FLORIDA’S
STATEWIDE STORMWATER
TREATMENT RULE

PUBLIC WORKSHOP
ON MARCH 2010
DRAFT RULE AND APPLICANT’S
HANDBOOK
AGENCY STAFF
TALLAHASSEE, MAY 11

- Eric Livingston, DEP
- Doug Fry, DEP
- Meredith Fields, DEP
- Lee Marchman, NFWFMD
- Michael Bateman, NFWFMD
- Tim Sagul, SRWMD
- Mike Register, SJRWMD
AGENCY STAFF
JACKSONVILLE, MAY 18

- Eric Livingston, DEP
- Doug Fry, DEP
- Meredith Fields, DEP
- Mike Register, SJRWMD
- Cammie Dewey, SJRWMD
AGENCY STAFF

ORLANDO, MAY 19

- Eric Livingston, DEP
- Doug Fry, DEP
- Meredith Fields, DEP
- Mike Register, SJRWMD
- Cammie Dewey, SJRWMD
- Paul O’Neil, SWFWMD
- Clark Hull, SWFWMD
- Hank Higginbotham, SWFWMD
- Damon Meiers, SFWMD
- Susan Martin, SFWMD
AGENCY STAFF
WEST PALM BEACH, MAY 26

- Eric Livingston, DEP
- Doug Fry, DEP
- Tony Waterhouse, SFWMD
- Damon Meiers, SFWMD
- Susan Martin, SFWMD
WORKSHOP AGENDA AND PROCESS

- Welcome and Introductions
- Background and rule objectives
- Presentation and discussion of draft rule, 62-347, F.A.C.
- Presentation and discussion of draft Applicant’s Handbook – focus on areas we are seeking input and questions
- Next steps
62-347 — Stormwater Quality Rule

62-347.010

(1) - Stormwater treatment quality only; not quantity
- Does not replace current permit requirements; only changes treatment and design criteria

(2) - Incorporates by reference Stormwater Quality Applicant’s Handbook
- Identification of rules of Water Management Districts (WMDs) that are superseded (likely to be moved to WMD rules)

(3) Does not affect agriculture or silviculture
62-347, Continued

.020 — Definitions
.051 — Exemptions (1)
.091 — Documents incorporated by reference (4)
.900 — Forms (2)

Preliminary draft; will change!
62-347 DRAFT RULE

QUESTIONS AND DISCUSSION
STORMWATER RULE

BACKGROUND AND OBJECTIVES
FLORIDA’S STORMWATER RULES

1979  Chapter 17-4.248, F.A.C.
1982  Chapter 17-25, F.A.C.
1994  Chapter 62-25, F.A.C./ERP
2011? Chapter 62-347, FAC

TECHNOLOGY BASED

- Performance Standard
- BMP Design Criteria
- Presumption of compliance
- Dynamic BMP designs
Water Resource Implementation Rule
Section 62-40.432, F.A.C.

Institutional Framework
- DEP (Chapter 403, F.S.)
- WMD (Chapter 373, F.S.)
- Local Governments (Chapter 163, F.S.)

Program Goals
- Quantity
- Quality

Stormwater Treatment Performance Standards
- New discharges
- Older discharges
STORMWATER MANAGEMENT — GOAL FOR NEW DEVELOPMENT

Post < Pre

Peak discharge rate
Volume
Recharge
Pollutant loading

Erosion and sediment control
- Retain sediment on-site
- Not violate turbidity standard

Stormwater quality – Original 1982
- 80% average annual load reduction
- 95% average annual load reduction
- “Of Total Suspended Solids”

Stormwater quality – 1990
- 80% average annual load reduction
- 95% average annual load reduction
- “Of pollutants that cause or contribute”
WHY 80% TSS LOAD REDUCTION?

- Equitability with point sources
  - Min treatment = secondary = 80% TSS
- Cost effectiveness
  - 80% = “knee of the treatment curve”
NEED FOR BETTER STORMWATER TREATMENT (NUTRIENT REMOVAL)
Phosphorus pollution builds up in Florida waters

In 1982, Florida implements Stormwater Rule and no-discharge policy for point sources

Cumulative effects of nonpoint sources are driving phosphorus levels up again—TMDLs are seeking to address these impacts

Phosphorus Trends in Florida Waters 1970 - 2005
CURRENT STATUS OF IMPAIRED WATERS (Through Group 5)

<table>
<thead>
<tr>
<th># of Segments (WBIDs)</th>
<th>Verified Impair Parameters</th>
<th>Delisted Parameters</th>
<th>Parameters on Plan List</th>
<th>Group</th>
<th>Potentially Impaired Parameters Added to List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1746</td>
<td>258</td>
<td>185</td>
<td>213</td>
<td>1</td>
<td>1082</td>
</tr>
<tr>
<td>1657</td>
<td>446</td>
<td>235</td>
<td>167</td>
<td>2</td>
<td>1671</td>
</tr>
<tr>
<td>1217</td>
<td>196</td>
<td>182</td>
<td>255</td>
<td>3</td>
<td>1964</td>
</tr>
<tr>
<td>1088</td>
<td>163</td>
<td>146</td>
<td>TBD</td>
<td>4</td>
<td>TBD</td>
</tr>
<tr>
<td>575</td>
<td>224</td>
<td>119</td>
<td>TBD</td>
<td>5</td>
<td>TBD</td>
</tr>
<tr>
<td>6283</td>
<td>1287</td>
<td>865</td>
<td>635</td>
<td>Total</td>
<td>4717</td>
</tr>
</tbody>
</table>
IMPAIRED WATERS: PROBLEMS AND POLLUTION SOURCES

MAJOR POLLUTANTS OF CONCERN

- Nutrients, nutrients, nutrients!
- Oxygen demanding substances
- Bacteria

MAJOR SOURCES OF POLLUTANTS

- Stormwater – existing development
- Stormwater – future development
- Stormwater – agricultural
- Leaching – agriculture, landscape, OSDS
FOCUS ON REDUCING NUTRIENT LOADS

- Low impact design BMPs
- Turf grass research project
- Florida friendly landscaping program
  - Florida Yards & Neighborhoods
  - FYN Builder/Developer
  - Green Industry BMP program
  - Model FFL landscape ordinance
  - Urban turf fertilizer labeling rule
- Golf course BMP manual
- Passive nutrient septic tank project
- Ag/urban nutrient mgmt BMPs
- Unified stormwater treatment rule
BMP DESIGN CRITERIA ARE DYNAMIC!

- 1979  17 -4.248, F.A.C.
- 1982  17-25, F.A.C.
- 1984  Modify BMP Design Criteria
- 1985  Wetland BMP Design Criteria

Florida’s BMP design criteria are outdated
## EXAMPLE PROJECT

<table>
<thead>
<tr>
<th></th>
<th>PRE DEVELOP</th>
<th>POST DEVELOP</th>
<th>POST WITH BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LAND USE</strong></td>
<td>90 ac forest</td>
<td>95 ac SF</td>
<td>95 ac SF</td>
</tr>
<tr>
<td></td>
<td>10 ac wetlands</td>
<td>5 ac SWM</td>
<td>5 ac SWM</td>
</tr>
<tr>
<td><strong>% IMP</strong></td>
<td></td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td><strong>RUNOFF</strong></td>
<td>82 ac ft/yr</td>
<td>123 ac ft/yr</td>
<td>123 ac ft/yr</td>
</tr>
<tr>
<td><strong>TN LOAD</strong></td>
<td>109 kg/yr</td>
<td>330 kg/yr</td>
<td>231 kg/yr</td>
</tr>
<tr>
<td><strong>TP LOAD</strong></td>
<td>5 kg/yr</td>
<td>51 kg/yr</td>
<td>18 kg/yr</td>
</tr>
</tbody>
</table>

Assume BMPs are wet detention
STORMWATER RULE OBJECTIVES

- Increase nutrient removal
- Establish requirements for discharges to impaired waters
- Statewide consistency
- Update BMP design criteria
- Allow BMP Treatment Train credits
- Encourage low impact design
- Encourage retrofitting
ISSUES ON WHICH WE ARE SEEKING INPUT

- Performance standards
- Loading methodology
- Interim BMPs in rule
- Verified BMPs in rule
- Site data requirements
- Inspection and recertification
- Additional data
Issue: What is the appropriate performance standard to assure that nutrients in stormwater discharges do not cause or contribute to violations of nutrient criteria, either individually or cumulatively? Since the post-development total phosphorus loading increases by a factor of about 10 above predevelopment loading and that total nitrogen post-development loading increases by a factor of about 4, should there be one performance standard for TP and a different one for TN? If so, what should they be?

- N vs P reduction requirements
- Urban redevelopment
<table>
<thead>
<tr>
<th>NON-OFWs</th>
<th>OFWs</th>
<th>IMPAIRED WATERS</th>
<th>IMPAIRED WATERS WITH ADOPTED TMDL OR BMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>REDEVELOPMENT SITES ≤ X ACRES</strong></td>
</tr>
<tr>
<td>85% or Post=Pre, whichever is less unless feasibility analysis demonstrates lower level is appropriate</td>
<td>Post=Pre, unless feasibility analysis demonstrates lower level is appropriate</td>
<td>85% or Post=Pre, whichever is less unless feasibility analysis demonstrates lower level is appropriate AND Net improvement for pollutant not meeting water quality standards</td>
<td>85% or Post=Pre, whichever is less unless feasibility analysis demonstrates lower level is appropriate AND Net improvement or TMDL/BMAP % reduction, whichever is greater, pollutant not meeting water quality standards</td>
</tr>
</tbody>
</table>

CONTINUED NEXT SLIDE
“Urban redevelopment” means the construction of a stormwater treatment system on sites having existing commercial, industrial, institutional, or multifamily land uses where the existing impervious surface will be removed as part of the proposed activity.

- Sites > X acres, meet perf stds above
- Sites < X acres, meet perf stds above or less with feasibility study
<table>
<thead>
<tr>
<th>NON-OFWs</th>
<th>OFWs</th>
<th>IMPAIRED WATERS</th>
<th>IMPAIRED WATERS WITH ADOPTED TMDL OR BMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL OTHER ACTIVITIES</td>
<td>ALL OTHER ACTIVITIES</td>
<td>ALL OTHER ACTIVITIES</td>
<td>ALL OTHER ACTIVITIES</td>
</tr>
<tr>
<td>85% or Post=Pre, Whichever is less</td>
<td>Post = Pre</td>
<td>85% or Post=Pre, Whichever is less, or, if the water body is an OFW Post=Pre AND in either case net improvement for the pollutant not meeting water quality standards</td>
<td>85% or Post=Pre, Whichever is less, or, if the water body is an OFW Post=Pre AND in either case net improvement or TMDL/BMAP % reduction, whichever is greater, for the pollutant not meeting water quality standards</td>
</tr>
</tbody>
</table>
COMMENTS SOUGHT ON LOADING METHODOLOGY

- EMCs for urban land uses
- EMCs for natural communities
- Loadings from wetlands
## LOADING METHODOLOGY
### EMCs FOR URBAN LAND USES

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>Original TN mg/L</th>
<th>Original TP mg/L</th>
<th>Revised TN mg/L</th>
<th>Revised TP mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low D Residential</td>
<td>1.61</td>
<td>0.191</td>
<td>1.50</td>
<td>0.18</td>
</tr>
<tr>
<td>SF Residential</td>
<td>2.07</td>
<td>0.327</td>
<td>1.85</td>
<td>0.31</td>
</tr>
<tr>
<td>MF Residential</td>
<td>2.32</td>
<td>0.520</td>
<td>1.91</td>
<td>0.48</td>
</tr>
<tr>
<td>Low Intensity Commercial</td>
<td>1.18</td>
<td>0.179</td>
<td>0.93</td>
<td>0.16</td>
</tr>
<tr>
<td>Hi Intensity Commercial</td>
<td>2.40</td>
<td>0.345</td>
<td>2.48</td>
<td>0.23</td>
</tr>
<tr>
<td>Industrial</td>
<td>1.20</td>
<td>0.260</td>
<td>1.14</td>
<td>0.23</td>
</tr>
<tr>
<td>Highway</td>
<td>1.64</td>
<td>0.220</td>
<td>1.37</td>
<td>0.17</td>
</tr>
<tr>
<td>Undeveloped Natural</td>
<td>1.18</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LOADING METHODOLOGY
EMCs FOR NATURAL COMMUNITIES

Original values
- TN = 1.18 mg/L, TP = 0.15 mg/L
- Based on four studies, limited data

2009 Report values
- Numbers by community type
- Numbers by TN and TP groupings
- Numbers by TN and TP loading rates
- Mean TN and TP across all communities
Natural Land Use Runoff Characteristics  
(Values reflect log-normal means)

<table>
<thead>
<tr>
<th>Land Type</th>
<th>N</th>
<th>Total N (µg/l)</th>
<th>Total P (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Prairie</td>
<td>12</td>
<td>1950</td>
<td>107</td>
</tr>
<tr>
<td>Hydric Hammock</td>
<td>17</td>
<td>1072</td>
<td>26</td>
</tr>
<tr>
<td>Marl Prairie</td>
<td>3</td>
<td>603</td>
<td>10</td>
</tr>
<tr>
<td>Mesic Flatwoods</td>
<td>26</td>
<td>1000</td>
<td>34</td>
</tr>
<tr>
<td>Mixed Hardwood Forest</td>
<td>39</td>
<td>288</td>
<td>501</td>
</tr>
<tr>
<td>Ruderal/Upland Pine</td>
<td>2</td>
<td>1318</td>
<td>347</td>
</tr>
<tr>
<td>Scrubby Flatwoods</td>
<td>17</td>
<td>1023</td>
<td>27</td>
</tr>
<tr>
<td>Upland Hardwood</td>
<td>79</td>
<td>891</td>
<td>269</td>
</tr>
<tr>
<td>Upland Mixed Forest</td>
<td>16</td>
<td>676</td>
<td>2291</td>
</tr>
<tr>
<td>Wet Flatwoods</td>
<td>77</td>
<td>1175</td>
<td>15</td>
</tr>
<tr>
<td>Wet Prairie</td>
<td>9</td>
<td>776</td>
<td>9</td>
</tr>
<tr>
<td>Xeric Hammock</td>
<td>1</td>
<td>1318</td>
<td>2816</td>
</tr>
<tr>
<td>Xeric Scrub</td>
<td>3</td>
<td>1158</td>
<td>96</td>
</tr>
</tbody>
</table>
### Statistically Similar Groupings for TP EMCs in Natural Communities

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Community Type</th>
<th>Log TP</th>
<th>Mean TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Flatwoods</td>
<td>1.171</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Marl Prairie</td>
<td>1.017</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Wet Prairie</td>
<td>0.959</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Mean Value</td>
<td>1.049</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2</th>
<th>Community Type</th>
<th>Log TP</th>
<th>Mean TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Prairie</td>
<td>2.030</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Xeric Scrub</td>
<td>1.981</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Mesic Flatwoods</td>
<td>1.532</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Scrubby Flatwoods</td>
<td>1.425</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Hydric Hammock</td>
<td>1.418</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Mean Value</td>
<td>1.677</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 3</th>
<th>Community Type</th>
<th>Log TP</th>
<th>Mean TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Hardwood</td>
<td>2.704</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>Ruderal/Upland pine</td>
<td>2.537</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Upland Hardwood</td>
<td>2.433</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Mean Value</td>
<td>2.558</td>
<td>361</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 4</th>
<th>Community Type</th>
<th>Log TP</th>
<th>Mean TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeric Hammock</td>
<td>3.450</td>
<td>2818</td>
<td></td>
</tr>
<tr>
<td>Upland Mixed Forest</td>
<td>3.356</td>
<td>2270</td>
<td></td>
</tr>
<tr>
<td>Mean Value</td>
<td>3.403</td>
<td>2529</td>
<td></td>
</tr>
<tr>
<td>Community Type</td>
<td>Log TN</td>
<td>Mean TN</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Dry Prairie</td>
<td>3.288</td>
<td>1941</td>
<td></td>
</tr>
<tr>
<td>Xeric Hammock</td>
<td>3.120</td>
<td>1318</td>
<td></td>
</tr>
<tr>
<td>Ruderal/Upland Pine</td>
<td>3.120</td>
<td>1318</td>
<td></td>
</tr>
<tr>
<td>Wet Flatwoods</td>
<td>3.066</td>
<td>1164</td>
<td></td>
</tr>
<tr>
<td>Xeric Scrub</td>
<td>3.064</td>
<td>1159</td>
<td></td>
</tr>
<tr>
<td>Hydric Hammock</td>
<td>3.033</td>
<td>1079</td>
<td></td>
</tr>
<tr>
<td>Scrubby Flatwoods</td>
<td>3.013</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>Mesic Flatwoods</td>
<td>3.002</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>Upland Hardwood</td>
<td>2.954</td>
<td>899</td>
<td></td>
</tr>
<tr>
<td>Wet Prairie</td>
<td>2.889</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>Upland Mixed Forest</td>
<td>2.834</td>
<td>682</td>
<td></td>
</tr>
<tr>
<td>Marl Prairie</td>
<td>2.782</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>Mean Value</td>
<td>3.014</td>
<td>1032</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community Type</th>
<th>Log TN</th>
<th>Mean TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Hardwood</td>
<td>2.456</td>
<td>286</td>
</tr>
<tr>
<td>Mean Value</td>
<td>2.456</td>
<td>286</td>
</tr>
</tbody>
</table>
# Natural Land Use Runoff Characteristics

## Table 3.2 Natural Vegetative Community Areal Loading Rates

<table>
<thead>
<tr>
<th>METEOROLOGICAL ZONE</th>
<th>TP LOAD (kg/ac-inch-yr)</th>
<th>TN LOAD (kg/ac-inch-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1</td>
<td>Group 2</td>
</tr>
<tr>
<td>1</td>
<td>0.00025</td>
<td>0.00372</td>
</tr>
<tr>
<td>2</td>
<td>0.00015</td>
<td>0.00226</td>
</tr>
<tr>
<td>3</td>
<td>0.00023</td>
<td>0.00333</td>
</tr>
<tr>
<td>4</td>
<td>0.00016</td>
<td>0.00236</td>
</tr>
<tr>
<td>5</td>
<td>0.00027</td>
<td>0.00396</td>
</tr>
</tbody>
</table>
Natural Land Use Runoff Characteristics

Means of all data across all communities
TN = 1.125 mg/L,  TP = 0.10 mg/L

Original values
TN = 1.18 mg/L,  TP = 0.15 mg/L
LOADING METHODOLOGY FOR WETLANDS

- No loading assigned to wetlands (which are “waters”)
- Flow through vs isolated wetlands
- NOT INTENDED TO APPLY TO HYDRIC SOILS!
- Very limited TN and TP data (UF study)
- Highly variable
COMMENTS SOUGHT ON “INTERIM” BMPs

Issue is related to data documenting nutrient load reduction effectiveness of BMPs

- Underdrain filtration
- Dry detention
- Wetland treatment trains
- Vegetated natural buffers
- Managed aquatic plant systems
- Low impact design BMPs
UNDERDRAIN FILTRATION

- Know need for alternative BMPs in “flatwood” areas, clay soils

ISSUE: This is an interim BMP since no data currently is available on the nutrient removal effectiveness of this BMP. The DEP-WMD stormwater team is identifying sites for monitoring and will be monitoring underdrain systems during the next several months to obtain data on nutrient removal effectiveness.

- The DEP-WMD stormwater team also is seeking input on alternative BMPs for sites on HSG C and D soils that are effective in removing nutrients.

- Also seeking comment on the filtration media
DRY DETENTION

- Allowed by SJRWMD and SFWMD
- Unknown nutrient removal performance
- ISSUE: Need data on nutrient removal effectiveness, especially for SFMWD systems. Currently looking for good sites to monitor.
Section 373.414(3) authorizes

ISSUE: We have proposed this BMP as a retention practice because of the high variability in the literature with respect to TN and TP removal by various types of wetland systems. We are seeking input on this approach. We also are seeking input and data on the urban stormwater TN and TP removal efficiencies for various types of wetlands (we are not seeking wastewater data).

ISSUE: The ground water data used in the continuous simulation must be representative of the site’s conditions and will be considered in evaluating adverse effects of wetland functions.
VEGETATED NATURAL BUFFERS

- Treatment via infiltration
- How calculate effectiveness since flowing retention system?
- Only for natural buffers or also include planted buffers?
- If allow planted buffers, how determine effectiveness while plants mature?
MANAGED AQUATIC PLANT SYSTEMS

- Nutrient removal effectiveness data needed
- Should littoral zones be allowed behind residential lots?
- If yes, how assure they remain healthy and functional?
LOW IMPACT DESIGN BMPs

- Need to verify how credits will be calculated and applied.
- Urban tree planting suggested as BMP but need nutrient removal effectiveness data.
COMMENTS SOUGHT ON
“VERIFIED” BMPs

- Range of issues associated with the BMP design criteria, applicant data needs, etc.
- Retention BMPs
  - Sensitive Karst Areas
  - Meeting design infiltration
  - Wet vs dry exfiltration systems
- Wet detention - depth
COMMENTS SOUGHT ON “VERIFIED” BMPs

- Retention BMPs
  - Sensitive Karst Areas delineation methods
  - Meeting design infiltration after construction
- Wet vs dry exfiltration systems
- Conveyance swale effectiveness
- Cascading systems effectiveness
COMMENTS SOUGHT ON “VERIFIED” BMPs

- Wet detention
- Maximum pond depth and mean pond depth
- Stormwater harvesting conflicts between ERP and WUP
- Cascading systems effectiveness
COMMENTS SOUGHT ON BMP SITE DATA REQUIREMENTS

- Section 21 Methodologies
  - Ground water mounding analysis
  - Retention BMP recovery analysis
  - Soil testing – borings
  - Soil testing – saturated hydraulic conductivity
Issue: The DEP-WMD stormwater team will be focusing over the next few months on how to best address OM of stormwater treatment systems. We are seeking input on the frequency of inspections, the requirements for inspections, the frequency of recertifying whether a stormwater treatment system is operating as designed and permitted, and whether the recertification forms should be submitted to the Agency or retained by the permittee. Also see Section 32 of this Handbook.
STATEWIDE STORMWATER TREATMENT
RULE
REVISED SCHEDULE

- Rule workshops (May 2010)
- Comments due June 15
- Revised draft rule and Applicant’s Handbook (June – September)
- Rule workshops (November 2010)
- Comments due by December 15
- Final revised draft rule and Applicant’s Handbook (March 2011)
- Authorizing legislation (May 2011)
- Rule adoption – no earlier than July 1, 2011
COMMENTS DUE JUNE 15

Please submit comments on draft rule to:
Doug.fry@dep.state.fl.us

Please submit comments on draft Applicant’s Handbook to:
Eric. livingston@dep.state.fl.us
HOW TO STAY UP TO DATE

- Sign up for email list on web site