagrass.
Figure 3-1a. Baseline seagrass coverage in Dona and Roberts Bay.

Figure 3-1b. Baseline seagrass coverage in Upper Lemon Bay.

Figure 3-1c. Baseline seagrass coverage in Lower Lemon Bay.

Figure 3-1d. Baseline seagrass coverage in Tidal Myakka River.
Figure 3-1e. Baseline seagrass coverage in Tidal Peace River.

Figure 3-1f. Baseline seagrass coverage in West Wall.

Figure 3-1g. Baseline seagrass coverage in East Wall.

Figure 3-1h. Baseline seagrass coverage in Cape Haze.
Figure 3-1i. Baseline seagrass coverage in Bokeelia.

Figure 3-1j. Baseline seagrass coverage in Pine Island Sound.

Figure 3-1k. Baseline seagrass coverage in Matlacha Pass.

Figure 3-1l. Baseline seagrass coverage in San Carlos Bay.
As described above there were a number of areas in the historical seagrass coverage identified as ‘9999’ that could not defensibly be defined as seagrass. These areas total approximately 27,000 acres. Most of these areas are located in Lemon Bay, Pine Island Sound, Matlacha Pass, San Carlos Bay, and Estero Bay. Appendix A presents the results of the 9999 analysis.

3.2 Recent Seagrass Acreages

Recent seagrass coverage data throughout the 14 harbor segments within the CHNEP are presented in Tables 3-1 and 3-2. The following observations were made:

- Coastal Venice - seagrass coverage was lowest in 1988 and 1994, but has returned to near baseline levels in 2006.
- Upper Lemon Bay – seagrass coverage has remained relatively consistent throughout the survey period, with the exception of a spike in 2004.
- Lower Lemon Bay - from 1988 through 2006, seagrass coverage was consistent throughout the survey period.
- Tidal Myakka River - seagrass coverage peaked in 1999, but has decreased in the two most recent surveys.
- Tidal Peace River - seagrass coverage has decreased in recent surveys since a peak in 1994.
- West Wall - seagrasses have generally increased in this segment in recent surveys, significantly peaking in 2006.
• East Wall - seagrass has remained relatively constant throughout the survey period, with a slight decrease in 2004 and 2006.
• Cape Haze - very little change in seagrass coverage has been observed from 1988 to 2006.
• Bokeelia - seagrass coverage has been consistent throughout the survey period.
• Pine Island Sound - seagrass coverage has increased each survey of the study period since 1999.
• Matlacha Pass - like in neighboring Pine Island Sound, seagrasses have been increasing in each survey since 1999.
• San Carlos Bay - as in Pine Island Sound and Matlacha Pass, seagrass coverage has increased every year since 1999.
• Tidal Caloosahatchee River – seagrass coverage peaked in 2003, and has remained stable since 2004.
• Estero Bay - seagrass coverage increased significantly between the 2003 and 2004 surveys.

The recent increasing trends in Pine Island Sound, Matlacha Pass and San Carlos Bay are impressive; however, a change in methodology to avoid capturing photographs when turbidity plumes are prevalent in the sampling area may have contributed to this outcome in segments influenced by coastal passes. Maps depicting seagrass coverage for each year of the recent surveys, by harbor segment, can be found in Appendix B. Figures 3-6a through 3-6n present both the baseline and recent seagrass acreages for each harbor segment.

| Table 3-1. Annual seagrass coverage (acres) in the SWFWMD portion of the CHNEP. |
|-------------------------------|-------|-------|-------|-------|-------|-------|
| Dona and Roberts Bay | 75 | 70 | 88 | 85 | 103 | 124 |
| Upper Lemon Bay | 952 | 1,035 | 972 | 973 | 1,175 | 949 |
| Lower Lemon Bay | 2,509 | 2,457 | 2,550 | 2,500 | 2,396 | 2,597 |
| Tidal Myakka River | 447 | 518 | 539 | 527 | 331 | 375 |
| Tidal Peace River | 414 | 573 | 302 | 376 | 295 | 341 |
| West Wall | 1,676 | 1,879 | 1,933 | 1,989 | 1,784 | 2,121 |
| East Wall | 3,427 | 3,526 | 3,587 | 3,591 | 3,275 | 3,382 |
| Cape Haze | 7,068 | 7,059 | 6,709 | 6,776 | 7,464 | 6,911 |
| Bokeelia | 3,471 | 3,304 | 3,101 | 3,298 | 3,359 | 3,520 |
| TOTAL | 20,039| 20,421| 19,841| 20,115| 20,185| 20,320|

| Table 3-2. Annual seagrass coverage (acres) in the SFWMD portion of the CHNEP. |
|-------------------------------|-------|-------|-------|-------|
| Pine Island Sound | 25,941| 26,892| 28,034| 29,204|
| Matlacha Pass | 6,055 | 7,182 | 7,479 | 7,619 |
| San Carlos Bay | 3,709 | 4,338 | 5,192 | 5,376 |
|----------------------|------|------|------|------|------|------|------|
| Tidal Caloosahatchee River | 2 | 103 | 61 | 56 |
| Estero Bay | 2,488| 2,393| 3,409| 3,298|
| TOTAL | 38,195| 40,908| 44,175| 45,553|

Figure 3-2a. Annual seagrass acreages in Dona and Roberts Bay.

Figure 3-2b. Annual seagrass acreages in Upper Lemon Bay.

Figure 3-2c. Annual seagrass acreages in Lower Lemon Bay.

Figure 3-2d. Annual seagrass acreages in Tidal Myakka River.
Figure 3-2e. Annual seagrass acreages in Tidal Peace River.

Figure 3-2f. Annual seagrass acreages in West Wall.

Figure 3-2g. Annual seagrass acreages in East Wall.

Figure 3-2h. Annual seagrass acreages in Cape Haze.

Figure 3-2i. Annual seagrass acreages in Bokeelia.

Figure 3-2j. Annual seagrass acreages in Pine Island Sound.
3.3 Persistence of Seagrass Acreages

Persistence maps were also created based on the recent surveys used to identify areas where seagrasses have been most likely to be found within the CHNEP. Figures 3-4a through 3-4b present the results of the persistence analysis. The most persistent seagrass areas are generally located in the near-shore portions of the estuary, which tend to be shallower. In contrast, the least persistent areas are more likely found in deeper portions of the harbor. Additionally, the results of the persistence analysis show that some areas never have been, nor will likely be, well-suited for seagrass recovery.
Figure 3-3a. Seagrass persistence in Dona and Roberts Bay 1988-2006.

Figure 3-3b. Seagrass persistence in Upper Lemon Bay, 1988-2006.

Figure 3-3c. Seagrass persistence in Lower Lemon Bay, 1988-2006.

Figure 3-3d. Seagrass persistence in Tidal Myakka River, 1988-2006.
Figure 3-3e. Seagrass persistence in Tidal Peace River, 1988-2006.

Figure 3-3f. Seagrass persistence in West Wall, 1988-2006.

Figure 3-3g. Seagrass persistence in East Wall, 1988-2006.

Figure 3-3h. Seagrass persistence in Cape Haze, 1988-2006.
Figure 3-3i. Seagrass persistence in Bokeelia, 1988-2006.

Figure 3-3j. Seagrass persistence in Pine Island Sound, 1999-2006.

Figure 3-3k. Seagrass persistence in Matlacha Pass, 1999-2006.

Figure 3-3l. Seagrass persistence in San Carlos Bay, 1999-2006.
3.4 Non-Restorable Seagrass Acreages

The estimated non-restorable areas in each harbor segment are as follows:

- Coastal Venice - 21 acres
- Upper Lemon Bay - 125 acres
- Lower Lemon Bay - 295 acres
- Tidal Myakka River - 6 acres
- Tidal Peace River - 64 acres
- West Wall - 11 acres
- East Wall - 88 acres
- Cape Haze - 128 acres
- Bokeelia - 94 acres
- Pine Island Sound - 356 acres
- Matlacha Pass - 262 acres
- San Carlos Bay - 125 acres
- Tidal Caloosahatchee River - 118 acres
- Estero Bay - 107 acres

Maps depicting non-restorable areas for each harbor segment can be found in Figures 3-5a through 3-5n.
Figure 3-4a. Non-Restorable Seagrass Areas in Dona and Roberts Bay.

Figure 3-4b. Non-Restorable Seagrass Areas in Upper Lemon Bay.

Figure 3-4c. Non-Restorable Seagrass Areas in Lower Lemon Bay.

Figure 3-4d. Non-Restorable Seagrass Areas in Tidal Myakka River.
Figure 3-4e. Non-Restorable Seagrass Areas in Tidal Peace River.

Figure 3-4f. Non-Restorable Seagrass Areas in East Wall Charlotte Harbor.

Figure 3-4g. Non-Restorable Seagrass Areas in West Wall Charlotte Harbor.

Figure 3-4h. Non-Restorable Seagrass Areas in Cape Haze.
Figure 3-4i. Non-Restorable Seagrass Areas in Bokeelia.

Figure 3-4j. Non-Restorable Seagrass Areas in Pine Island Sound.

Figure 3-4k. Non-Restorable Seagrass Areas in Matlacha Pass.

Figure 3-4l. Non-Restorable Seagrass Areas in San Carlos Bay.
3.5 Establishing Seagrass Targets

Having determined the extent of the baseline seagrass coverages, recent seagrass coverages, and delineated the non-restorable areas in the CHNEP, potential restoration and protection targets were then calculated.

A number of potential definitions of seagrass restoration and protection targets (Table 3-3) were presented to a special subcommittee to the TAC on May 28, 2009. A summary of the discussions from that meeting is provided in Appendix C. These potential targets included:

- maximum annual extent,
- mean annual extent over all recent surveys,
- mean annual extent over the last 3 surveys, and
- most recent annual extent.

The adjusted baseline acreage is the difference between the baseline acreage and the non-restorable acreage in each harbor segment, therefore, correcting the baseline for the areas in which seagrass recovery is unexpected.

The discussion focused on the choice of appropriate seagrass restoration and protection targets for each harbor segment. The following definition was adopted based on the outcome of that meeting:
The CHNEP seagrass target for each harbor segment is the greater of either the adjusted baseline acreage or the mean of all recent seagrass surveys.

Application of this definition to the results in Table 3-3 provides the targets identified for each harbor segment in Table 3-4.

In addition to defining these targets, an appropriate definition of a target range, i.e., the range of acceptable seagrass area, was also desired. It is recommended that this target range be defined by the range between the minimum and maximum areas from the recent seagrass surveys.

Please note that the seagrass restoration targets established are segment-wide acreages and that they do not identify specific locations within each segment which are suitable for restoration. Additionally, as discussed above, in the segments where recent seagrass extent exceeds the baseline extent, the final management decision will be made based on input received from the CHNEP’s Technical Advisory Committee and acceptance by both the Management and Policy committees.

The Technical Advisory Committee recognized that aerial photography may not be the best technique for determining the extent of seagrass in the rivers draining into Charlotte Harbor, due to the impacts of water color. False negatives, where water color is obscuring the ability to identify seagrasses, can lead to significant underreporting of seagrass coverage in these segments. For this reason, on-the-ground methodologies may be the better approach for identifying seagrasses in the river segments of the Charlotte Harbor ecosystem. Older studies on the Caloosahatchee River estuary suggest that seagrasses were distributed throughout the length of the tidal portion of the river (George B. Hills Co., 1927; Phillips and Springer, 1960; Gunter and Hall, 1962). As far back as 1927, seagrasses were observed throughout the channel of the tidal portion of the Caloosahatchee River (George B. Hills Co., 1927). Phillips and Springer (1960) observed 11 different attached epiphytic algal species at five different stations within the tidal portion of the Caloosahatchee River. Contrasting Phillips and Springer (1960) with the 1950 seagrass coverage data presented in Figure 3-1m suggests that the aerial methodology may be underreporting seagrass for the Tidal Caloosahatchee segment. The Phillips and Springer (1960) field observations were identifying seagrasses in the region between the upstream-most and downstream-most meadows observed historically in Figure 3-1m. Gunter and Hall (1962) also observed a multitude of seagrass species in the shallower portions throughout the Caloosahatchee River and the near-vicinity bays and sounds.

W. Dexter Bender and Associates, Inc. (1994) identified four different species of seagrass in the tidal portion of the Caloosahatchee River in preparation of the Lee County Manatee Protection Plan (Figure 3-5). Seagrass meadows were identified in field observations throughout an approximately one-quarter mile buffer along the Caloosahatchee River shoreline (T. King, pers. comm.) These seagrasses comprise an area of nearly 2,800 acres, which contrasts with the estimates developed in the present study via aerial photo-interpretation. Seagrass was observed throughout the near-shore areas of the Tidal Caloosahatchee segment.
Based on these studies of seagrasses in the Caloosahatchee River, the river segments in Table 3-4 have been denoted as being difficult to interpret using aerial photography and careful consideration should be given to establishing seagrass targets based on aerial photography in these segments.

The estimates provided above for the three major tidal rivers (Caloosahatchee, Myakka, and Peace) which drain into Charlotte Harbor and for the Dona and Roberts Bay segment are affected to a large degree by conditions at the time of sampling. The Technical Advisory Committee subcommittee agreed that seagrass extent calculations should be provided for completeness in these segments but that they should not be used for establishing restoration or protection targets in these segments as tanic river waters may have reduced the ability to capture the bottom profile of these segments with aerial photography. Local observations of sparse but substantial coverage of seagrass in areas previously characterized by aerial photography as being devoid of seagrass also contributed to this decision that the estimates from aerial photography in these segments may contain a large degree of uncertainty.
Table 3-3. Baseline, non-restorable, and adjusted baseline seagrass extents and potential seagrass targets (acres).

<table>
<thead>
<tr>
<th></th>
<th>Dona and Roberts Bay</th>
<th>Upper Lemon Bay</th>
<th>Lower Lemon Bay</th>
<th>Tidal Myakka</th>
<th>Tidal Peace</th>
<th>West Wall</th>
<th>East Wall</th>
<th>Cape Haze</th>
<th>Bokeelia</th>
<th>Pine Island Sound</th>
<th>Matlacha Pass</th>
<th>San Carlos Bay</th>
<th>Tidal Caloosahatchee</th>
<th>Estero Bay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>133</td>
<td>1,005</td>
<td>3,114</td>
<td>350</td>
<td>1039</td>
<td>2,117</td>
<td>3,986</td>
<td>5,798</td>
<td>24,113</td>
<td>3,243</td>
<td>3,243</td>
<td>211</td>
<td>3,769</td>
<td>61,513</td>
<td></td>
</tr>
<tr>
<td>Non-restorable Areas</td>
<td>21</td>
<td>125</td>
<td>232</td>
<td>6</td>
<td>64</td>
<td>11</td>
<td>88</td>
<td>128</td>
<td>94</td>
<td>356</td>
<td>262</td>
<td>125</td>
<td>118</td>
<td>107</td>
<td>1,737</td>
</tr>
<tr>
<td>Adjusted Baseline</td>
<td>112</td>
<td>880</td>
<td>2,882</td>
<td>344</td>
<td>975</td>
<td>2,106</td>
<td>3,898</td>
<td>5,670</td>
<td>2,964</td>
<td>23,757</td>
<td>23,757</td>
<td>9,315</td>
<td>3,118</td>
<td>93</td>
<td>3,662</td>
</tr>
<tr>
<td>Maximum Annual Extent</td>
<td>124</td>
<td>1,175</td>
<td>2,597</td>
<td>539</td>
<td>573</td>
<td>2,121</td>
<td>3,591</td>
<td>7,464</td>
<td>3,520</td>
<td>29,204</td>
<td>29,204</td>
<td>7,619</td>
<td>5,376</td>
<td>103</td>
<td>3,409</td>
</tr>
<tr>
<td>Mean Annual Extent: all years</td>
<td>91</td>
<td>1,009</td>
<td>2,502</td>
<td>456</td>
<td>384</td>
<td>1,907</td>
<td>3,465</td>
<td>6,998</td>
<td>3,342</td>
<td>26,837</td>
<td>26,837</td>
<td>7,582</td>
<td>4,372</td>
<td>87</td>
<td>3,071</td>
</tr>
<tr>
<td>Mean Annual Extent: last 3 years</td>
<td>104</td>
<td>1,032</td>
<td>2,498</td>
<td>411</td>
<td>337</td>
<td>1,965</td>
<td>3,416</td>
<td>7,050</td>
<td>3,392</td>
<td>28,043</td>
<td>28,043</td>
<td>7,427</td>
<td>4,969</td>
<td>72</td>
<td>3,033</td>
</tr>
<tr>
<td>Most Recent Annual Extent</td>
<td>124</td>
<td>949</td>
<td>2,597</td>
<td>375</td>
<td>341</td>
<td>2,121</td>
<td>3,382</td>
<td>6,911</td>
<td>3,520</td>
<td>29,204</td>
<td>29,204</td>
<td>7,619</td>
<td>5,376</td>
<td>56</td>
<td>3,298</td>
</tr>
</tbody>
</table>

29
4. NEXT STEPS AND RECOMMENDATIONS

Upon approval by the Management and Policy committees, these targets will be used in the refinement of water clarity and quality targets for each harbor segment. This effort is being completed in Task 3 of this project. As discussed above, there are clear linkages between seagrass growth and reproduction, water quality, and nutrient loading. Specifically, increased nutrient loading can result in elevated chlorophyll concentrations, which in turn affects water clarity. Decreased water clarity reduces the amount of light needed to support seagrass growth and reproduction. Therefore, the results from this task provide the basis for appropriate water quality and nutrient loading targets for the harbor.

The following bullet points provide recommendations for the application of these seagrass targets in managing the Charlotte Harbor system:

- Establish process for reporting annual and biennial assessments of water quality and seagrass coverage relative to these targets in each harbor segment.

- Define appropriate management responses to deviations from either water quality and/or seagrass targets in each harbor segment.
• Analyze the relationship between the seagrass coverage data presented here and the Florida Department of Environmental Protection’s Charlotte Harbor Aquatic Preserve (CHAP) seagrass transect monitoring data.

• Further research on the quality of seagrass in Charlotte Harbor estuary as part of an ongoing effort to understand seagrass distribution and health in this ecosystem;

• Continue study of inter-annual variation in water quality, clarity, and seagrass coverage in the Charlotte Harbor estuary; and

• Consider other methods in the estimation of seagrass coverage in the three major tidal rivers (Caloosahatchee, Myakka, and Peace) which drain into Charlotte Harbor and Dona and Roberts Bays.
5. REFERENCES

Chesapeake Bay Program. 2000. Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets. Chesapeake Bay Program, Annapolis, MD. 217 pp.

King, T. 8/20/2009. Personal communication.

APPENDIX A: Analysis of 9999 Areas

Further investigation using current known seagrass locations as well as historic and current aerial photographs suggest that these areas likely were not seagrasses. The patch of 9999s in Pine Island Sound and San Carlos Bay is especially suspect given the depth of the estuary in this location. The greatest potential for 9999s as historic seagrass are those areas which are directly proximal to the shore and the near-shore seagrasses, but the available 1950s/historical imagery for some areas of Charlotte Harbor was not of sufficient quality to determine/photo-interpret features in those areas with the required confidence for inclusion with the baseline coverage.

Figure A-1a. Lemon Bay historic seagrass coverage highlighting areas of uncertainty (pink: 9999) and areas of certainty (green).

Figure A-1b. SFWMD historic seagrass coverage highlighting areas of uncertainty (pink: 9999) and areas of certainty (green).
APPENDIX 8: Annual Seagrass Coverage Maps for Each Harbor Segment
APPENDIX C: May 28 TAC Subcommittee Meeting Summary and Attendees
Tony Janicki presented a summary of a draft report submitted to the CHNEP defining the process by which targets could be established to evaluate changes in seagrass areal extent through time. Seagrass acreage estimates for each segment of the CHNEP study area were based on all available photo-interpreted aerial surveys including estimates from historical photos from the 1950’s and biennial District surveys since 1988. To estimate change in acreage over time, non-restorable areas (e.g. dredging of the ICW and fill projects within the system) were accounted for prior to estimating acreages for all years. A table was provided that summarized the change in acreage within each segment over all survey years and options were presented to guide the selection of the appropriate target for each segment.

Comments on the document were received from several committee members; however, the due date for comments was extended to June 10th.

Comments expressed during the meeting included that non restorable areas be explicitly identified. That changes in acreage be expressed as a proportion of the total area and that the shoreline coverage should remain consistent when evaluating future changes in areal extent. The distinction between seagrass quality and quantity was emphasized and it will be explicitly stated in the report that the targets will be established based on areal extent and do not reflect estimates of seagrass quality. Further, the document will include an analysis of a large un-interpretable area in the historic shoreline coverage that affected the historic estimate for the Pine Island Sound and San Carlos Bay segments.
Additions to the draft document will include an Implementation and Management section. This section will express the mechanism by which the newly acquired seagrass data will be evaluated in the context of the targets. Natural variability will be expressed as a range bracketing the target value to put the difference between the current survey and the target in the context of natural variation and measurement error.

Table 5-1 lists the potential targets for each segment. These options are expressed in the document as follows:

- the maximum areal extent observed in any of the survey years,
- the mean areal extent over all recent survey years,
- the mean areal extent over the last three survey years, or
- the most recent areal extent, i.e., 2006.

NOTE: The segment Lower Charlotte Harbor in the following tables was later renamed “Bokeelia” to better differentiate the segment from the region.

| Table 5-1. Baseline, non-restorable, and adjusted baseline seagrass extents and potential seagrass targets (acres). |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Coastal Venice | Upper Lemon Bay | Lower Lemon Bay | Tidal Myakka | Tidal Peace | West Wall | East Wall | Cape Haze | Lower Charlotte Harbor | Pine Island Sound | Matlacha Pass | San Carlos Bay | Tidal Caloosahatchee | Estero Bay | Total |
| Baseline | 133 | 1005 | 3114 | 350 | 1039 | 2117 | 3966 | 5798 | 3058 | 24113 | 9377 | 3243 | 211 | 3769 | 61518 |
| Non-restorable Areas | 21 | 125 | 232 | 6 | 64 | 11 | 88 | 128 | 94 | 396 | 262 | 129 | 118 | 107 | 1737 |
| Adjusted Baseline | 112 | 880 | 2682 | 344 | 973 | 2106 | 3698 | 5670 | 2964 | 23737 | 9313 | 3118 | 93 | 3662 | 59776 |
| Maximum Annual Extent | 124 | 1175 | 2597 | 539 | 573 | 2121 | 3591 | 7464 | 3520 | 29304 | 7619 | 5376 | 103 | 3409 | 67415 |
| Mean Annual Extent all years | 91 | 1009 | 2502 | 456 | 384 | 1907 | 3465 | 6998 | 3342 | 26837 | 7582 | 4372 | 87 | 3071 | 62103 |
| Mean Annual Extent last 3 years | 104 | 1032 | 2498 | 411 | 337 | 1965 | 3416 | 7050 | 3392 | 28043 | 7427 | 4969 | 72 | 3033 | 63749 |
| Most Recent Annual Extent | 122 | 949 | 2597 | 375 | 341 | 2121 | 3382 | 6911 | 3520 | 29204 | 7619 | 5376 | 56 | 3298 | 65873 |

Subsequently, a table (below) was constructed that identifies potential protection and restoration targets for each segment based on the group meeting discussion.
The group went through each segment and generally agreed the higher of the adjusted baseline or the mean annual extent of all recent survey years be used as the targets. Exceptions were the Tidal Peace River, Pine Island Sound and Matlacha Pass.

The Tidal Peace - Lost ~50% of the historic seagrass. This may be due to altered geomorphology of the river due to erosion forces or potentially the occurrence of hurricane Charley in 2004 changing the bottom contour in this portion of the river.

Pine Island Sound – A large un-interpretable area in the historic photography requires further consideration of the appropriate target for this segment. Further evaluation will include an assessment of whether this un-interpretable area is sufficient for seagrass colonization and success.

Matlacha Pass – This area appears to have significant losses compared to historic photography; however, this is a high energy area with large tidal forcing that may have eroded potential seagrass bottom area. Further evaluation and discussion will be required to establish the appropriate target for Matlacha Pass.

Caloosahatchee River- there was one survey were the recorded acreage was 2 acres of seagrass. The group suggested that this value be removed when calculating the average of recent years for that value as a potential target.
Final comments on draft report are due June 10th

Final document will be delivered June 26th

Targets will be presented to TAC on July 8th and pending approval to the Management committee in August 2009.