Consumers Rule: Predator Primacy in Shallow Benthic Ecosystems

Kenneth L. Heck, Jr.
Dauphin Island Sea Lab/ Univ. of South Alabama
(www.disl.org)
High-Profile Publications Linking Nutrient Pollution to Negative Coastal Impacts

“...nutrient pollution is the most pervasive and troubling pollution problem currently facing U.S. coastal waters” National Research Council, 2000

“Today, pollution from the nutrients N and P represents the largest source of degradation in coastal waters…” Issues in Ecology, 2000
Systems with eutrophication-associated dead zones

Source: Diaz and Rosenberg 2008, Science 321
Harmful Algal Blooms (Red Tide)
Publications Linking Eutrophication to Loss of Seagrass, Kelp and Coral via Algal Overgrowth

Recent national assessments document that nitrogen-driven coastal eutrophication is widespread and increasing in the United States. This significant coastal pollution problem includes impacts including increased areas and severity of hypoxic and anoxic waters; alteration of food webs; degradation and loss of sea grass beds, kelp beds and coral reefs;
The Seagrass Example: Bottom - Up Control

As Nutrients Increase

Algal Epiphytes Increase and

Seagrass Loss Occurs
Swedish West coast

Zostera marina and filamentous *Ulva* sp.

Zostera marina and *Ectocarpus* sp.
Florida Shoalgrass overgrown by red and brown macroalgae
Frequently Cited Studies that Ascribe Seagrass Loss to Nutrient Enrichment

<table>
<thead>
<tr>
<th>Study</th>
<th>Species</th>
<th>Method</th>
<th>Grazers Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twilley et al. 1985</td>
<td>Potamogeton perfoliatus
Ruppia maritima</td>
<td>Pond Experiment</td>
<td>No</td>
</tr>
<tr>
<td>Cambridge et al. 1986</td>
<td>Posidonia spp.</td>
<td>Field Observation</td>
<td>No</td>
</tr>
<tr>
<td>Burkholder et al. 1992</td>
<td>Zostera marina</td>
<td>Lab Experiment</td>
<td>No</td>
</tr>
<tr>
<td>Valiela et al. 1992</td>
<td>Zostera marina</td>
<td>Field Observation</td>
<td>No</td>
</tr>
<tr>
<td>Taylor et al 1995</td>
<td>Zostera marina</td>
<td>Lab Experiment</td>
<td>No</td>
</tr>
<tr>
<td>Hauxwell et al. 2001</td>
<td>Zostera marina</td>
<td>Field Observation</td>
<td>No</td>
</tr>
<tr>
<td>Hauxwell et al. 2003</td>
<td>Zostera marina</td>
<td>Field Observation</td>
<td>No</td>
</tr>
</tbody>
</table>
Nitrogen Loading (kg N y$^{-1}$) vs. Eelgrass Shoot Density (number m$^{-2}$)

Effects of Overfishing on Marine Ecosystems (Top Down Control)

www.shiftingbaselines.org
Changes of large marine animals relative to historical baselines

The graph shows the average decline and standard error for each species group to the low point in abundance (white bars) and to the most recent point in the data series (gray bars; in many cases the same as the low point).

Source: Lotze & Worm 2009. TREE
Trophy fish caught on Key West charter boats (a) 1957, (b) early 1980s, and (c) 2007

Source: McClenachan 2008, Conservation Biology
Alternative Causes of Seagrass Die-Off

Eutrophication (Bottom Up)

- + Nutrients
- + Algal Epiphytes
- - SEAGRASS

Overfishing (Top Down-Trophic Cascade)

- - Large Predator
- + Small Predator
- - Mesograzers
Goals for Today

• To synthesize the results of experiments, and meta-analyses of experiments, that compare the relative importance of top-down and bottom-up factors on seagrass meadows and coral reefs
• To discuss the implications of this synthesis
• To consider some unanswered questions about the operation of top-down and bottom up factors in coastal waters, and suggest some opportunities for future research
Data Sources

• Data from seagrass meadows are emphasized, because I know them best and there is much information about them, but we will also consider results from coral reefs and rocky shores.

• Only data from manipulative experiments are considered, as I believe this is the only conclusive way of evaluating the magnitude of indirect food web effects.
Experimental Design (1993-2005)

Mesograzer Treatments

(short cut to estimate T-D effects)

<table>
<thead>
<tr>
<th>Nutrient Treatments</th>
<th>Elevated (4-10x)</th>
<th>Ambient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enriched (10-100x ambient)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grazing</td>
<td>Nutrients</td>
<td>Grazing</td>
</tr>
<tr>
<td>Elevated</td>
<td>Elevated</td>
<td>Ambient</td>
</tr>
<tr>
<td>Elevated</td>
<td>Ambien</td>
<td>Elevated</td>
</tr>
<tr>
<td>Ambient</td>
<td>Elevated</td>
<td>Ambien</td>
</tr>
</tbody>
</table>
Nutrients Added in Turtlegrass Meadows via Osmocote
(N:P Molar ratio of 16:3)
Nutrient Loading in Coastal Systems

Examples of Grazers Used

Peracarids:

Caridean Shrimp:

Gastropods:

Fish:

Omnivorous Pinfish
< 90mm SL mainly carnivorous
> 90mm SL mainly herbivorous
Summary of Experiments 1-5

• Lots of significant grazer effects (fewer epiphytes and increased seagrass) and some significant nutrient effects
• But never significant overgrowth of seagrass by algae, even with few grazers

Sources: Heck et al. 2000, L&O; Armitage et al., 2005 Estuaries; Heck et al 2006, MEPS, Baggett et al., in press, MEPS
Conclusions

• Nutrient enrichment is unlikely to cause algal overgrowth of seagrasses and subsequent seagrass loss, unless additional factors (such as overfishing) substantially reduce small grazer abundance
Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach

A. Randall Hughes1,2,*, K. Jun Bando1, Laura F. Rodriguez2,3, Susan L. Williams1

1Bodega Marine Laboratory, University of California-Davis, PO Box 247, Bodega Bay, California 94923-0247, USA
2Department of Environmental Science and Policy, University of California-Davis, Davis, California 95616, USA
3Instituto de Biologia, Ecologia, y Conservacion, A.C. Santa Ana 37, Las Fuentes, Zapopan, Jalisco 45070, Mexico

The positive effects of epiphyte grazers were comparable in magnitude to the negative impacts of water column nutrient enrichment, suggesting that the 2 factors should not be considered in isolation of each other.

 impacts on epiphyte biomass. The positive effects of epiphyte grazers were comparable in magnitude to the negative impacts of water column nutrient enrichment, suggesting that the 2 factors should not be considered in isolation of each other. Until the determinants of epiphyte grazer populations are empirically examined, it will be difficult to address the contribution that overfishing and cascading trophic effects have had on seagrass decline. Because increases in water column nutrients are documented in many regions, efforts to reduce coastal eutrophication are an appropriate and necessary focus for the management and conservation of seagrass ecosystems.

KEY WORDS: Seagrasses · Meta-analysis · Epiphyte · Nutrients · Grazers · Management · Eutrophication · Top-down/bottom-up

INTRODUCTION

Recent theoretical and empirical studies have clearly linked anthropogenic stressors to dramatic and widespread declines in the functioning of coastal marine ecosystems (Dayton et al. 1989, Lenihan & Peterson 1996, Fourqurean & Robblee 1999, Hughes et al. 2003, Stankelis et al. 2003). Among the most pervasive anthropogenic disturbances to coastal ecosystems are eutrophication (Howarth et al. 2000) and overfishing (Jackson et al. 2001). Anthropogenic changes have a particularly strong impact on ecosystem function when they affect ecologically important species such as seagrasses (Orth & Moore 1983, Short & Wylie-Echavarria 1996, Hall et al. 1999). The prevalence of fishing pressures and nutrient loading in coastal systems and the strong experimental tradition in seagrass community ecology make seagrass beds ideal systems in which to explore the basic ecological importance of 'top-down' (i.e. higher trophic level influences, including predation) and 'bottom-up' (i.e. resource supply to primary producers) processes (Williams & Heck 2001; see Fig. 1 for a depiction of the seagrass food web).

*Email: ar Hughes@ucdavis.edu

© Intec-Research 2004 · www.int-ces.com
Recent Seagrass Experiments Showing Major Consumer Effects

• Jephson et al. 2008. Trophic interactions in *Zostera marina* beds along the Swedish coast. MEPS 369: 63-76

• Baden et al. (in press). Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broad-scale field experiment in the Baltic-Skagerrak area. Limnol Oceanogr
Meta-analyses of Nutrients vs. Grazers in Other Benthic Habitats
“Over-enrichment can be and has been the cause of localized coral reef degradation, but the case for widespread effects is not substantiated.”

“The preponderance of experiments available to date indicates that loss of key herbivores is a major factor driving macroalgal blooms on coral reefs; anthropogenic nutrient pollution generally plays a more minor role.”
Meta-analyses for All Marine Primary Producers

Results of meta-analyses on mean effects for primary producers overall, tropical macroalgae, and seagrasses. A positive d indicates an increase in primary producer abundance.

“Herbivores consistently had stronger effects than did nutrient enrichment for both tropical macroalgae and seagrasses”

Nutrients vs. Herbivore Effects across Systems

Log response ratio (LRR = ‘effect size’) of fertilization, herbivore absence and their interaction on producer biomass across ecosystems. An LRR is significant when the 95% CIs do not overlap the dashed line of zero effect, and is distinct from other LRRs when 95% CI do not overlap.

Overall Conclusions

• Grazer effects and nutrient effects are both significant and they interact, but most often grazer effects explain more variance in algal biomass

• It is well past time to change the conventional wisdom that nutrient supply (and not consumers) primarily determines benthic algal abundance in coastal waters
Practical Implications

• Reducing nutrient input into coastal waters, usually at great expense, will not eliminate benthic algae and lead to recovery of habitats such as seagrass beds or coral reefs if food webs have been altered so that algal mesograzers are not present.

To Recap

• What I am **not** saying: nutrients don’t matter or that they do not lead to algal overgrowth.

• What I **am** saying: that algal grazers usually explain as much, or more, variation in algal abundance than nutrients.

• Therefore, the only logical conclusion is that **nutrients and fisheries must be co-managed** to promote the rehabilitation of coastal ecosystems.
Some Unanswered Questions

• Are we wrong about the importance of grazers because the scale of studies has been too small or too short? **Possibly. Solution: Larger, embayment-scale studies.**

• Are there latitudinal differences in the stimulatory effects of nutrients on algae (i.e., more impacts in cold than warm climates)? **Maybe. Solution: Studies in cold waters.** However, recent work in Sweden by Moksnes et al. (2008, Oikos) has also shown stronger Top-Down effects. Current work in 2009 in Australia will also be informative.
Some Unanswered Questions (2)

- Herbivores prefer nitrogen rich plants (see Preen 1995; Goecker et al. 2005), and they grow faster on N-rich foods, so how can palatable, N-rich filamentous green algae accumulate in eutrophic waters? Only because there must be very few grazers present.

- Can chemically defended taxa (e.g., red and brown algae) become abundant even in the face of intense grazing? Probably, and drift algal mats (reds and browns) may be an example
Some Unanswered Questions (3)

• Won’t low D.O. in algae-rich areas prevent grazers from surviving? **This can happen, but we must explain why grazers did not control algae before they became so abundant they caused low D.O. (Similar to the issue of latitudinal gradients in grazer control).**