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Techniques of Trend Analysis for Monthly Water Quality Data 
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Some of the characteristics that complicate the analysis of water quality time series are non-normal 
distributions, seasonality, flow relatedness, missing values, values below the limit of detection and 
serial correlation. Presented here are techniques that are suitable in the face of the complications iisted 
above for the exploratory analysis of inonthly water quality data for monotonic trends. The first 
procedure described is a nonparametric test for trend applicable to data sets with seasonality, missing 
values, or values reported as 'less than': the seasonal Kendall test. Under realistic stochastic 
processe~ (exhibiti~g seasonality, sk~wness, and serial correlation), it is robust in comparison to 
parametnc alternatives, although ne1ther the seasonal Kendall test nor the alternatives can be 
considered an exact test in the presence of serial correlation. The second procedure, the seasonal 
K~ndall slope estimator, is an estimator of trend magnitude. It is an unbiased estimator of the slope of 
a linear trend and has considerably. ~igher precision than a regression estimator where data are highly 
skewed but s~mewhat lower prec!s•o~ where th~ data are normal. The third procedure provides a 
means for testmg for change over time m the relatiOnship between constituent concentration and flow 
thus avoiding. the problem of identifying trends in water quality that are artifacts of the particula; 
~equence of discharges observed (e.g., drought effects). In this method a How-adjusted concentration 
IS defined as th.e residu.al (actual minus conditional expectation) based on a regression of concentration 
on some function of d1scharge. These flow-adjusted concentrations, which may also be seasonal and 
non-normal, can then be tested for trend by using the seasonal Kendall test. 

INTRODUCTION 

The problem of testing water quality monitoring data for 
trend in time has received considerable attention in the last 
decade (see, for example, Wolman [1971], Steele et al. 
[1974], Lettenmaier [1977], and Liebetrau [1979]). Recent 
interest in methods of water quality trend analysis arises for 
two reasons. The first is the intrinsic interest in the question 
of changing water quality arising out of environmental 
concern and activity. Given legislation that has resulted in 
the expenditure of large sums of public and private money 
for the purpose of water quality improvement, there is 
considerable interest in evaluating the consequences ofthese 
expenditures. The second reason for this interest is that only 
recently has there been a substantial amount of data that is 
amenable to such analysis. It is clear that in order to detect 
or assess trends it is necessary that the data be collected at a 
given location, by using consistent collection and measure­
ment techniques on a regular schedule and over a substantial 
number of years. Establishment of large networks of water 
quality stations has occurred mainly since 1970. Some 
examples of national water quality networks are the U.S. 
Geological Survey's Benchmark and NASQAN networks 
[see Briggs, 1978]. 
. In this paper we describe procedures suitable for analyz­
mg a large data base to identify stations where water quality 
characteristics appear to be changing monotonically over 
time and to estimate the rates of change. The techniques are 
not intended for exploring the hypothesis that change has 
occurred at some prespecified time (as a result of known 
human action, for example), but rather for detecting mono­
tonic trend or change (gradual or sudden) during some 
interval of time. The techniques do not require complete 
records. The existence of missing values (a common feature 
of water quality monthly time series) presents no computa­
tional or theoretical problem for applying the techniques. 

This paper is not subJect to U.S. copyright. Published in 1982 by 
the Amencan Geophysical Union. 

Paper number IWI744. 

Similarly, the presence of values reported as less than the 
limit of detection presents no problems for the first of the 
three techniques. 

Meaningful interpretation of the results of these analyses 
depends on the data collection practices. These techniques 
are only appropriate for data collected by systematic sam­
pling at a monthly frequency, although stratified random 
sampling data (with monthly strata) would also be suitable. If 
the results are to be interpreted as applying to the entire 
cross section at the station, the water sample must be 
vertically and horizontally integrated. It is also most impor­
tant that consistent field and laboratory procedures be used 
at all times. The achievement of this goal depends on 
d?cumentation of procedures, training of personnel, and a 
VIgorous program of quality assurance in all phases of the 
data collection process. Another highly desirable feature is 
the collection of ancillary data such as time of day, water 
temperature, and discharge at the time of sample collection. 
These data provide a basis for explaining a portion of the 
observed variation in the concentration data. This can 
enable the analyst to distinguish effects of drought or storms 
weather conditions, or effects of solar radiation from possi~ 
ble anthropogenic effects. The use of flow data is illustrated 
in this report in the discussion of the flow adjustment 
procedure. · 

Although presented in terms of hypothesis testing, the 
procedures presented here are best viewed as exploratory. 
They are most appropriately used to identify stations where 
changes ~e significant or of large magnitude and to quantify 
these findmgs. In many cases one may wish to go on from 
using these techniques to explore the data in graphical form 
and f~rmulate and test specific hypotheses about the timing, 
magmtude, or mechanism of change. 

The methodology presented here includes three distinct 
procedures, which can be used alone or in combination. 
Examples of their combined use are presented by Smith et 
al. [1982]. 

The three procedures are as follows. 
1. A modified form of Kendall's [1938, 1975] tau used as 

107 



108 HIRSCH ET AL.: TREND ANALYSIS TECHNIQUES 

~~---------------------------------------------------, 

....] ..... 
C!) 
:E: 

c 

Z"' 
-d 
z 
0 -1-a: 
a:: co 
1- • c 
z"' w 
u 

8 

N 

d 

c 

c 

c 
c 

c c 
c 

c 

clb 
db c c c c c c c c c cc cc 

cc c c c c -o c nil r::P 
_jJ c c cc lb c 0 c_,.,.,Er' c lb "' _ 

c r::A::P cc ID c c ...-- cll:b "l:H"'b. 
d~----~~e-~~~~~~~~~~~------~~~~~~-1 

1979.0 19110.0 1972.0 1973.0 197t.O 197s.o 1976.0 1sn.o 1978.0 
TIME IN YEARS 

Fig. 1. Concentration of total phosphorus, Klamath River near Klamath, California: p = 0.007, slope = -0.005 mg/L 
per year. 

a test for trend. This modification is called the seasonal 
Kendall test for trend. 

2. A method of estimating trend magnitude that is closely 
related to the seasonal Kendall test procedure. This is called 
the seasonal Kendall slope estimator. 

3. A method for computing a time series of flow-adjusted 
concentrations (FAC). This FAC time series may then be 
used to examine, graphically or by a formal test (such as the 
seasonal Kendall test), the question of whether there has 
been a change in the relationship between flow and concen­
tration over the period of record. 

The three techniques are each described, an example of 
their application is shown, and Monte Carlo experiments 
exploring the characteristics of the first two procedures are 
reported. The data used to illustrate the three techniques are 
the total phosphorus record from a Geological Survey na­
tional stream quality accounting network (NASQAN) station 
on the Klamath River near Klamath, California (station 11-
5305.00). NASQAN samples are collected on a systemic 
sampling schedule (one per month). Collection methods 
described by Guy and Norman [1970] are used to assure that 
they are cross-sectionally integrated samples. The samples 
are chilled to 4°C and shipped to the nearest of the two U.S. 
Geological Survey Central Laboratories for analysis. The 
Klamath record covers the period from January 1972 
through October 1979 and has a total of 80 monthly values. 
The average concentration over this record is 0.12 mg/L, the 
standard deviation is 0.17 mg/L, and the coefficient of 
skewness is 4.0 (see Figure 1). 

THE SEASONAL KENDALL TEST FOR TREND 

Mann [1945] described a nonparametric test for random­
ness against trend. The test he described is a particular 
application of Kendall's test for correlation [Kendall, 1975] 
commonly known as Kendall's tau. According to Mann the 

null hypothesis of randomness H0 states that the data (x" 
• • ·, Xn) are a sample of n independent and identically 
distributed random variables. The alternative hypothesis 
(H1) of a two-sided test is that the distribution of xk and Xj are 
not identical for all k, j s n with k f j. The test statistic S is 
defined as 

where 

n-1 n 

S = L L sgn (xj - xk) 
k=l j=k+l 

( 
I if 8>0 

sgn ( 8) = 0 if 8 = 0 
-1 if 8<0 

(1) 

(2) 

Note that the statistic T which Mann [I945] discussed is a 
linear function of the statistic S used by Kendall [I975] and 
used in the present paper. In particular, S = 2T- n(n- 1)/2. 
Mann shows that under H 0 the distribution ofT and hence S 
is symmetrical and is normal in the limit as n ~ oo. Kendall 
gives the mean and variance of S under H 0 given the 
possibility that there may be ties in the x values. 

E[S] = 0 (3a) 

Var [S] = n(n - I)(2n + 5) - ~~ t(t - 1)(2t + 5)/18 (3b) 

where tis the extent of any given tie (number of x's involved 
in a given tie) and ~~ denotes the summation over all ties. 
(For example, if there were four ties of two and one tie of 
three, then~~ t(t - 1)(2t + 5) =4 · 18 + I · 66 = 138). Mann 
[1945] did not consider ties, but his results correspond 
exactly with Kendall's for the no-tie case. Both Mann and 
Kendall derive the exact distribution of S for n ::S 10 and 
show that even for n = 10 the normal approximation is 
excellent, provided one uses a continuity correction of one 
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Fig. 2. Histogram of exact distribution of S' under H0' for n; = 2, i = I, 2, · · · , 12. The curve is a normal distribution 
with mean zero and variance= Var [S']. 

unit. That is, one computes the standard normal variate Z by 

s- 1 

(Var (S)) 112 
if s > 0 

Z= 0 if s = 0 (4) 

s + 1 

(Var (S))112 
if s < 0 

Thus in a two-sided test for trend, the H 0 should be accepted 
if IZI :s; Zal2• where F NC.za12) = a/2, F N being the standard 
normal cumulative distribution function and a being the size 
of the significance level for the test. A positive value of S 
indicates an 'upward trend' (increasing values with time), 
and a negative value of S indicates a 'downward trend.' 

Bradley [1968, p. 288] notes that when this test is used as a 
test of randomness against normal regression alternatives, 
this test has an asymptotic relative efficiency of 0.98 relative 
to the parametric test based on the regression slope coeffi­
cient. 

If the time series data of interest are monthly water quality 
data, then the null hypothesis (H0) given above may be too 
restrictive. Examination of monthly water quality time series 
(such as shown in Figure 1) suggests very strongly the 
presence of seasonality. In fact, 127 of 308 series of monthly 
total phosphorus concentration data from the U.S. Geologi­
cal Survey NASQAN program (records of 5-8 years in 
length) show significant (a = 0.05) seasonality, as deter­
mined by Kruskal-Wallis multisample test for identical popu­
lations [Bradley, 1968, p. 129]. Similarly, 139 of308 series of 
dissolved solids (residue on evaporation at 180°C) show 
significant seasonality. These results suggest that seasona­
lity (the existence of different distributions for different times 
of year) is a common phenomenon. 

We propose a test, the 'Seasonal Kendall' test for trend, 

which is insensitive to the existence of seasonality. The null 
hypothesis H0 ' for this test is a relaxed form of H0 (which 
any seasonal but otherwise trend-free process will not vio-
late). Let · 

X = (XI> Xz, • • ·, Xtz) 

and 

X; = (XjJ, x,-z, •• ·, X;n) 

That is, X is the entire sample, made up of subsamples X1 

through X12 (one for each month), and each subsample X; 
contains then; annual values from month i. Note that there is 
no restriction that n; = n1, i =f l, or that there be a value for 
every year and month combination in the sampling period. 
·However, there may be no more than one for each year and 
month. (A variation on the test will be discussed below in 
which multiple values are possible.) The null hypothesis H0' 

for the seasonal Kendall test is that X is a sample of 
independent random variables (xu) and that X; is a sub sample 
of independent and identically distributed random variables i 
= 1, 2, · · ·, 12. The alternative hypothesis is that for one or 
more months the subsample is not distributed identically. 
We define the statistic S; 

n;-1 nt 

S;= ~ ~ sgn (xu - x;k) (5) 
k=l j=k+l 

Now, under H0' the subsample X; satisfies the null hypoth­
esis Ho of Mann's test. Therefore relying on Mann and 
Kendall we have 

E[S;] = 0 (6a) 

n,{n; - 1)(2n; + 5) - ~ t; (t; - 1)(2t; + 5) ,, 
Var [S;] = ---------,-18::--=------- (6b) 

and the distribution of S; is normal in the limit as n;--? co (t; is 
the extent of a given tie in month i). We then define S' = 
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Fig. 3. Histogram of exact distribution of S' under Ho' for n; = 3, i = I, 2, · · · , 12. The curve is a normal distribution 
with mean zero and variance= Var [S']. 

~;= 1 12 S; and can derive its expectation, variance, and limit 
distribution. 

12 

E[S'] = ~ E[S;] = 0 (7a) 

i=1 

u 12 u 
Var [S'] = ~ Var[S;] + ~ ~ cov (S;S1) (7b) 

i=1 i=1 1=1 

i<FI 

Now S; and s, (i =f: [) are functions of independent random 
variables (S; = f{X;), S1 = f{X1) and X; n X1 = 4> because X; 
and Xt are the data from months i and l, respectively, and all 
elements of X are independent) so cov (S;S1) = 0. Thus E[S'] 
and Var [S'] are known simply from then; and t; values. In 
addition, S' must be normal in the limit as n;-+ oo, i = 1, 2, 
· · ·, 12 being the sum of 12 distributions which are normal in 
the limit. 

For any data set it is possible to determine the exact 
distribution under H0 of S' based on the n; and t; values. This 
can be done as a straightforward extension of the procedure 
for computing the exact distribution of S (equivalent to S; in 
the seasonal Kendall test) as described by Kendall [1975]. 
The exact distribution of S' is arrived at by enumerating all 
possible permutations and combinations of S; for the 12 
months, summing the S;'s, multiplying the independent 
probabilities, and adding the probabilities of all of the S; 
sequences that sum to each particular value of S'. Figure 2 
shows the exact probabilities for the case of 2 years of 
monthly data (n; = 2, i = 1, 2, · · ·, 12) with no ties, and 
Figure 3 shows it for 3 years of monthly data (n; = 3, i = 1, 2, 
· · ·, 12) with no ties. For both of these cases S' may only 
take on even values, and the probability of a givenS' value is 
depicted by a histogram class ranging from S' - 1 to S' + 1. 

Superimposed on each figure is the normal distribution 
with a mean of zero and variance of V ar [S'] where 

12 12 { 1 
Var [S'] = ~ Var [S;] = ~ n,,n; - )(2n; + 5) (8) 

i=l i=l 18 

On the basis of visual inspection, one can see that even for 

records as short as 3 years the normal approximation will 
work quite well for estimating p = Prob [JS'I ::::: s] (the 
probability that S' will depart from zero by the amount s or 
more) provided that a continuity correction of one unit 
(toward zero) is made. For using the normal approximation 
we define the standard normal deviate Z' as 

j 
S'- 1 

(Var (S')) 112 

z = 0 

l S' + 1 

(Var (S')) 112 

if S' > 0 

if S' = 0 (9) 

if S' < 0 

The approximation is certainly adequate for n; = 3 for all i. 
The worst disagreement between the exact two-sided proba­
bility and the approximate probability occurs at IS'I = 6 
where the exact probability is 0.4530 and the normal approx­
imation is 0.4510. Even for n; = 2 for all i, where the exact 
distribution could easily be used, the worst disagreement 
occurs at IS' I = 8 where the exact probability is 0.0386 and 
the approximation is 0.0433. Without the continuity correc­
tion the approximate probability would be 0.0209. For either 
the n; = 2 or n; = 3 case, at any significance level greater 
than or equal to 0.01, the relative error incurred by using the 
approximation in place of the exact distribution is less than 
14%. 

A possible modification of the seasonal Kendall test would 
involve using multiple observations for each month rather 
than limiting the time series to one observation per month. 
The observations occurring in the same month of the same 
year would be treated as tied observations with respect to 
their time of occurrence. In the former version of the 
seasonal Kendall test, ties are only possible in the magni­
tudes but not in the time index; in this modified version ties 
may occur in both. Kendall [1975] describes the modifica­
tions to his test necessary when both kinds of ties are 
possible. We have not explored the use ofthis modified test, 
and it is not clear whether it would be preferable to use all 
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available data or to take, say, the medians of the multiple 
observations in each of the months and use them in the 
former version of the test. 

One feature of water quality data, particularly metals and 
organic compounds, is the reporting of 'less than' values. 
For any analytic technique used in the laboratory, a limit of 
detection (LD) is defined and all measurements below the 
LD are reported as being less than that limit. When a time 
series contains any 'less than' values, then parametric 
methods of trend detection become unusable. These 'less 
than' values present no difficulty for non parametric methods 
such as the seasonal Kendall test because nonparametric 
tests require making comparisons of values to determine 
which is the larger. The 'less than' data can all be considered 
to be smaller than any numerical value equal to or greater 
than the LD and tied with any other 'less than' value. In 
cases where the LD has changed over time as more sensitive 
instruments are developed, it is necessary to take all data 
reported below the highest LD (including those reported as 
less than any lower LD) and consider them all to be tied at 
the highest LD. 

It should be recognized that there may be instances in 
which some months exhibit strong evidence of upward 
trends and others exhibit strong evidence of downward 
trends (that is, some S;'s are large positive values and others 
are large negative values), and yet the test result indicates no 
trend (S' close to zero). If one is interested in trends in 
specific months, then it would be appropriate to use the 
Mann-Kendall test for each of the months and report the test 
results for each. The seasonal Kendall test is specifically 
designed to provide a single summary statistic for the entire 
record and will not ·indicate when there are trends in 
opposing directions in different months. 

For the example of the Klamath River (see Figure 1), the 
statisticS' = -62 and the Var [S'] under the null hypothesis 
is 514. Thus the Z' value is -2.69, and the p value or two­
sided significance level of the trend is 0.0072. That is, p = 
Prob [IS'I =:: 621 = 0.0012. 

MONTE CARLO EXPERIMENT ON THE SEASONAL 

KENDALL TEST 

We have defined the seasonal Kendall test for trend, 
derived the mean and variance of the test statistic S' under 
the null hypothesis Ho', and verified that the normal distribu­
tion provides a good approximation to the exact distribution 
of S' when the continuity correction is used for records as 
short as three years. We now proceed to address some 
questions about the significance and power of the test as 
compared to other reasonable alternative tests for trend. In 
particular, we explore the impacts of underlying distribu­
tions, of seasonality, and of serial dependence on the signifi­
cance and power of the test. This is done through a Monte 
Carlo experiment. The purpose of this experiment is not to 
precisely quantify these effects but rather to provide insight 
on their general character. Thus no attempt is made to 
describe relationships between population characteristics, 
sample size, and the significance or power of the test. Given 
the problems of estimating the relevant population charac­
teristics from the small samples that are typically available, 
it is unclear that knowledge of such relationships would be 
particularly useful. 

Before describing the Monte Carlo experiments some 
definitions should be given. The actual significance level of a 

test under some particular trend-free stochastic process is 
the probability that the test would indicate trend (fail to 
accept the null hypothesis of no trend) at the preselected 
nominal significance level a. 

We call a process trend-free if, for each i, the distributions 
of xu and x;k are identical for allj and k. The seasonal Kendall 
test was designed to be particularly powerful against the 
alternative of trend. One of the purposes of the Monte Carlo 
experiment is to evaluate the power of the test against other 
departures from H0' that are trend free, specifically serial 
dependence. One would prefer to use a test with minimal 
power against serial dependence such that the probability of 
rejecting the null hypothesis is close to a when there is serial 
dependence but no trend. 

Power is the probability that the test would indicate trend 
(fail to accept the null hypothesis) when the generating 
process did, in fact, have trend. Clearly, the power of a test 
will be a function of the stochastic process, trend magnitude, 
as well as record length. 

The objectives to consider in selecting a test for use in an 
exploratory study (assuming that a has already been select­
ed) are these. (1) The actual significance should be relatively 
close to a under stochastic processes thought to be relatively 
similar to the time series one expects to be testing, and (2) 
the power for detecting trends should be relatively high 
compared to some alternative tests for processes in which 
trend exists and which are thought to be similar to the time 
series one expects to be testing. 

The first of the two alternative tests for trend is based on 
linear regression. In this test the parameters of the regres­
sion equation (10) are estimated by ordinary least squares. 

xu = a + b · 0 + 1~) (10) 

The null hypothesis (H0") is that the xu are normal indepen­
dent and identically distributed in time, which implies that b 
= 0. The test statistic used is T where 

r • (m- 2)112 

T = (1 - ,-2)112 (1 I) 

where m is the total number of observations and r is the 
product moment correlation coefficient between xu and time 
(j + i/12). The probability distribution ofT under H 0" is the 
Student t distribution with m - 2 degrees of freedom 
[Kendall and Stuart, 1969, p. 387]. This statistical test is 
denoted LR (linear regression). 

The other test for trend considered is performed by 
deseasonalizing the data before regressing them against 
time. In this procedure, called seasonal regression (SR), the 
sample mean (i;) and sample standard deviation (s:x;;) are 
computed for each of the 12 months. The deseasonalized 
data are denoted uu where 

xu- i; 
uu=--­

S:x;; 

The parameters of the equation 

flu = a' + b' • j 

(12) 

(13) 

are estimated by using ordinary least squares. The null 
hypothesis H0"' for the test is that the xu are normal, 
independent, and that for all i, x11 and x;k are identically 
distributed for allj and k. Thus H0"' implies that b' = 0. The 
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TABLE I. Mean Value of Sample Statistics of Deseasonalized uu Data 

Mean 
Lag I Lag 2 Number Series 

Coefficient Correlation Correlation of Length, 
Data Source of Skews Coefficient Coefficient Series months 

Process 
NI 0.01 -0.01 -0.01 100 72 
LNI 0.70 -0.00 -0.01 100 72 
NIS 0.01 -0.01 -0.01 100 72 
NAR 0.01 0.18 0.03 100 72 
NARMA 0.02 0.19 0.14 100 72 
LNARS 0.70 0.22 0.04 100 72 

NASQAN 
Dissolved solids 0.07 0.26 0.17 260 57 

concentration (31) (55) (28) 
Total phosphorus 0.46 0.17 0.10 281 59 

concentration (65) (43) (38) 

Numbers in parentheses under skew coefficients are the percent of stations at which normality is 
rejected by chi-squared goodness of fit test (a= 0.05). Numbers in parentheses under Lag I and Lag 2 
correlation coefficients are percent of stations at which the correlation coefficient is positive and 
significantly different form zero (a = 0.05). 

test statistic is T' where T' = (n(n - 1)(n + l)) 112b', where n 
is the number of years of record. T' is distributed approxi­
mately as a Student t random variable with 2n degrees of 
freedom. This approximation has been found to be adequate 
for n ~ 3, and this is seen in the Monte Carlo experiment for 
n = 5, 10, and 20. The reason that the usual T statistic may 
not be used in this case is that the uij are not independent, 
even when the Xij are independent (thereby reducing the 
number of degrees of freedom). 

Six different trend-free stochastic processes are consid­
ered in this experiment. They are defined as follows: 

1. Normal independent (NI) 

(14a) 

2. Log normal independent (LNI) 

xu = exp [0.83 · eu - 0.35] - 1.0 (14b) 

3. Normal independent with seasonal cycle (NIS) 

x .. = (0.5) e .. + sin ( 7T + ~ · i) (14c) 
IJ IJ 3 6 

4. Normal autoregressive (NAR) 

xij = o.z l"ulL + 0.98 · eij (l4d) 

5. Normal autoregressive-moving average (1, l) 
(NARMA) 

Xij = 0.75 [Xij)L + 0.97 • Eij- 0.57 [eij)L (14e) 

6. Log normal, autoregressive with seasonal cycle 
(LNARS) 

Xij = (0.5) · exp [0.22[xulL + 0.80 eu- 0.35] - 0.71 

+ sin (; + ~ · i) 
(14j) 

The series are generated fori= 1, 2, · · ·, 12;j = l, 2, · · ·, n, 
for n = 5, 10, 20. The notation [ ulL = ;- 1• j fori = 2, 3, 
·' ·, 12, [ ulL = t2.j-t fori= lis used. The variable eu is a 
normal random variable with zero mean and unit variance. 
For all six processes, the xu have zero mean and unit 
variance over all months taken together. However, for the 

NIS and LNARS processes in any given month, the variance 
is 0.5 and the mean takes on various values between -0.71 
and +0.71. 

In order to illustrate the characteristics of these processes, 
the average values of some sample statistics are given in 
Table 1 for 100 repetitions of samples of 6 years in length. 
Also presented are average statistics for two historical time 
series of water quality data from the U.S, Geological Survey 
NASQAN program. The record lengths for these series are 
5-8 years. The historical data used here are 'detrended' in 
order to make them comparable to the computer-generated 
data. The detrending is accomplished by using the seasonal 
Kendall slope estimate described in the next section of this 
paper. All of the data, historical or generated, is then 
deseasonalized before the skewness and correlation coeffi­
cients are computed. 

Each series generated was tested by each of the three tests 
(SK, LR, and SR) by using the nominal significance level a 
of 0.05. The number of repetitions for each process and 
record length was 500. The same series were modified by 
adding linear trend to create a new series Vij 

Vij = Xij + {3 (.~ + j) (15) 

For each record length, eight different f3 values (trend slope 
in units of standard deviations per year) were used; for n = 5 
the f3 values were 0.05 (0.05) 0.4, for n = 10 they were 0.02 
(0.02) 0.16, and for n = 20 they were 0.0065 (0.0065) 0.05. 
For each of these Vu series, the three trend tests w'ere 
applied. The results expressed in terms of frequency of 
detecting trends are shown in Figures 4-:-6. 

The Monte Carlo experiment is used to test the null 
hypothesis that the true frequency of rejection is a against 
.the alternative that it is not equal to a. The results in Table 2 
give &, the ratio of rejections to the number of trials, for 
those cases where no trend exists. The probability distribu­
.tion of the number of rejections in 500 is binomial, and the 
95% confidence band, expressed in terms of &, is [0.032, 
0.068]. Those cases in which a falls outside this confidence 
band are noted in Table 2. Also, the power of the three tests 
are compared for each process, record length, and true 
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Fig. 4. Power of the three tests for sequences of length 5. Symbols are as follows: seasonal Kendall (square), linear regression (triangle), 
seasonal regression (cross). Significance level of the tests, a, is 0.05. 
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TABLE 2. Observed a values where a is defined as the 
frequency with which trends are indicated where none exists. 

Process n SK LR SR 

NI 5 0.044 0.040 0.044 
NI 10 0.052 0.050 0.040 
NI 20 0.046 0.034 0.034 

LNI 5 0.054 0.044 0.040 
LNI 10 0.046 0.048 0.046 
LNI 20 0.040 0.040 0.058 

NIS 5 0.044 o.oo8- 0.044 
NIS 10 0.052 0.006- 0.040 
NIS 20 0.032 0.004- 0.044 

NAR 5 0.078+ 0.090+ 0.090+ 
NAR 10 0.098+ o.o88+ 0.094+ 
NAR 20 0.070+ 0.082+ 0.082+ 

NARMA 5 0.176+ 0.242+ 0.204+ 
NARMA 10 0.186+ 0.222+ 0.220+ 
NARMA 20 0.200+ 0.223+ 0.216+ 

LNARS 5 0.102+ 0.018- 0.104+ 
LNARS 10 0.098+ 0.016- 0.108+ 
LNARS 20 0.092+ 0.022- 0.106+ 

The 'plus' indicates that a is above the 95% confidence band 
around the nominal a (0.05), and the "minus" indicates that a is 
below this confidence band. 

slope. To simplify the comparison of tests, Table 3 presents 
the minimum relative power w(K) of each test K for each 
record length n and process. Here w(K) is defined as 

w(K) = 100 · max (D(K, {3) - D(K, {3)) (16) 
{3,K 

where D(K, {3) is the frequency of trend detection by test K, 
where Ke{SK, LR, SR}, given the slope {3, record length n, 
and the process. The following observations about the three 
tests may be made from the figures and two tables. In the 
succeeding discussion, 'significant' should be taken to mean 
significant at the 5% level. 

RESULTS OF THE MONTE CARLO EXPERIMENT 

1. In all cases where a process satisfies the null hypothe­
sis of a given test, the a values fall within the 95% confidence 
band around the nominal significance level a (0.05). These 
cases are NI, LNI, and NIS for the SK test, NI for the LR 
test, and NI and NIS for the SR test. 

2. In addition to these cases the two regression-based 
tests appear to be robust (in terms of significance) against a 
departure from normality. That· is, for the LNI process 
(population skewness = 4.0), both the LR and SR test have a 
values within the 95% confidence band around a. 

3. For the nonseasonal dependent processes (NAR, 
NARMA) the actual significance level of each of the three 
tests against trend appears to depart from the nominal 
significance level a. Specifically, the probability that the null 
hypothesis will be rejected is greater than the preselected 
probability a. In the case of theNAR process no definitive 
statement can be made about the relative magnitude of this 
discrepancy. However, for the NARMA process without 
trend, at n = 5, 10, and 20, in those trials where the SK and 
LR tests reached different conclusions (rejection or nonre­
jection), LR rejected the null hypothesis significantly more 

frequently than did SK. To illustrate this, consider n = 5; in 
364 trials, both SK and LR failed to reject their null 
hypothesis, in 73 trials both reject their null hypothesis. Of 
the remaining 63 trials LR rejected its null hypothesis 48 
times and SK rejected its null hypothesis 15 times. The 
hypothesis that rejections are equally likely where disagree­
ments occur is rejected (p :s; 0.001, two-sided). The results 
are similar for n = 10, 20 with p = 0.010 and p = 0.024, 
respectively. Similarly, SR rejected significantly more than 
SKat n = 5 and n = 10 (p = 0.044, p = 0.008, respectively). 
Thus for the NARMA process the SK test has a slight 
advantage over the other two tests in the sense that it 
indicates the existence of trend Jess frequently when no 
trend exists. For the NAR process none of the three tests 
can be shown to be superior to the others in this sense. 

4. For the LNARS (where both seasonality and depen­
dence exist) the results shew a values for the SK and SR 
tests lying above the 95% confidence band about a as a result 
of the dependence. For the LR test a is below the 95% 
confidence band, suggesting that the seasonality has a more 
profound effect on the significance than does the depen­
dence. 

5. Where the xu's satisfy the null hypothesis for all three 
tests, then the LR test appears to be most powerful, followed 
by SR, followed by SK. However, in the two cases where 
H0" is violated but H0 ' is not (LNI and NIS), the violation is 
sufficient to make the LR test become a Jess powerful test for 
trend than the SK test. Similarly, in the one case where H0"' 

is violated (LNI), the violation is sufficient to make the SR 
test become a Jess powerful test for trend than the SK test. 

6. For the NI process with trend, the difference in the 
power of the three tests decreases with increasing record 
length. In fact, when n = 20 the difference in frequency of 
trend detection is no more than 6.2% over all {3 values 
considered. For the NIS process the difference in power 
between the SK and SR tests also decline with increasing 
record length. However, for the LNI process the difference 

TABLE 3. Minimum Relative Power, w(K), Expressed in 
Percent 

Process n SK LR SR 

NI 5 16.8 0.0 8.8 
NI 10 9.0 0.0 3.2 
NI 20 6.2 0.8 1.2 

LNI 5 0.0 29.2 8.0 
LNI 10 0.0 38.4 22.4 
LNI 20 0.0 42.2 29.0 

NIS 5 10.6 35.0 0.0 
NIS 10 6.4 38.6 0.0 
NIS 20 5.2 37.2 0.0 

NAR 5 14.6 0.0 8.6 
NAR 10 6.0 0.0 3.2 
NAR 20 4.2 1.4 1.2 

NARMA 5 12.4 0.0 6.2 
NARMA 10 6.6 0.0 3.4 
NARMA 20 4.8 0.8 1.2 

LNARS 5 0.0 62.8 6.2 
LNARS 10 0.0 68.0 21.0 
LNARS 20 0.0 66.0 25.8 

An entry of 0.0 indicates test is most powerful at all values of (3. 



HIRSCH ET AL.: TREND ANALYSIS TECHNIQUES 117 

TABLE 4. The Average, p., Standard Deviation, u, and Relative Standard Deviation 1/J, of the Three Estimators B, b, and b* 
(Associated With Seasonal Kendall Procedure, Linear Regression, and Seasonal Regression, Respectively) 

Process n p.(B- {3) X 103 p.(b- {3) X lQl p.(b*- {3) X 103 

NI 5 -1.4 -1.4 -9.9* 
Nl 10 -0.6 -0.4 -0.6 
NI 20 -0.0 3.3 0.4 

LNI 5 -0.1 3.9 13.8* 
LNI 10 -0.3 -0.8 1.1 
LNI 20 -0.5 -0.2 -0.1 

NIS 5 -1.0 -21.0* -2.7 
NIS 10 -0.4 -5.3* -0.2 
NIS 20 -0.0 -1.0 0.3 

NAR 5 0.5 -1.8 -9.4 
NAR 10 0.0 -0.5 -0.6 
NAR 20 0.3 0.4 0.6 

NARMA 5 2.6 0.1 -9.2 
NARMA 10 -0.0 -0.2 -0.7 
NARMA 20 -0.5 -0.4 -0.3 

LNARS 5 -1.8 -2.6* -2.3 
LNARS 10 0.1 -5.4* 0.3 
LNARS 20 -0.4 -1.6* -0.4 

*Estimate is biased at the 5% significance level. 

in power between the SK and LR tests (or the SK and SR 
tests) increases with increasing record length. 

7. For the two processes with dependence and no sea­
sonality (NAR and NARMA) the relative power of the tests 
is not unlike what is observed for the NI process. The power 
curves are simply shifted upward, reflecting the inflated 
actual significance of all three tests when dependence exists. 

8. For the LNARS process the SK tests is most power­
ful. The power of LR is severely reduced (in comparison) by 
seasonality and skewness, and the power of SR is reduced 
by skewness. 

In summary, if one knows that the data to be examined for 
trends are normal and nonseasonal, then LR is clearly the 
best of the three tests. If one knows that the data are normal 
but seasonal, then SR may be best (depending on the 
magnitude of the seasonality). In general, we do not know 
much about these characteristics of the data. In general, 'No 
. . . obvious indication advises the experimenter that a 
parametric assumption has been violated. Of course he may 
apply time-consuming tests for normality or homogeneity to 
the obtained data, but such tests are rather unsatisfactory. 
They are unlikely to detect any but the most extreme 
violations when samples are small, and they are almost 
certain to detect the most trivially slight violations when 
samples are very large,' [Bradley, 1968, p. 23]. Given that 
our data analysis has shown departure from normality and 
the presence of seasonality to be common features of water 
quality data, coupled with the rather small loss of power 
associated with using the SK test where the LR test would 
be most powerful, we would argue for the use of the seasonal 
Kendall test as an exploratory test for trend. 

None of the three tests considered here is designed to 
distinguish between trend and the long-term variations typi­
cal of trend-free dependent processes, although the SK test 
appears to have a slightly better performance than do the 
other tests under a long-memory ARMA process. There is 
certainly a need for a trend test that is robust against 
seasonal behavior, departures from normality, and depen-

u(B) X 103 u(b) X 103 u(b*) X 103 1/J(B) 1/J(b) 1/J(b*) 

102.0 85.1 91.4 1.20 1.00 1.07 
35.2 31.2 31.5 1.13 1.00 1.01 
11.1 10.6 10.7 1.05 1.00 1.01 

53.9 91.6 95.6 1.00 1.70 1.77 
16.4 29.6 31.2 1.00 1.80 1.90 
5.9 10.4 10.4 1.00 1.77 1.77 

72.1 60.1 63.1 1.20 1.00 1.05 
24.9 22.0 22.2 1.13 1.00 1.01 
7.9 7.5 7.6 1.05 1.00 1.01 

118.4 103.1 110.3 1.15 1.00 1.07 
41.6 37.9 38.3 1.10 1.00 1.01 
13.4 13.1 13.2 1.03 1.00 1.01 

155.3 145.5 150.8 1.07 1.00 1.03 
52.3 51.2 51.5 1.02 1.00 1.01 
16.8 16.9 16.8 1.00 1.01 1.00 

45.5 74.0 76.3 1.00 1.63 1.68 
14.6 26.1 26.9 1.00 1.79 1.84 
5.3 9.3 9.3 1.00 1.77 1.77 

dence. The seasonal Kendall test can only be regarded as 
robust against the former two and not the latter. 

THE SEASONAL KENDALL SLOPE ESTIMATOR 

In addition to identifying time series that exhibit trend, it 
may be desirable for some applications to estimate the 
magnitude of such a trend. We have chosen to express this 
magnitude as a slope (change per unit time), but this does not 
imply any belief that the trend takes the form of a linear 
trend in the process mean. In an overview of many stations, 
one may wish to identify those stations for which trend slope 
is large with respect to the mean value. One may also want to 
identify those stations where extrapolation of an existing 
trend would suggest that frequent violations of some rele­
vant water quality criterion might occur in the near future. 
The estimator we define is an extension (to account for 
seasonality) of one proposed by Theil [1950] and by Sen 
[1968]. 

We define the seasonal Kendall slope estimator B by the 
following computational algorithm. Compute duk = (xu -
X;k)/(j- k) for all (xu, X;k) pairs i = 1, 2, · · · , 12; 1 :S k <j :S 

n;. The slope estimator B is the median of these duk values. 
The estimator B is related to the seasonal Kendall test 
statistic S' such that if S' > 0, then B 2:: 0 (B > 0 if one or no 
duk = 0), and if S' < 0, then B :S 0 (B < 0 if one or no duk = 
0). This is because S' is equivalent to the number of positive 
duk's minus the number of negative duk's, and B is the 
median of these duk's. 

By using the median of these individual slope duk values, 
the estimate B is quite resistant to the effect of extreme 
values in the data. It is also unaffected by seasonality 
because the slopes are always computed between values that 
are multiples of 12 months apart. 

For the Klamath River example given above, the B value 
is -0.005 mg/L per year. For comparison, linear regression 
gives a slope b value of -0.014 mg/L. For skewed data, such 
as the Klamath, the finding that lbl > !B! is typical. The 
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estimate b is influenced by the extremes of the data much 
more than is B. 

six generating processes with a true slope (/3) of 1.0 per year 
for record length of 5 and 10 years and 100 series of20 years. 

MONTE CARLO EXPERIMENT ON THE SEASONAL 

KENDALL SLOPE ESTIMATOR 

To evaluate the precision and bias of this estimate, B is 
compared with the estimate b from linear regression (equa­
tion (10)) and also an estimate denoted b* which arises from 
seasonal regression (equation (13)). Specifically, 

b* = b' [~~ · ~ Sx;] 
I= I 

(17) 

The estimates B, b, and b* are computed for 500 series of the 

Table 4 provides summary statistics of this Monte Carlo 
experiment: the mean error for the three estimates p.( ); the 
standard deviation a( ); and the relative standard deviation 

0() 

1/A. ) = min {a(B), O(b), O(b*)} 

The Monte Carlo experiment is used, in part, to test the 
hypotheses that the various slope estimators are unbiased 
(that is, E[B] = /3, E[b] = /3, E[b*] = /3) for all six processes 
and three record lengths. The estimator B can be shown 
analytically to be unbiased for all six cases. The distribution 

TABLE 5. Characteristics of a NASQAN monthly Data: Concentrations, xu, and Flow-Adjusted 
Concentrations, w11 

Total Dissolved 
Phosphorus Solids 

X If WI/ xu WI/ 

Percent of stations with significant 49 27 47 29 
seasonality (a = 0.05, Kruskal-Wallis test) 

Average coefficient of skewness 0.49 0.26 0.06 0.05 
Percent of stations significantly non-normal 68 36 32 26 

(a= 0.05, chi-squared goodness of fit test) 
Average lag 1 correlation coefficient 0.17 0.16 0.26 0.19 
Percent of stations with lag 1 correlation 42 41 55 46 

coefficient significantly greater than 
zero (a = 0.05) 

Average lag 2 correlation coefficient 0.10 0.11 0.16 0.11 
Percent of stations with lag 2 correlation 28 32 37 27 

coefficient significant greater than 
zero (a = 0.05) 

Number of stations 198 198 223 223 
Average record length in months 61 61 51 57 

Statistics were computed on deseasonalized data except for Kruskal-Wallis test for seasonality. 
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Fig. 8. Flow-adjusted concentration, Klamath River near Klamath, California: p = 0.434, slope = -0.002 mg!L per 
year. 

of the duk's is symmetric with mean value {3. The expectation 
of the sample median of a symmetric distribution is equal to 
the mean of the distribution, thus B (the median of the duk) 
has expectation {3. This holds for any situation where 
observations a multiple of 12 months apart are distributed 
identically except for a shift equal to the product of {3 and 
time (in years). The estimate b is significantly biased (at the 
5% level) for NIS at n = 5 and 10 and for LNARS at n = 5, 
10, and 20. This bias is related to the phase shift in the 
generating equations (14c) and (141). If the phase shift were 
71'14 (or more generally (1T/4) ± (1TI2)k for k integer) rather 
than 1TI3, then b would be unbiased. But for any other phase 
shift it will be biased and may be much more biased (for 
example, if the phase shift were zero). The estimator b* is 
significantly biased for the NI and LNI processes at n = 5. 
Whether there are conditions in which it is an unbiased 
estimator is an open question. 

Concerning the precision of the estimator, the results 
show that, for all of the normal processes (NI, NIS, NAR, 
NARMA) and all record lengths (n = 5, 10, and 20), O(b) < 
O(b*) < O(B). (With one exception: NARMA, n = 20, in 
which case all three are nearly equal.) For these processes, 
as the record length increases, the ratio of O(B)IO(b*) de­
creases. For processes with skewness (LNI and LNARS), 
O(B) < O(b) s O(b*) for all record lengths. 

Given a desire to find a method of slope estimation that is 
unbiased and has a lower variance in situations where 
seasonality, skewness, and serial correlation may be pre­
sent, the seasonal Kendall slope estimator B appears to be an 
appropriate choice. In no case does it perform much worse 
than the alternative methods, and in some cases it performs a 
great deal better. 

FLOW ADJUSTMENT 

It is well known that in many cases constituent concentra­
tions are correlated with river discharge (see, for example, 
Langbein and Dawdy [1964], Johnson eta/. [1969], Borman 
et al. [1974], Smith et al. [1982]). The causes ofthe relation­
ship and the particular functional form that might be used to 
characterize it vary from site to site and constituent to 
constituent. 

In some instances constituent loading rates are relatively 
constant because the main source of the constituent is a 
point-source discharge or the natural base flow supplied by 
soil moisture or aquifer storage. In such cases the effect of 
increased discharge (due to precipitation, snowmelt, or 
reservoir release) is a dilution effect. The resulting relation­
ship may be characterized by relationships such as 

1 
X= X-1 + X-2- + e 

Q 

1 + e 
X = AJ + A2 1 + A3 Q 

where X is concentration, Q is discharge, e is an error term 
with zero mean and AJ> X-2, and X-3 are coefficients (A.1 2: 0, A.2 

2: 0, AJ > 0). 
In other instances the constituent load may increase 

dramatically with an increase in discharge because of wash­
off during storm runoff or because the constituent is primari­
ly transported in a suspended state (adsorbed to particles) 
and suspended sediment loads (and concentrations) increase 
with discharge. The resulting relationship may be character-
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ized by equations such as 

X = ~, + ~2Q + ~3Q2 + e 

where ~3 2: 0. 
Analysis of the flow versus concentration relationship can 

be a useful addition to the examination of trends in water 
quality. Consider, for example, the Klamath River data. For 
the period of record (1972-1979) many of the samples of 
phosphorus in the earlier years occurred at higher discharges 
than many of those in the later part of the record. In fact a 
seasonal Kendall test on these discharge values indicates a 
downward trend with p = 0.14. Regressing phosphorus 
concentration versus discharge shows that they are highly 
correlated (see Figure 7). Given these three findings, (1) the 
seasonal Kendall test on the concentration data indicated a 
highly significant downward trend, (2) the discharges at 
which the observations were made show a downward trend 
as well (although not significant), and (3) the discharge and 
concentration are strongly and positively correlated; then it 
may be that the perceived trend in concentration may be a 
result of the particular history of discharge and not a 
consequence of any underlying change in the process by 
which phosphorus enters and is carried by the river. 

In general, one would like to explore the two possibilities 
that (1) the perceived trend in concentration is an artifact of 
the particular record of discharges observed or (2) the 
perceived trend indicates that some change has taken place 
in the river basin such that the discharge versus concentra­
tion relationship has changed over time (that is, E[XIQl has 
changed). Conversely, one may also wish to explore the 
possibility that a 'no trend' result may have occurred (1) 
even though the relationship has changed but the flow record 
has masked the effect or (2) because the relationship itself 
has not changed. 

To explore these possibilities we have applied the follow­
ing residuals analysis procedure. 

1. Use regression to find the 'best fit' relationship trying 
various functional forms i = f(Q) where i is the estimated 
concentration andf(Q) is some function of discharge Q. 

2. Given that a significant relationship exists, compute 
the time series of flow-adjusted concentration (FAC). 

where wu is the FAC month i, year j, xu is the actual 
concentration, month i, year j. 

3. Then, apply the seasonal Kendall test for trend and 
slope estimator to the time series of FAC values wu. 

Table 5 provides some comparisons of the characteristics 
of concentration data xu and flow-adjusted concentration 
data wu. The stations used here were NASQAN stations 
with the 36 or more (flow, concentration) data pairs and for 
which the flow-adjusted relationship was significant (a = 
0.10). These comparisons show that the flow adjustment has 
a tendency to reduce seasonality and skewness but it cannot 
be expected to eliminate them at all stations. Thus the use of 
the seasonal Kendall procedures, as opposed to regression, 
is appropriate for both the xu and the wu series. The flow 
adjustment procedure has no consistent effect on serial 
correlation. 

The use of the parametric procedure, linear regression, in 
this process is not entirely satisfactory for the reasons 
suggested in the previous sections of the paper. However, in 

this case linear regression is not being used for statisical 
testing but rather for the removal of variance that can be 
explained by an exogenous variable, discharge. It would, 
perhaps, be desirable to find a more resistant estimate of this 
relationship of concentration and discharge. There are some 
other methods for identifying time trends in the concentra­
tion-discharge relationship. These include multiple regres­
sion with time-varying coefficients (interaction models), and 
the recursive residuals approach suggested by Brown et al. 
[1975]. Exploration of the robustness and resistance of the 
flow-adjustment method proposed here or the other methods 
suggested above is beyond the scope of this paper. 

For the Klamath River phosphorus data the wu series had 
a sample standard deviation of 0.07 mg/L and a sample 
coefficient of skew of 0. 74. The seasonal Kendall test results 
are (S = -18, Z = -0. 78, p = 0.43) and the seasonal Kendall 
slope estimate B is -0.002 mg/L per year (see Figure 8). 
T.hus one may conclude that although there was a highly 
significant (p = 0.007) downward trend in concentrations 
over this 8-year period, there is no real indication of a change 
in the relationship between concentration and discharge or, 
stated more broadly, no indication of a change in the 
processes by which phosphorus is supplied to or transported 
by the river. 

CoNCLUSION 

The methods presented in this paper (the seasonal Kendall 
test for trend, the seasonal Kendall slope estimator, and flow 
adjustment coupled with the seasonal Kendall test) are 
intended to be exploratory methods for identifying and 
quantifying changes in water quality time series. Together 
they provide means of identifying data sets where significant 
monotonic changes are occurring in the water quality varia­
bles of interest or where changes are occurring in the 
relationship between the variable and discharge. In addition, 
they provide an estimate of the magnitude of the trend over 
the period of record. These techniques are not a substitute 
for individualized analysis of the processes occurring at a 
station and in its basin. They are also not a substitute for 
visual examination of plots of the time series and other 
associated time series. It should be noted, however, that 
where considerable seasonality and/or skewness is present, 
it is not uncommon for the conclusions of subjective exami­
nation of the data to be substantially different from the 
conclusions arrived at from these procedures. This is proba­
bly due to the tendency for the observer to concentrate more 
on the extreme values of the series rather than on more 
subtle but regular trends in the bulk of the values nearer to 
the mean. As the number and length of water quality time 
series grows, it is desirable to have a set of objective 
automatic procedures that are reasonably powerful over a 
wide range of situations for identifying trends. We believe 
that the methods presented are useful and appropriate for 
this purpose. 
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