DEVELOPMENT OF A STRATEGIC MONITORING PROGRAM DESIGN

Kick-off Meeting

Sarasota County
Water Resources

12 December 2007
WORKSHOP TO DESIGN SARASOTA COUNTY'S STRATEGIC MONITORING PROGRAM

DECEMBER 10, 2007
9:00 a.m. – 12:00 p.m.

2817 Cattlemen Road, Sarasota, FL
Conference Room B

Invited Attendees:
COUNTY - Jon Perry, Jack Merriam, John Ryan, Kathy Meaux, Amanda Dominguez, Warren Davis, Theresa Connor, Rene Janneman, Laura Amneson, Mike Jones, Mary Sassi, Eric Gustafson, Tricia Nihart, Jennifer Ryan, Jeff Banner, CesarRodriguez, Frank Desteno
JEA - Hans Zarbock
SWFWMD - Manny Lopez
NPDES MS4 Permit Co-Permittees - Nancy Woodley, Rick Winters, Rob Dwyer, James Linkogle, Elizabeth Wong
USF - Jim Griffin
FDEP - Tom Singleton, Charles Kovach
SBECP - Gary Raulerson, Mark Alderson
CHNEP - Catherine Corbett, Lisa Beever
Mote - Kellie Dixon
Janicki Environmental - Tony Janicki, Mike Wessel

Please submit by 12/7/07 to janickienv@aol.com: Monitoring questionnaire that was previously emailed.
Please bring: Copy of completed monitoring questionnaire.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 a.m. – 9:10 a.m.</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Tony Janicki</td>
</tr>
<tr>
<td>9:10 a.m. – 9:30 a.m.</td>
<td>Workshop Objectives and Monitoring Design Concepts</td>
</tr>
<tr>
<td></td>
<td>Tony Janicki</td>
</tr>
<tr>
<td>9:30 a.m. – 10:00 a.m.</td>
<td>Summary of Existing Programs</td>
</tr>
<tr>
<td></td>
<td>Group Discussion</td>
</tr>
<tr>
<td></td>
<td>Monitoring questionnaire that was emailed to attendees with existing monitoring programs will be reviewed.</td>
</tr>
<tr>
<td>10:00 a.m. – 10:15 a.m.</td>
<td>Break</td>
</tr>
<tr>
<td>10:15 a.m. – 11:15 a.m.</td>
<td>Critical Questions</td>
</tr>
<tr>
<td></td>
<td>Tony Janicki</td>
</tr>
<tr>
<td>11:15 a.m. – 11:45 a.m.</td>
<td>Monitoring Design Considerations</td>
</tr>
<tr>
<td></td>
<td>Tony Janicki</td>
</tr>
<tr>
<td>11:45 a.m. – 1:00 p.m.</td>
<td>Lunch Discussion</td>
</tr>
<tr>
<td></td>
<td>Next Steps</td>
</tr>
</tbody>
</table>
OBJECTIVES

• To review monitoring program design concepts
• To review existing monitoring programs
• To define critical questions that need to be addressed by a strategic monitoring program
• To discuss constraints
• To define next steps
Some Additional Topics for Discussion

- Spatial reporting units
- Temporal reporting units
- Meaningful levels of change
- Indicator selection
Many have offered advice on how to best design a monitoring program. There is typically one common thread:

Define your objectives
Ambient monitoring information can be used in many ways (NRC, 1990)

⇒ Evaluate pollution abatement actions
⇒ Early-warning system - lower-cost solutions
⇒ Is it safe to swim or eat fish/shellfish?
⇒ Model construction, adjustment, verification
⇒ Scientific rationale for WQ standards
⇒ Permit compliance
⇒ Knowledge of how environment responds to human activity
Sound Program Design

⇒ Goals & objectives - meaningful to the public
⇒ Data management, synthesis, interpretation, and analysis
⇒ Quality assurance - peer review
⇒ Support for the long-term
⇒ Flexible
⇒ Make the information available
SETTING THRESHOLDS

- Identify Public Concerns and Expectations
- Identify Relevant Laws, Rules, and Permits

Focus Scientific Understanding

Establish Environmental and Human Health Objectives
Step 1 - Define Goals & Objectives

Step 2 - Define Monitoring Strategy

Step 3 - Conduct Special Studies

Step 4 - Develop Program Design

Step 5 - Implement Program

Step 6 - Produce Information

Changes Detectable?

No

Yes

Step 7 - Disseminate Information
Monitoring Program Elements

- Objectives
- Spatial reporting units
- Temporal reporting units
- Indicator selection
- Statistical model
- Methodology
- Data quality objectives
- Data management
- Data analysis
- Reporting
WHAT ARE THE CRITICAL QUESTIONS?
INDICATOR SELECTION CRITERIA

• Critical Criteria
 – Regionally responsive
 – Unambiguously interpretable
 – Low measurement error
 – Simple quantification
 – Environmental impact
 – Low year-to-year variation
INDICATOR SELECTION CRITERIA

- Desirable Criteria
 - Sampling unit stable
 - Available methods
 - Historical record
 - Retrospective
 - Anticipatory
 - Cost effective
 - New information
Some Statistical Considerations

TARGET POPULATION
The set of N population units about which inferences will be made

SAMPLED POPULATION
The set of population units directly available for measurement
Some Statistical Considerations

UNBIASED POPULATION ESTIMATES

Metrics whose average value, taken over all possible samples, is equal to the population value of the metric.

SUBPOPULATION

A specific portion of the target population, defined in either space or time.
PROBABILITY SAMPLING

This approach requires a definition of the set of distinct samples which the sampling program is capable of sampling. The samples are selected by a random process in which each sample receives its appropriate probability of being sampled.

Simple Random

Stratified Random

Multistage

Cluster

Systematic
Simple Random

Stratified Random

Two-Stage

Cluster

Systematic Grid

Random w/in Blocks
NONPROBABILITY SAMPLING

Haphazard sampling: selection without conscious planning; “any sampling location will do”; can lead to biased estimates by sampling at convenient times and locations;

OK if population is completely homogeneous.

Judgment sampling: subjective selection of “typical” or “representative” samples that are close to the sampler’s impression of the average of the target population
JUDGMENT SAMPLING

Example: The sampler can see the all of the population units in the target population; selects those that appear to be “representative of average conditions; may choose those that are systematically too large or small.

Judgment sampling can result in accurate estimates of population means and totals. It is difficult to assess the accuracy of the parameter estimates.
There are many potential sources of variability and error associated with surface water quality monitoring. They include:

- environmental variability
- measurement bias
- random error
ENVIRONMENTAL VARIABILITY

- Seasons
- Tides
- Land Use
- Flows
- Rainfall
MEASUREMENT

BIAS

Consistent under- or over-estimation of the true values in the population units.

PRECISION

A measure of the size of the closeness of agreement among individual measurements.

ACCURACY

A measure of the closeness of measurements to the true value.
<table>
<thead>
<tr>
<th>INFORMATION TYPE</th>
<th>METHOD TYPE</th>
<th>Graphical</th>
<th>Estimation</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Conditions</td>
<td></td>
<td>Box and Whisker Plots</td>
<td>Sample Mean, Median</td>
<td>T-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time Series Plots</td>
<td>Confidence Limits</td>
<td>ANOVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation, Error</td>
<td>Mann-Whitney Test</td>
</tr>
<tr>
<td>Trends or Changing Conditions</td>
<td></td>
<td>Annual Box and Whisker Plots</td>
<td>Linear Regression</td>
<td>Wilcoxon Signed Rank Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time Series Plots</td>
<td>Seasonal Kendall Slope Estimator</td>
<td>Kruskal-Wallis Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Year

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>j</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>y_{11}</td>
<td>y_{21}</td>
<td>y_{31}</td>
<td>...</td>
<td>y_{1j}</td>
<td>...</td>
<td>y_{1m}</td>
</tr>
<tr>
<td>2</td>
<td>y_{12}</td>
<td>y_{22}</td>
<td>y_{32}</td>
<td>...</td>
<td>y_{2j}</td>
<td>...</td>
<td>y_{2m}</td>
</tr>
<tr>
<td>3</td>
<td>y_{13}</td>
<td>y_{23}</td>
<td>y_{33}</td>
<td>...</td>
<td>y_{3j}</td>
<td>...</td>
<td>y_{3m}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>y_{1i}</td>
<td>y_{2i}</td>
<td>y_{3i}</td>
<td>...</td>
<td>y_{ij}</td>
<td>...</td>
<td>y_{im}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>y_{1n}</td>
<td>y_{2n}</td>
<td>y_{3n}</td>
<td>...</td>
<td>y_{nj}</td>
<td>...</td>
<td>y_{nm}</td>
</tr>
<tr>
<td>N</td>
<td>n_1</td>
<td>n_2</td>
<td>n_3</td>
<td>...</td>
<td>n_i</td>
<td>...</td>
<td>n_m</td>
</tr>
</tbody>
</table>

$m = \# \text{ samples/year}$

$n = \# \text{ years}$

$y_{ij} = j^{th} \text{ sampling time in year } i$

$i = 1, 2, 3, \ldots n$

$j = 1, 2, 3, \ldots m$

Additive Model

$$y_{ij} = \alpha_i + \beta_j + \epsilon_{ij}$$
Additive Model

\[y_{ij} = \alpha_i + \beta_j + \varepsilon_{ij} \]

\(\alpha_i \) = between-year component

\(\beta_i \) = within-year component

\(\varepsilon_{ij} \) = residual variability
MANN-KENDALL TEST
Distribution-Free Trend Test

This nonparametric test for trend is appropriate when seasonal effects are not significant.

Particularly useful when data are not normally distributed and when some data are missing.

The test statistic is

\[S = \sum \text{sgn} (y_k - y_i) \]

where:

\[\text{sgn} x = \begin{cases}
 1 & \text{if } x > 0 \\
 0 & \text{if } x = 0 \\
 -1 & \text{if } x < 0
\end{cases} \]
SEASONAL KENDALL TEST
Distribution-Free Trend Test

Effect of season eliminated by calculating the test statistic separately for each season and summing for overall test

The test statistic for season j is

$$S_j = \sum sgn \ (y_{kj} - y_{ij})$$

where:

$$sgn \ x = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0 \\
-1 & \text{if } x < 0
\end{cases}$$

The seasonal Kendall test statistic is:

$$S = \sum S_j$$
SEN OR SEASONAL KENDALL SLOPE ESTIMATOR

(Gilbert, 1987)

The nonparametric slope estimate is the median of all possible slope estimates based on pairs of observations in the same season.

B is the slope estimator and is the median of:

\[(y_{kj} - y_{ij})/(k - i)\]

for \(i<k\) and \(j\) fixed, taken over \(j=1,2,\ldots m\).
Nonparametric Estimation of a Step Change in a Water Quality Variable

(Hirsch, 1988)

Suppose a step change occurred after year d; what was the magnitude of the change in level between the two periods:

$$i=1,2,\ldots d \quad \Rightarrow \quad i=d+1,\ldots n$$

For season j,
all possible differences $(y_{kj} - y_{ij})$ are calculated where

$$i=1,2,\ldots d \quad \text{and} \quad k=d+1,\ldots n,$$

for $j=1,2,\ldots,m$.
LEAST SQUARES REGRESSION

Linear regression is a parametric trend testing tool.

Tests of significance of a change over time of a specified form and estimation of the change are part of the regression methodology.

A t-test may be used to test that the true slope is different from zero.

There are several assumptions and/or considerations that affect the robustness of the t-test:

- normality of the data and errors
- no serial correlation
- homogeneity of error variances
- seasonal cycles
It is critical to test the assumptions discussed above. Some of the problems can be alleviated by employing some form of transformation; most commonly application is the logarithmic.
LEAST SQUARES REGRESSION

Some Examples

Linear Trend
\[y_{ij} = \alpha_j + \beta_j i + \varepsilon_{ij} \]

Curvilinear Trend
\[y_{ij} = \alpha_j + \beta_{jt} i + \varepsilon_{ij} \]

Step-Change at Year k
\[y_{ij} = \begin{cases} \alpha_{j1} + \varepsilon_{ij}, & i \neq k \\ \alpha_{j2} + \varepsilon_{ij}, & i > k \end{cases} \]

Stable Annual Cycle and Linear Trend
\[y_{ij} = \mu + \beta_1 \cos \left(\frac{2\pi j}{12}\right) + \beta_1 \sin \left(\frac{2\pi j}{12}\right) + \omega(i + j/12) + \eta_{ij} \]
In some cases, the seasonal variation is poorly represented by sinusoidal terms and a general smoothing technique may be more appropriate.

LOESS - a locally weighted regression smoother may be more appropriate.

(Cleveland and Grosse, 1991)
Log - Log Multiple Regression Model

\[\ln \hat{C} = \hat{a}_0 + \hat{a}_1 \ln (Q) + \hat{a}_2 \ln(Q)^2 \]

\(\hat{C} \) = estimated concentration
Q = instantaneous discharge
\(\hat{a}_0, \hat{a}_1, \) and \(\hat{a}_2 \) = estimated by regression
FLOW ADJUSTMENT FOR WATER QUALITY DATA

(Smith and Alexander, 1983)

\[\hat{\varepsilon} = \hat{a}_0 + \hat{a}_1 \cdot f(Q) \]

\(\varepsilon \) = estimated concentration
Q = instantaneous discharge
\(\hat{a}_0 \) & \(\hat{a}_1 \) = intercept and slope, respectively

\(f(Q) = Q \) (linear)
\(f(Q) = \ln Q \) (log)
\(f(Q) = 1/(1+BQ) \) (hyperbolic)
\(f(Q) = 1/Q \) (inverse)
TREND ANALYSIS AS AN ENVIRONMENTAL IMPACT ASSESSMENT TOOL

Frequently, answering questions regarding potential environmental impact assessment relies upon conducting an experiment with replicates each randomly applied to one of several treatments, and subsequent statistical analysis.

It is almost impossible to ensure random application of treatments with replication. In general, the goal of a study of an unreplicated perturbation is to determine whether the state of the perturbed system differs significantly from what it would have been in the absence of the perturbation.

(Stewart-Oaten et al., 1992)
THREE COMMONLY USED IMPACT ASSESSMENT DESIGNS

CONTROL - IMPACT

- Near Impact
- Far Impact

Response vs. Time
THREE COMMONLY USED IMPACT ASSESSMENT DESIGNS

BEFORE - AFTER

Response

Time

Intervention
THREE COMMONLY USED IMPACT ASSESSMENT DESIGNS

BACI

“Before” “After”

Control

Impact

ANTICIPATED INTERVENTION

Response
The BACI design entails sample collection from two sites (impact and control), at least one time each before and after the anticipated intervention.

The before-after time treatment is of most interest; the control-impact location treatment is generally of secondary interest.

The test of an impact entails examination of the time-location interaction.
<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>TIME</th>
<th>CONTROL</th>
<th>IMPACT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(y_{b1c})</td>
<td>(y_{b1t})</td>
<td>(d_{b1})</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(y_{b2c})</td>
<td>(y_{b2t})</td>
<td>(d_{b2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td>(y_{bNc})</td>
<td>(y_{bNt})</td>
<td>(d_{bn})</td>
</tr>
<tr>
<td>After</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n+1)</td>
<td></td>
<td>(y_{a1c})</td>
<td>(y_{a1t})</td>
<td>(d_{a1})</td>
</tr>
<tr>
<td>(n+2)</td>
<td></td>
<td>(y_{a2c})</td>
<td>(y_{a2t})</td>
<td>(d_{a2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n+m)</td>
<td></td>
<td>(y_{amc})</td>
<td>(y_{amt})</td>
<td>(d_{am})</td>
</tr>
</tbody>
</table>
The observed differences between the Control and Impact sites during the Before period is taken as an estimate of the mean difference that would have existed in the After period before the perturbation.

The differences from the Before period are compared to those observed in the After period.

A change in the mean difference indicates that the system at the Impact site has undergone a change relative to the Control site.

These differences are tested using a two-sample t test.
There are three important assumptions associated with application of the t test.

1.) Additivity - time and location effects are additive, in the absence of a perturbation the Control-Impact differences are the same over all dates.

2.) Independence - observed differences from different dates are independent.

3.) Identical Normal Distributions - the distribution of the deviation (observed difference - mean difference) is a) the same for each date within a period, b) the same in the After period as in the Before period, c) normal.