January 29, 2018

Mr. Todd Mathes Benderson Corporation 8441 Cooper Creek Blvd. University Park, FL 34201

Re.: University Town Center: Surface & Ground Water Quality Monitoring 2017 Annual Report

Dear Mr. Mathes,

GHS Environmental (GHS) was contracted to conduct the ongoing surface water and groundwater quality monitoring programs for the University Town Center development in Sarasota County for 2017. All sampling events were conducted pursuant to "Exhibit G" of the Development of Regional Impact as provided by Benderson. This report includes the summary of services provided with a preliminary assessment of water quality as part of compliance with the reporting requirements.

Please review the attached report and other supporting documentation. If there are any questions regarding the submitted materials, please contact us at your convenience.

Sincerely yours,

GHS Environmental

Dana J. Gaydos

Principal

2017

Annual Monitoring Report for University Town Center

for the

University Town Center in Sarasota County, FL

Prepared for the

Benderson Corporation 8441 Cooper Creek Blvd. University Park, FL 34201 **Prepared by:**

GHS Environmental
PO Box 55802
St. Petersburg, FL 33732

January 2018

Table of Contents

_			<u>age</u>
		ummary	
1.0		luction	
2.0		ce Water Quality Monitoring	
	2.1	Methodology	. 3
	2.2	Sampling Schedule	
	2.3	Sample Locations and Collection	. 3
	2.4	Water Quality Parameters	. 3
	2.5	Water Quality Results	. 5
		2.5.1 Surface Water Flow	. 5
		2.5.2 Field Parameters	. 6
		2.5.3 Oxygen Demand and Related Parameters	
		2.5.4 Macronutrients	
		2.5.5 Bacteriological Parameters	
		2.5.6 Trace Elements	
		2.5.7 Chlorinated Hydrocarbons	
3.0	Grour	ndwater Quality Monitoring	
0.0	3.1	Methodology	
	3.2	Sampling Schedule	
	3.3	Sample Locations and Collection	12
	3.4	Water Quality Parameters	
	3.5	Water Quality Results	12
	3.3	3.5.1 Surficial Aquifer Groundwater Elevations	
		3.5.2 Field Parameters	
		3.5.3 Oxygen Demand and Related Parameters	
		3.5.4 Macronutrients	
		3.5.5 Bacteriological Parameters	
		3.5.6 Trace Elements	
4.0	Concl	usions	18
		List of Tables	
Table	1	Surface Water Depth and Stream Flow Summary	. 6
Table		Surface Water Field Parameter Summary	
Table	3	Surface Water Surface Water Depth and Stream Flow Summary	
Table		Surface Water Macronutrient Summary	
Table		Surface Water Bacteriological Summary	
Table		Surface Water Trace Element Summary	
Table		Surface Water Chlorinated Hydrocarbons Summary	
Table		Groundwater Elevation Summary	
Table		Groundwater Field Parameter Summary	
Table		Groundwater Oxygen Demand and Related Parameters Summary	
Table		Groundwater Macronutrient Summary	
Table		Groundwater Bacteriological Summary	
Table		Groundwater Trace Element Summary	
IONE	IV.	MIDUIDWAIGH HAGE EIGHIGH DUHHHAIV	1 /

University Town Center: Surface & Ground Water Monitoring 2017 Annual Monitoring Report January 2018

List of Figures

Figure 1.	Station Locations	for the Universi	ty Town (Center (fka	Sarasota	Interstate	Park
	of Commerce						4

List of Appendices

Appendix A Laboratory Results

Executive Summary

This Annual Surface Water and Groundwater Monitoring Report presents the results of the surface water and groundwater quality monitoring conducted during 2017 at the University Town Center. GHS Environmental (GHS) was contracted to conduct the ongoing surface water and groundwater quality monitoring programs for the University Town Center (formerly known as Sarasota Interstate Park of Commerce (SIPOC) located in Sarasota County. Surface water quality/quantity and groundwater quality monitoring has been conducted pursuant to "Exhibit G" of the Development of Regional Impact (DRI) as provided by Benderson. This report summarizes the monitoring that was performed as part of the Surface Water and Groundwater Quality Monitoring Plan for the site as required by the Development Order.

The surface water monitoring is divided into two (2) quarterly and two (2) semi-annual sampling events. The quarterly (Quart) sampling events were conducted on June 19, 2017 and December 6, 2017. The semi-annual (SA) sampling events were conducted on March 23, 2017 and September 28, 2017.

The groundwater monitoring was conducted on March 23, 2017 for the dry season sampling event and September 19, 2017 for the wet season sampling event. Both monitoring wells were sampled successfully for both sampling events and were submitted to the laboratory for analysis.

Based on review of the laboratory analysis, no significant changes were seen during the 2017 monitoring period. Several exceedances of the acceptable criteria occurred in both the surface water and groundwater parameters. However, similar exceedances have been seen during previous years of monitoring and are not considered a concern with respect to the University Town Center.

1.0 Introduction

The University Town Center is located to the southwest of the intersection of I-75 and University Parkway (SR610) between the cities of Sarasota and Bradenton. The property currently includes a major commercial shopping center that parallels I-75 on the western side of the property.

The University Town Center is being developed in multiple phases and is considered, at this time, to be only partially finished as future plans and developments continue to change with economic patterns. The commercial shopping mall located on the northwestern corner of the development was completed in 2006 through 2008. The regional mall, major hotels, additional outparcel shops, and housing are steadily being completed.

2.0 Surface Water Quality Monitoring

2.1 Methodology

The methodology for the 2017 surface water monitoring is based on the approved water quality monitoring plan "Exhibit G" of the Development of Regional Impact (DRI). The monitoring plan targets potential contaminants directly associated with construction equipment and practices, but monitoring can be used to assess broad-scale, continuous and/or long-term changes in water quality that might result from development. Surface water monitoring has been performed continuously since 2003.

At each station, grab samples are collected at mid-depth and approximately mid-stream, when the sampling site is inundated with surface water that is at least one inch (1") in depth and when flow can be measured. In situ measurements of dissolved oxygen, pH, air temperature, water temperature, and specific conductance are performed in the field using a YSI Pro Plus Multi-Parameter Water Quality Meter that is calibrated according to the manufacturer's specifications prior to deployment in the field. Turbidity is measured by using a LaMotte 2020we Turbidity meter. Instantaneous flow measurements are determined at each surface water monitoring location at times of apparent flow. Flow is determined using a Marsh McBirney Flowmate 2000 flow meter or a Hach FH950 flow meter with measurements reported in units of cubic feet per second (cfs).

2.2 Sampling Schedule

The sampling schedule per Exhibit G has been reduced. The requirement of semi-annual sampling, during the wet season (June through September) and once during the dry season (October through May), will remain. The bimonthly sampling requirement was reduced to a quarterly frequency, allowing for the semi-annual to be on an evenly split timeline.

All four (4) monitoring events were performed during the 2017 monitoring period that consisted of two semi-annual events and two quarterly events. The quarterly (Quart) sampling events were conducted on June 16, 2017 and December 6, 2017. The semi-annual (SA) sampling events were conducted on March 23, 2017 and September 19, 2017.

2.3 Sample Locations and Collection

Per Exhibit G, two (2) surface water sampling locations are to be monitored. Locations for these surface water monitoring locations are provided in Figure 1 and represent the inflow (SW-1) and discharge (SW-2) locations of Cooper Creek onto and off of the project site.

2.4 Water Quality Parameters

Exhibit G contains a listing of field and laboratory parameters, which are analyzed for each sample. The following parameters are measured in the field at the time of sample collection:

Temperature Conductivity Turbidity

pH Dissolved Oxygen Stream Flow

In situ measurements of pH, water temperature, specific conductance, dissolved oxygen, and turbidity were collected using a YSI Pro Plus Multi-Parameter Water Quality Meter and a LaMotte 2020we Turbidity meter. Flow is determined using a Marsh McBirney Flowmate 2000 flow meter or a Hach FH950 flow meter with measurements reported in units of cubic feet per second (cfi). All field equipment was calibrated according to the manufacturer's specifications prior to deployment in the field.

A single grab sample (comprised of several sub-sample vessels) is collected at each monitoring location for laboratory analysis. The collected samples, if needed, are preserved in the field and taken to the laboratory for measurement of the following parameters:

Quarterly Parameters

Ammonia Nitrogen (mg/L)	Total Phosphorus (mg/L)
Nitrate Nitrogen (mg/L)	Total Suspended Solids (mg/L)
Nitrite Nitrogen (mg/L)	Biological Oxygen Demand
Total Kjeldahl Nitrogen (mg/L)	Fecal Coliform per 100 ml (MF)
Orthophosphate (mg/L)	Total Coliform per 100 ml (MF)

Semi-Annual Parameters* *in addition to the Quarterly Parameters

Oil & Grease Copper (mg/L) Chlorinated Hydrocarbon Pesticides Lead (mg/L) Arsenic (mg/L) Mercury (mg/L) Cadmium (mg/L) Nickel (mg/L) Chromium (mg/L) Zinc (mg/L)

Each sample collected for laboratory analysis was properly preserved and stored on ice until delivered to the laboratory for subsequent analysis. Field parameters, such as pH, conductivity, and air and water temperatures are measured in the field using FDEP Standard Operating Procedures (SOPs). The methods used in the collection, handling and storage of all samples are conducted in accordance with FDEP/USEPA/NELAP approved procedures and analysis of all water samples was conducted by a National Environmental Laboratory Accreditation Conference (NELAC) certified laboratory.

2.5 Water Quality Results

The surface water results from the 2017 monitoring period are summarized in the sections below. Results that were in exceedance of established maximums are highlighted in bolded, red text. Copies of the laboratory reports of analytical results for the surface water samples collected during the 2017 monitoring year are provided in Appendix A.

2.5.1 Surface Water Flow

Water depth, stream width and stream flow were measured at each station during the 2017 monitoring period and are summarized in Table 1. There was flow for the all four sampling events. Stream depth for 2017 ranged between 0.28 ft and 1.06 ft. The width of Cooper Creek ranged from 12 to 20 ft between the two surface water sampling locations with SW-2 generally being wider of the two locations. Both locations are channelized.

Stream flow was measured at all sampling locations that ha water depths greater than 1". The flow rate varied between sampling events with the highest flow of 17 cubic feet per

second (cfs) seen in the peak of the rainy season (September 2017 at SW-2) and the lowest flow of 0.04 cfs seen during the dry season (March 2017 at SW-2). The average flow for 2017 was 6.39 cfs between the two sampling stations.

Table 1. Surface Water Depth and Stream Flow Summary.

Depth & Flow	Date	Average Depth (ft)	Maximum Depth (ft)	Width (ft)	Maximum Flow Rate (ft/s)	Total Flow (cfs)
	3/23/2017	0.42	0.65	14	0.026	0.05
SW-1	6/19/2017	0.43	0.64	15	1.12	5.60
SW-1	9/28/2017	0.48	0.68	17	2.03	15.00
	12/6/2017	0.31	0.5	16	1.17	5.58
	3/23/2017	0.46	0.9	12	0.022	0.04
SW-2	6/19/2017	0.28	0.5	20	0.5	2.33
3W-2	9/28/2017	1.06	1.04	20	1.7	17.00
	12/6/2017	0.82	1.04	18	0.53	5.51
2017 Comprehensive	Min	0.28	0.50	12	0.022	0.04
	Max	1.06	1.04	20	2.03	17.00
	Avg	0.53	0.74	16.5	0.89	6.39

2.5.2 Field Parameters

Field parameters measured and recorded for the 2017 monitoring period include water and air temperature, pH, conductivity, and turbidity. Although not a physical parameter, total suspended solids is included in this section. Table 2 summarizes these parameters.

The air temperature ranged from 20.0°C to 30.2°C with an average of 24.8°C. The water temperature ranged from 19.5°C to 31.5°C with an average of 25.8°C.

The pH ranged from 7.84 to 8.44 with an average of 8.12. Cooper Creek continues through a large limestone and sand mine pit, which has been recently converted to a County Park. This remnant pit is deep into the limestone, and it is the connection to the limestone that is suspected to raise the pH to the reported levels.

The specific conductance of the surface water averaged 394 microhos per centimeter (µmhos/cm) and ranged from 351 to 441 µmhos/cm during the monitoring year.

Turbidity ranged between 1.08 and 3.16 NTU with an average of 1.77 NTU.

The total suspended solids ranged from 3.0 to 6.2 mg/L with an average of 4.3 mg/L. All of these parameters were below the Class III Surface Water Criteria.

Table 2. Surface Water Field Parameters Summary.

Parameter		Air Temperature (°C)	Water Temperature (°C)	pH (pH Units)	Specific Conductivity (µmhos/cm)	Turbidity (NTU)	Total Suspended Solids (mg/L)
FAC 62-302 C	riteria			6.5-8.5	± 50% to 1275	<29 NTU	
	3/23/2017	21.2	19.7	8.44	358	1.16	3.0
SW-1	6/19/2017	25.1	28.3	7.84	437	1.54	4.7
SW-1	9/28/2017	29.1	31.6	8.29	351	1.74	4.7
	12/6/2017	22.4	23.6	*	412	3.16	6.2
	3/23/2017	20.0	19.5	8.29	355	1.08	U
SW-2	6/19/2017	26.7	28.4	7.99	441	1.48	5.0
3W-2	9/28/2017	30.2	30.8	7.88	360	1.64	3.5
	12/6/2017	23.6	24.1	*	436	2.34	3.0
	Min	20.0	19.5	7.84	351	1.08	3.0
2017 Comprehensive	Max	30.2	31.6	8.44	441	3.16	6.2
	Avg	24.8	25.8	8.12	394	1.77	4.3

^{* -} Meter not functioning.

2.5.3 Oxygen Demand and Related Parameters

The DO concentration in the surface waters of Cooper Creek averaged 6.61 mg/L with a range of 1.54 mg/L to 11.42 mg/L. Both sampling locations exhibited DO concentrations that were lower than the Class III Surface Water Criteria (>5.0 mg/L) during the dry season of the 2017 monitoring period. These are highlighted in red and are bolded for reference. Past DO measurements historically have been below the Class III Surface Water Criteria. Low DO concentrations are associated with the decomposition of organic material and can be common in rivers, streams, wetlands and still waters.

Biochemical oxygen demand (BOD) was undetected in SW-2 for 2017 but was detected in the September and December events with a concentration of 2.6 mg/L during each event. The average concentration of BOD is 1.4 mg/L.

Table 3. Surface Water Oxygen Demand and Related Parameters Summary.

Parameter	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Biochemical Oxygen Demand (mg/L)	
FAC 62-302 Criteria		≥ 5.0 mg/L		
	3/23/2017	1.54	17.10	U
SW-1	6/25/2013**	4.58	59.3	U
JW-1	9/28/2017	11.42	155.2	2.6
	12/6/2017	9.95	117.9	2.6
	3/23/2017	1.56	17.3	U
SW-2	6/19/2017	3.12	41.2	U
SW-2	9/28/2017	11.07	148.7	U
	12/6/2017	9.65	113.5	U
	Min	1.54	17.1	U
2017 Comprehensive	Max	11.42	155.2	2.6
	Avg	6.61	83.8	1.4

U - Undetected. Indicates that the compound was analyzed for but not detected. xx.xx Highlighting shows parameters outside of Class III Surface Water Standards.

2.5.4 Macronutrients

Macronutrient parameters are summarized in Table 4. Ammonia nitrogen and nitrate/nitrate nitrogen was not consistently detected throughout 2017. Ammonia was detected once at the SW-2 location with a concentration of 0.13 mg/L.

Nitrate and nitrite detections was detected once at the SW-1 location with a concentration of 0.51 (I) mg/L. Total Kjeldahl Nitrogen (TKN) was detected during all events with concentrations ranging from 0.45 mg/L to 0.78 mg/L with an average of 0.65 mg/L between the two sampling locations.

Total Nitrogen is calculated by summing Ammonia, Nitrate, Nitrite and TKN concentrations. Total Nitrogen concentrations ranged from 0.57 mg/L to 1.30 mg/L with the average being 0.81 mg/L between the two sampling locations.

Orthophosphate was consistently detected in low concentrations at both sampling locations during the 2017 monitoring period. The maximum concentration was 1.30 mg/L at SW-1 during the September event. The average concentration between the two sampling locations was 0.81 mg/L.

Total Phosphorus is analyzed using a different laboratory technique. The mean detection limit (MDL) is significantly higher than that for orthophosphate, and because of this, total phosphorus generally trends to result in non-detection. There was only one detection in SW-1 during the March event with a concentration of 0.063 mg/L. This detection was qualified as the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit (PQL), which means that the parameter was detected but the numerical value cannot be reproduced consistently with a 95% confidence level.

Table 4. Surface Water Macronutrient Summary.

Parameter	Ammonia Nitrogen (mg/L)	Nitrate as N (mg/L)	Nitrite as N (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Total Nitrogen (mg/L)	Ortho- phosphate (mg/L)	Total Phosphorus (mg/L)	
FAC 62-302 Cr	iteria							
	3/23/2017	U	U	U	0.78	0.78	0.066	0.063 (I)
SW-1	6/19/2017	U	U	U	0.64	0.64	0.018	U
SW-1	9/28/2017	U	0.51 (I)		0.75	1.3	0.021	U
	12/6/2017	U	U	U	0.57	0.78	0.015	U
	3/23/2017	U	U	U	0.63	0.63	U	U
SW-2	6/19/2017	U	U	U	0.57	0.57	0.021	U
3W-2	9/28/2017	0.13	Į	J	0.78	0.78	0.035	U
	12/6/2017	U	U	U	0.45	0.96	0.018	U
	Min	U	U	U	0.45	0.57	U	U
2017 Comprehensive	Max	0.13	0.51 (I)	0.51 (I)	0.78	1.30	0.066	0.063 (I)
	Avg	0.027	0.14	0.14	0.65	0.81	0.025	0.029

I - The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

2.5.5 Bacteriological Parameters

Fecal and total coliform bacteria are regularly found present in samples collected from Cooper Creek. Bacteria results ranged widely during the 2017 monitoring period. Fecal coliform concentrations were low and were below the Class III Surface Water Standard. However, very high concentrations were reported for total coliform during the March event. In general, coliform concentration trends with rainfall. In review of local rainfall

U - Undetected.

records, the area received little rainfall during the months of January through June. The March event was conducted ten (10 days) following a single rain event of less than 1 inch. This rain event followed more 30 days of no rain. This is significant in relation to the coliform concentrations seen during the March event.

Table 5. Surface Water Bacteriological Summary.

		Fecal	Total		
Parameter	Coliform	Coliform			
i didilictei		(CFU/	(CFU/		
FAC 62-302 Cr	iteria	< 2	,400		
	3/23/2017	135 (B)	3,500 (2)		
SW-1	6/19/2017	U	2,400		
OW-1	9/28/2017	NA	NA		
	12/6/2017	U	80 (B)		
	3/23/2017	30 (B)	8,640 (1,B)		
SW-2	6/19/2017	U	2,000		
JW-2	9/28/2017	NA	NA		
	12/6/2017	10 (B)	100 (B)		
	Min	U	80 (B)		
2017 Comprehensive	Max	135 (B)	8,640 (1,B)		
	Avg	28	2,787		

B - Results based upon colony counts outside the acceptable range.

NA - Not Analyzed.

- U Undetected.
- 1 False positive.
- 2 Positive for E. Coli.

2.5.6 Trace Elements

Table 6 summarizes the detections of trace elements found in Cooper Creek. Trace elements are sampled as part of the semi-annual analysis and were analyzed for during the March and September events. There was a third analysis conducted in December also that was not required but was conducted due to mistake at the laboratory remaining from 2016. Trace elements that were not detected include cadmium, chromium, lead, mercury, and nickel. Oil and grease was not detected in 2017.

Arsenic has been historically detected and was detected at low concentrations during the 2017 monitoring period. Arsenic ranged 0.0017 mg/L to a maximum of 0.0041 mg/L. All detections of arsenic were qualified between the mean detection limit (MDL) and practical quantification limit (PQL) meaning that the detection is real but the numeric value cannot be confirmed.

Copper is historically detected and is a common byproduct of gasoline combustion. Copper concentrations ranged between 0.0018 mg/L (I) to 0.0053 mg/L (I) with an average of 0.0036 mg/L between the two monitoring locations. Please note results qualified with an "I" were between the laboratory method detection limit and the laboratory practical quantitation limit and cannot be reproduced consistently within the laboratory.

Zinc is also historically detected and is a common byproduct of gasoline combustion. There were two detections of zinc during the 2017 monitoring period. The first detection was in SW-1 during the September event with a concentration of 0.010 mg/L (I), and the second detection was in SW-2 during the December event with a concentration of 0.0076

mg/L (I). The average concentration of zinc between the two monitoring locations was 0.0044 mg/L. Please note results qualified with an "I" were between the laboratory method detection limit and the laboratory practical quantitation limit and cannot be reproduced consistently within the laboratory.

Table 6. Surface Water Trace Element Summary.

Parameter		Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (µg/L)	Mercury (µg/L)	Nickel (mg/L)	Zinc (mg/L)	HEM - Oil & Grease (mg/L)
FAC 62-302 Cr	iteria					≤ 5.3 µg/L				
	3/23/2017	0.0017 (I)	U	U	0.0040 (I)	U	U	U	U	U
SW-1	6/19/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA
OW-1	9/28/2017	0.0022 (I)	U	U	0.0018 (I)	U	U	U	0.010 (I)	U
	12/6/2017	0.0032 (I)	U	U	0.0038 (I)	U	U	U	U	NA
	3/23/2017	0.0027 (I)	U	U	0.0053 (I)	U	U	U	U	7.2
SW-2	6/19/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA
OW-2	9/28/2017	0.0035 (I)	U	U	0.0022 (I)	U	U	U	U	2.0 (I)
	12/6/2017	0.0041 (I)	U	U	0.0042 (I)	U	U	U	0.0076 (I)	NA
	Min	0.0017 (I)	U	U	0.0018 (I)	U	U	U	O	U
2017 Comprehensive	Max	0.0041 (I)	-	-	0.0053 (I)	-	-	-	0.010 (I)	7.2
	Avg	0.0029	-	-	0.0036	-	-	-	0.0044	2.8

I - The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

2.5.7 Chlorinated Hydrocarbons

Chlorinated Hydrocarbons are sampled as part of the semi-annual analysis and were analyzed for during the March and September events. Due to a left over note in the laboratory system, a third analysis was conducted for no additional charge. With the additional sampling in 2016 and 2017, a trend has not been seen. Although there were a few parameters detected in 2016 with qualifiers, there are no parameters detected in 2017.

NA - Not analyzed.

U - Undetected. Indicates that the compound was analyzed for but not detected.

Table 7. Surface Water Chlorinated Hydrocarbons Summary.

Barrage et au	SV	V-1	SW-2		
Parameter	3/23/2017	9/28/2017	3/23/2017	9/28/2017	
4,4'-DDD	U	U	U	U	
4,4'-DDE	U	U	U	U	
4,4'-DDT	U	U	U	U	
Aldrin	U	U	U	U	
alpha-BHC	U	U	U	U	
beta-BHC	U	U	U	U	
Chlordane	U	U	U	U	
delta-BHC	U	U	U	U	
Dieldrin	U	U	U	U	
Endosulfan I	U	U	U	U	
Endosulfan II	U	U	U	U	
Endosulfan sulfate	U	U	U	U	
Endrin	U	U	U	U	
Endrin aldehyde	U	U	U	U	
Endrin ketone	U	U	U	U	
Heptachlor	U	U	U	U	
Heptachlor epoxide	U	U	U	U	
Lindane	U	U	U	U	
Methoxychlor	U	U	U	U	
Toxaphene	U	U	U	U	

3.0 Groundwater Quality Monitoring

3.1 Methodology

The methodology for the 2017 groundwater monitoring is based on Exhibit G of the DRI. Prior to collecting groundwater samples, each monitor well was purged according the Florida Department of Environmental Protection (FDEP) Standard Operating Procedures (SOP) FS 2000 "Groundwater Sampling" dated March 31, 2008 (effective 12/3/08). Each well was purged using a 12 Volt DC submersible pump that was equipped with dedicated 3/8-inch diameter polyethylene tubing. At each well, the pump was decontaminated using Alconox with de-ionized water, and new tubing was used to sample each well to avoid cross-contamination of samples.

Field parameters were recorded during purging using a YSI Pro multi-parameter probe with a flow cell and a LaMotte 202we turbidity meter. The field parameters collected include depth to water, pH, temperature, specific conductance, dissolved oxygen, turbidity, color, and odor. Each of these instruments was calibrated according to the manufacturer's specifications prior to use in the field.

Once these parameters stabilized as outlined in SOP FS 2000, purging was considered complete. Sampling was initiated by disconnecting the flow cell, and groundwater was collected directly from the polyethylene tubing at the discharge end of the submersible pump.

The groundwater samples were packed on ice and transported to a Florida Department of Environmental Protection NELAC-certified laboratory (NELAC Certification # E82535, E84589).

3.2 Sampling Schedule

Semi-annual groundwater monitoring events are to be conducted in conjunction with the surface water monitoring event once during the dry season (November-May) and once during the wet season (June-September). Two monitoring events were performed during the 2017 monitoring period. One event was conducted during the dry season (March 23, 2017), and one event was conducted during the wet season (September 19, 2017).

3.3 Sample Locations and Collection

Per Exhibit G, two (2) groundwater monitoring wells are monitored for groundwater depth and are identified in included Figure 1. Both wells were successfully purged and sampled during both sampling events.

3.4 Water Quality Parameters

The monitoring plan contains a listing of field and laboratory parameters, which are analyzed for each sample. The following parameters are measured in the field at the time of sample collection:

Temperature Conductivity Turbidity pH Dissolved oxygen Color & Odor

Per Exhibit G, the following are groundwater quality parameters analyzed after completing proper purging for each semi-annual monitoring event:

Ammonia Nitrogen (mg/L) Total Suspended Solids (mg/L) Nitrate Nitrogen (mg/L) Oil & Grease Nitrite Nitrogen (mg/L) Arsenic (mg/L) Total Nitrogen (mg/L) Cadmium (mg/L) Total Kieldahl Nitrogen (mg/L) Chromium (mg/L) Orthophosphate (mg/L) Copper (mg/L) Total Phosphorus (mg/L) Lead (mg/L) Biological Oxygen Demand Mercury (mg/L) Fecal Coliform per 100 ml (MF) Nickel (mg/L) Total Coliform per 100 ml (MF) Zinc (mg/L)

Each sample collected for laboratory analysis was properly preserved and stored on ice until delivered to the laboratory for subsequent analysis. Field parameters, such as water level, pH, conductivity, and air and water temperatures are measured in the field using FDEP Standard Operating Procedures (SOPs). The methods used in the collection, handling and storage of all samples are conducted in accordance with FDEP/USEPA/NELAP approved procedures and analysis of all water samples was conducted by a National Environmental Laboratory Accreditation Conference (NELAC) certified laboratory.

3.5 Water Quality Results

The ground water results from the 2017 monitoring period are summarized in the sections below. Results that were in exceedance of established maximums are highlighted in bolded, red text. Copies of the laboratory reports of analytical results for the ground water samples collected during the 2017 monitoring year are provided in Appendix A.

3.5.1 Surficial Aquifer Groundwater Elevations

Surficial aquifer groundwater elevations measured during the 2017 monitoring period are summarized in Table 8. Purging of both monitor wells, GW-1 and GW-2, were completed successfully, and samples were collected for analysis. The reported groundwater elevations is in feet below ground surface and is not referenced to any specific vertical datum. This data cannot be used to assess surficial groundwater flow in a specific direction.

Table 8. Groundwater Elevation Summary.

	Depth to	Water (ft)
Location	Dry Season	Wet Season
	3/17/2017	9/27/2017
GW-1	5.45	3.13
GW-2	6.22	4.21

3.5.2 Field Parameters

Field parameters measured and recorded for the 2017 monitoring period include water, pH, conductivity, dissolved oxygen (DO), and turbidity. Table 9 summarizes these parameters for the 2017 monitoring period.

The water temperature ranged from 20.5 to 25.8°C with an average of 23.7°C. The pH ranged from 6.52 to 8.34 with an average of 7.04. The slightly higher pH values are presumed to be due to the meter not functioning properly.

The specific conductance of the surficial aquifer varies significantly between the two monitoring wells. GW-1 had an average specific conductance of 109 micromhos per centimeter (μ mhos/cm); while GW-2 had 770 μ mhos/cm during 2017 monitoring period. These averages follow historical trends where GW-2 has higher conductivity values in general.

Turbidity ranged between 0.45 and 2.26 NTU between the two monitoring locations. The average was 0.99 NTU. All of these parameters are within the drinking water standards outlined in Ch. 62.550 F.A.C.

The total dissolved solids ranged from 240 mg/L to 960 mg/L with an average of 615 mg/L. The values from GW-2 are above the drinking water standard. However, the conductivity and total dissolved solids are relative to each other, and both have historically been high being attributed with the location of UTC being within close proximity to the Gulf of Mexico.

Table 9. Groundwater Field Parameter Summary.

Parameter		Water Temperature (°C)	pH (pH Units)	Specific Conductivity (µmhos/cm)	Turbidity (NTU)	Total Dissolved Solids (mg/L)
FAC 62-550 Cri	iteria		6.5 - 8.5		< 20 NTU	< 500 mg/L
GW-1	3/17/2017	20.5	7.69	97	2.26	240
GW-1	9/27/2017	25.7	6.52	121	0.45	960
GW-2	3/17/2017	22.9	8.34*	864	0.70	410
GW-Z	9/27/2017	25.8	6.90	675	0.53	850
	Min	20.5	6.52	97	0.45	240
2017 Comprehensive	Max	25.8	8.34*	864	2.26	960
	Avg	23.7	7.04	439	0.99	615

xx.xx Highlighting shows parameters outside of Class III SW Standards.

3.5.3 Oxygen Demand and Related Parameters

The dissolved oxygen (DO) concentration in the surficial aquifer groundwater of UTC during the 2017 monitoring period averaged 1.00 mg/L with a range from 0.52 to 0.1.97 mg/L. DO concentrations are historically low and are not of concern with respect to the development at UTC. The biochemical oxygen demand (BOD) was not detected at both monitoring locations. The results for these analyses are summarized in Table 10.

^{*} Meter not functioning correctly.

Table 10. Groundwater Oxygen Demand and Related Parameters Summary.

Parameter		Dissolved Oxygen (mg/L)	Biochemical Oxygen Demand (mg/L)
FAC 62-550 Cr	iteria		
GW-1	3/17/2017	0.52	U
GW-1	9/27/2017	0.80	U
GW-2	3/17/2017	1.97	U
GW-2	9/27/2017	0.72	U
	Min	0.52	U
2017 Comprehensive	Max	1.97	
	Avg	1.00	

U - Undetected.

3.5.4 Macronutrients

Table 11 summarized the concentrations of macronutrients during the 2017 monitoring period. Ammonia nitrogen was detected at both groundwater locations. Ammonia ranged from 0.06 mg/L (I) to 0.571 mg/L with an average of 0.35 mg/L. Nitrate and nitrite was undetected at both locations. Total Kjeldahl Nitrogen (TKN) levels ranged from 0.18 mg/L (I) to 1.6 mg/L with an average of 0.87 mg/L. Total Nitrogen concentrations had the same range from 0.18 to 1.6 mg/L with an average of 0.87 mg/L. All nitrogen related parameters were reported in very low concentrations with all averages being below 1 mg/L, which is well below the drinking water standard of 10 mg/L.

Orthophosphate concentrations ranged between 0.021 mg/L to 0.068 mg/L with an average of 0.055 mg/L. Total phosphorus was detected once in SW-2 during the September event.

Table 11. Groundwater Macronutrient Summary.

Parameter		Ammonia Nitrogen (mg/L)	Nitrate + Nitrite (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Total Nitrogen (mg/L)	Ortho- phosphate (mg/L)	Total Phosphorus (mg/L)
FAC 62-550 Cri	iteria						
GW-1	3/17/2017	0.06 (I)	U	0.18 (I)	0.18	0.021	U
GW-1	9/27/2017	0.23	U	0.49	0.49	0.068	U
GW-2	3/17/2017	0.55	0	1.2 (J4)	1.2	0.061	U
GW-2	9/27/2017	0.57	U	1.6	1.6	0.068	0.067 (I)
	Min	0.06 (I)	C	0.18 (I)	0.18	0.021	U
2017 Comprehensive	Max	0.57	-	1.6	1.6	0.068	0.067 (I)
1. The annual order is both	Avg	0.35	-	0.87	0.87	0.055	0.034

I - The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

3.5.5 Bacteriological Parameters

Fecal coliform bacteria were not detected at GW-1 or GW-2 during the 2017 monitoring period. Total coliform bacteria was not detected at GW-1 the 2017 monitoring period; however, total coliform was detected in GW-2 during the September event with a concentration of 600 CFU/100 mL. There have been high counts of bacteria historically in both of these monitoring wells. GW-2 has been observed to have frogs and various beetle type of bugs living in the well casing as well as being in the well itself. Fecal and total coliform bacteria detections are summarized in Table 12.

J4 - Estimated result.

U - Undetected.

Table 12. Groundwater Bacteriological Summary.

		Fecal	Total
Parameter		Coliform	Coliform
i didilictei		(CFU/	(CFU/
		100 mL)	100 mL)
FAC 62-550 Cr	iteria	<	:1
GW-1	3/17/2017	U	U
GW-1	9/27/2017	U	U
GW-2	3/17/2017	U	U
GW-2	9/27/2017	U	600
	Min	U	U
2017 Comprehensive	Max	-	U
	Avg	-	-

U - Undetected.

3.5.6 Trace Elements

Table 13 summarizes the detections of trace elements found in the surficial aquifer groundwater. Cadmium, chromium, lead, mercury and nickel was not detected during the 2017 monitoring period.

Arsenic was detected at both sampling locations during the 2017 monitoring period. Detections ranged from 0.0020 to 0.0079 mg/L, with an average of 0.0052 mg/L. All detections were below the drinking water standard of 0.01 mg/L. All detected values of arsenic were between the mean detection limit (MDL) and the practical quantitation limit (PQL), which signifies that the detection is valid but the numerical value associated with the detection is not at a 95% confidence level. These detections are attributed to naturally occurring arsenic in the surficial aquifer, which is mobilized with lower pH values.

Copper was detected during the 2017 monitoring period. Copper was not detected at GW-1, but it was detected at GW-2 during both sampling events. GW-2 detections ranged from 0.0033 to 0.0037 mg/L. All detected values of arsenic were between the mean detection limit (MDL) and the practical quantitation limit (PQL), which signifies that the detection is valid but the numerical value associated with the detection is not at a 95% confidence level. The overall average for copper was 0.0020 mg/L for both monitoring locations, which is significantly below the drinking water standard of 1 mg/L.

Zinc was detected at both sampling locations during the 2017 monitoring period. Detections ranged from being undetected in GW-1 in the March event to 0.018 mg/L, with an average of 0.012 mg/L between both monitoring locations, which is significantly below the drinking water standard of 5 mg/L.

Oil & Grease was detected in GW-2 during the March sampling event in during the September event with a concentration of 24 mg/L. Then it was detected in GW-1 during the September event with a concentration of 6.6 mg/L. The overall average was 8.0 mg/L between the monitoring locations for the 2017 period.

University Town Center: Surface & Ground Water Monitoring 2017 Annual Monitoring Report January 2018

Table 13. Groundwater Trace Element Summary.

Paramete	er	Arsenic as As (mg/L)	as Cd	Chromium as Cr (mg/L)	Copper as Cu (mg/L)	Lead (µg/L)	Mercury as Hg (µg/L)	Nickel as Ni (mg/L)	Zinc (mg/L)	Oil & Grease (mg/L)
FAC 62-550 C	riteria	0.01 mg/L	0.005 mg/L	0.1 mg/L	1 mg/L	≤ 5.3 µg/L	0.002 mg/L	0.1 mg/L	5 mg/L	
GW-1	3/17/2017	0.0020 (I)	U	U	U	U	U	U	U	U
GW-1	9/27/2017	0.0057 (I)	U	U	U	U	U	U	0.015	6.6
GW-2	3/17/2017	0.0053 (I)	U	U	0.0033 (I)	U	U	U	0.013	24
GW-2	9/27/2017	0.0079 (I)	U	U	0.0037 (I)	U	U	U	0.018	U
	Min	0.0020 (I)	U	U	U	U	U	U	U	U
2017 Comprehensive	Max	0.0079 (I)	-	-	0.0037 (I)	-	-	U	0.018	24.0
	Avg	0.0052	-	-	0.0020	-	-	-	0.012	8.0

I - The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U - Undetected. Indicates that the compound was analyzed for but not detected.

4.0 Conclusions

No significant changes were seen during the 2017 monitoring period. There were only three (3) parameters that exceeded the acceptable criteria in the surface water and groundwater parameters. Both of these parameters are considered to aesthetic standards versus public health standards. Similar exceedances have been seen historically and are not considered a concern with respect to the construction of the University Town Center (UTC).


The parameters exceeding the surface water criteria during the 2017 monitoring period included dissolved oxygen (DO). The dissolved oxygen concentrations were below the acceptable criteria of 5 mg/L during the majority of the sampling events. Low dissolved oxygen values (<5.0 mg/L) are associated with the decomposition of organic material and are common in wetlands and still waters. Historically, Cooper Creek has had low DO concentrations, and values measured during 2017 do not raise concern with respect to the University Town Center.

The two (2) parameters exceeding the groundwater criteria during the 2017 monitoring period was total dissolved solids and total coliform bacteria. The total dissolved solids is related to the specific conductivity and is presumed to be related to a drier rain year as well as UTC's location close to the Gulf of Mexico. Total coliform has been seen historically in the monitor wells and is not of concern to development.

Data has been collected since 2003 and has reviewed on an annual basis. GHS recommends that all data be thoroughly reviewed for any short-term or long-term trends if found.

APPENDIX A Laboratory Results

April 5, 2017

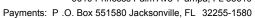
Dana Gaydos Gaydos Hydro Services PO Box 55802 Saint Petersburg, FL 33732

RE: Workorder: T1705067 UTC SW

Dear Dana Gaydos:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, March 23, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

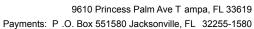

Sincerely,

Michael Cammarata MCammarata@AELLab.com

Enclosures

Report ID: 477847 - 403528 Page 1 of 16

SAMPLE SUMMARY


Workorder: T1705067 UTC SW

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1705067001	SW-2	Water	3/23/2017 09:35	3/23/2017 13:30
T1705067002	SW-1	Water	3/23/2017 10:30	3/23/2017 13:30

Report ID: 477847 - 403528 Page 2 of 16

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

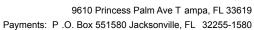
Workorder: T1705067 UTC SW

Report ID: 477847 - 403528

Date Received: 03/23/17 13:30 Lab ID: T1705067001 Matrix: Water

SW-2 Date Collected: 03/23/17 09:35 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SW-8	46 3010A				
Analysis,Water	Ana	lytical Me	ethod: SW-846	6010				
Arsenic	0.0027	1	mg/L	1	0.010	0.0016	3/28/2017 15:20	Т
Cadmium	0.00024	Ū	mg/L	1	0.00090	0.00024	3/28/2017 15:20	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	3/28/2017 15:20	Т
Copper	0.0053	I	mg/L	1	0.0080	0.00084	3/28/2017 15:20	Т
Lead	0.0032	U	mg/L	1	0.010	0.0032	3/28/2017 15:20	Т
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	3/28/2017 15:20	Т
Zinc	0.0020	U	mg/L	1	0.010	0.0020	3/28/2017 15:20	Т
Analysis Desc: SW846 7470A	Prep	paration I	Method: SW-8	46 7470A				
Analysis,Water	Ana	lytical Me	ethod: SW-846	6 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	3/28/2017 13:05	Т
Wercury	0.000030	Ū	ilig/L	•	0.00010	0.000030	3/20/2017 13:03	'
Microbiology								
Analysis Desc: Total	Ana	lytical Me	ethod: SM 922	2 B (MF)				
Coliform,SM9222B,Water								
Coliform Total confirmed as non coliform	8640	1,B	#/100 mL	91	91	91	3/23/2017 18:12	Т
Analysis Desc: Fecal Coliform	Ana	lytical Me	ethod: SM 922	2D				
MF,SM9222D,Water								
Coliform Fecal	30	В	#/100 mL	10	10	10	3/23/2017 15:30	Т
SEMIVOLATILES								
Analysis Desc: E608 Analysis, Water	Prer	naration N	Method: EPA 6	S08/608 2				
Analysis Desc. E000 Analysis, water	·							
			ethod: EPA 60	8/608.2				
4,4`-DDD	0.0024	U	ug/L	1	0.020	0.0024	3/31/2017 00:55	М
4,4`-DDE	0.0016	U	ug/L	1	0.020	0.0016	3/31/2017 00:55	M
4,4`-DDT	0.0030 0.0020	U U	ug/L	1 1	0.020 0.020	0.0030 0.0020	3/31/2017 00:55 3/31/2017 00:55	M M
Aldrin Aroclor 1016 (PCB-1016)	0.0020	U	ug/L ug/L	1	0.020	0.0020	3/31/2017 00:55	M
Aroclor 1010 (PCB-1010) Aroclor 1221 (PCB-1221)	0.13	U	ug/L ug/L	1	0.20	0.13	3/31/2017 00:55	M
Aroclor 1232 (PCB-1232)	0.13	Ü	ug/L ug/L	1	0.20	0.13	3/31/2017 00:55	M
Aroclor 1242 (PCB-1242)	0.17	Ü	ug/L	1	0.20	0.17	3/31/2017 00:55	M
Aroclor 1248 (PCB-1248)	0.15	Ū	ug/L	1	0.20	0.15	3/31/2017 00:55	М
Aroclor 1254 (PCB-1254)	0.040	U	ug/L	1	0.20	0.040	3/31/2017 00:55	М
Aroclor 1260 (PCB-1260)	0.020	U	ug/L	1	0.20	0.020	3/31/2017 00:55	М
	0.020	•	ug/L		0.20	0.020	3/31/2017 00.33	171

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Page 3 of 16

Adjusted

Adjusted

Phone: (813)630-9616 Fax: (813)630-4327

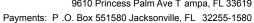
ANALYTICAL RESULTS

Workorder: T1705067 UTC SW

Date Received: 03/23/17 13:30 Lab ID: T1705067001 Matrix: Water

SW-2 Date Collected: 03/23/17 09:35 Sample ID:

Sample Description: Location:


Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dieldrin	0.0016	U	ug/L	1	0.020	0.0016	3/31/2017 00:55	M
Endosulfan I	0.0016	U	ug/L	1	0.020	0.0016	3/31/2017 00:55	M
Endosulfan II	0.0013	U	ug/L	1	0.020	0.0013	3/31/2017 00:55	M
Endosulfan Sulfate	0.0017	U	ug/L	1	0.020	0.0017	3/31/2017 00:55	M
Endrin	0.0025	U	ug/L	1	0.020	0.0025	3/31/2017 00:55	M
Endrin Aldehyde	0.0048	U	ug/L	1	0.020	0.0048	3/31/2017 00:55	M
Heptachlor	0.0013	U	ug/L	1	0.020	0.0013	3/31/2017 00:55	M
Heptachlor Epoxide	0.00080	U	ug/L	1	0.020	0.00080	3/31/2017 00:55	M
Methoxychlor	0.0053	U	ug/L	1	0.020	0.0053	3/31/2017 00:55	M
Toxaphene	0.064	U	ug/L	1	0.20	0.064	3/31/2017 00:55	M
alpha-BHC	0.0041	U	ug/L	1	0.020	0.0041	3/31/2017 00:55	M
beta-BHC	0.0071	U	ug/L	1	0.020	0.0071	3/31/2017 00:55	M
delta-BHC	0.0056	U	ug/L	1	0.020	0.0056	3/31/2017 00:55	M
gamma-BHC (Lindane)	0.0046	U	ug/L	1	0.020	0.0046	3/31/2017 00:55	M
Tetrachloro-m-xylene (S)	88		%	1	44-124		3/31/2017 00:55	
Decachlorobiphenyl (S)	82		%	1	48-137		3/31/2017 00:55	
WET CHEMISTRY								
Analysis Desc: Oil & Grease,EPA1664A (HEM),Water	Anal	ytical Me	thod: EPA	1664 A				
Oil & Grease (HEM)	7.2		mg/L	1	4.0	1.3	3/28/2017 12:30	М
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	350.1				
Ammonia (N)	0.02	U	mg/L	1	0.10	0.02	3/29/2017 10:48	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration N	Method: Co	pper Sulfate Dige	estion			
	Anal	ytical Me	thod: EPA	351.2				
Total Kjeldahl Nitrogen	0.63		mg/L	1	0.20	0.075	3/27/2017 16:11	Т
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	thod: EPA	365.1				
Orthophosphate	0.0090	U	mg/L	1	0.010	0.0090	3/24/2017 11:57	Т
Analysis Desc: Total	Prep	aration N	Method: Co	pper Sulfate Dige	estion			
Phosphorus,E365.4,Analysis	Anal	ytical Me	thod: EPA	365.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	3/27/2017 16:11	Т
Analysis Desc: TSS,SM2540D,Water	Anal	ytical Me	ethod: SM	2540D				
Total Suspended Solids	1.0	U	mg/L	1	1.0	1.0	3/28/2017 09:52	Т

Report ID: 477847 - 403528 Page 4 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1705067 UTC SW

Date Received: 03/23/17 13:30 Matrix: Lab ID: T1705067001 Water

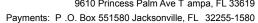
SW-2 Date Collected: 03/23/17 09:35 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	ethod: SM	1 4500NO3-F				
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	3/28/2017 15:04	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM	1 5210B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	3/23/2017 19:29	T

T1705067002 Date Received: 03/23/17 13:30 Water Lab ID: Matrix:

Date Collected: 03/23/17 10:30 Sample ID: SW-1


Sample Description:				Location:				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water	'		Method: SW-ethod: SW-84					
Arsenic Cadmium Chromium Copper Lead Nickel Zinc Analysis Desc: SW846 7470A Analysis,Water	•		mg/L mg/L mg/L mg/L mg/L mg/L mg/L Wethod: SW-84		0.010 0.00090 0.0020 0.0080 0.010 0.0090 0.010	0.0016 0.00024 0.0020 0.00084 0.0032 0.0044 0.0020	3/28/2017 15:24 3/28/2017 15:24 3/28/2017 15:24 3/28/2017 15:24 3/28/2017 15:24 3/28/2017 15:24 3/28/2017 15:24	T T T T T
Mercury Microbiology	0.000050	U	mg/L	1	0.00010	0.000050	3/28/2017 13:05	Т
Analysis Desc: Total Coliform,SM9222B,Water	Anal	ytical Me	ethod: SM 92	22 B (MF)				
Coliform Total posive for E. coli	3500	2	#/100 mL	100	100	100	3/23/2017 18:12	Т
Analysis Desc: Fecal Coliform MF,SM9222D,Water	Anal	ytical Me	ethod: SM 92	22D				
Coliform Fecal	135	В	#/100 mL	9	9	9	3/23/2017 15:30	Т

Report ID: 477847 - 403528 Page 5 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

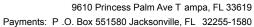
ANALYTICAL RESULTS

Workorder: T1705067 UTC SW

Date Received: 03/23/17 13:30 Lab ID: T1705067002 Matrix: Water

Date Collected: 03/23/17 10:30 Sample ID: SW-1

Sample Description: Location:


Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: E608 Analysis, Water	Prep	paration I	Method: EP	A 608/608.2				
	Ana	lytical Me	ethod: EPA	608/608.2				
4,4`-DDD	0.0024	U	ug/L	1	0.020	0.0024	3/31/2017 01:16	М
4,4`-DDE	0.0016	U	ug/L	1	0.020	0.0016	3/31/2017 01:16	М
4,4`-DDT	0.0030	U	ug/L	1	0.020	0.0030	3/31/2017 01:16	M
Aldrin	0.0020	U	ug/L	1	0.020	0.0020	3/31/2017 01:16	M
Aroclor 1016 (PCB-1016)	0.15	U	ug/L	1	0.20	0.15	3/31/2017 01:16	M
Aroclor 1221 (PCB-1221)	0.13	U	ug/L	1	0.20	0.13	3/31/2017 01:16	M
Aroclor 1232 (PCB-1232)	0.19	U	ug/L	1	0.20	0.19	3/31/2017 01:16	M
Aroclor 1242 (PCB-1242)	0.17	U	ug/L	1	0.20	0.17	3/31/2017 01:16	M
Aroclor 1248 (PCB-1248)	0.15	U	ug/L	1	0.20	0.15	3/31/2017 01:16	M
Aroclor 1254 (PCB-1254)	0.040	U	ug/L	1	0.20	0.040	3/31/2017 01:16	M
Aroclor 1260 (PCB-1260)	0.020	U	ug/L	1	0.20	0.020	3/31/2017 01:16	M
Chlordane (technical)	0.059	U	ug/L	1	0.20	0.059	3/31/2017 01:16	M
Dieldrin	0.0016	U	ug/L	1	0.020	0.0016	3/31/2017 01:16	M
Endosulfan I	0.0016	U	ug/L	1	0.020	0.0016	3/31/2017 01:16	M
Endosulfan II	0.0013	U	ug/L	1	0.020	0.0013	3/31/2017 01:16	M
Endosulfan Sulfate	0.0017	U	ug/L	1	0.020	0.0017	3/31/2017 01:16	M
Endrin	0.0025	U	ug/L	1	0.020	0.0025	3/31/2017 01:16	М
Endrin Aldehyde	0.0048	U	ug/L	1	0.020	0.0048	3/31/2017 01:16	М
Heptachlor	0.0013	U	ug/L	1	0.020	0.0013	3/31/2017 01:16	M
Heptachlor Epoxide	0.00080	U	ug/L	1	0.020	0.00080	3/31/2017 01:16	М
Methoxychlor	0.0053	U	ug/L	1	0.020	0.0053	3/31/2017 01:16	M
Toxaphene	0.064	U	ug/L	1	0.20	0.064	3/31/2017 01:16	М
alpha-BHC	0.0041	Ū	ug/L	1	0.020	0.0041	3/31/2017 01:16	М
beta-BHC	0.0071	U	ug/L	1	0.020	0.0071	3/31/2017 01:16	М
delta-BHC	0.0056	Ū	ug/L	1	0.020	0.0056	3/31/2017 01:16	М
gamma-BHC (Lindane)	0.0046	Ü	ug/L	1	0.020	0.0046	3/31/2017 01:16	М
Tetrachloro-m-xylene (S)	86	_	%	1	44-124		3/31/2017 01:16	
Decachlorobiphenyl (S)	82		%	1	48-137		3/31/2017 01:16	
WET CHEMISTRY								
Analysis Desc: Oil & Grease, EPA1664A	۸۵۵	lytical Ma	ethod: EPA	1664 A				
(HEM), Water	Alla	iyilcai Me	eulou. EPA	100 4 A				
Oil & Grease (HEM)	1.3	U	mg/L	1	4.0	1.3	3/28/2017 12:30	М
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.02	U	mg/L	1	0.10	0.02	3/29/2017 10:48	Т

Report ID: 477847 - 403528 Page 6 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1705067 UTC SW

Date Received: 03/23/17 13:30 Lab ID: T1705067002 Matrix: Water

SW-1 Date Collected: 03/23/17 10:30 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: C	opper Sulfate Digestion				
	Anal	ytical Me	ethod: EPA	351.2				
Total Kjeldahl Nitrogen	0.78		mg/L	1	0.20	0.075	3/27/2017 16:11	Т
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	ethod: EPA	x 365.1				
Orthophosphate	0.066		mg/L	1	0.010	0.0090	3/24/2017 11:59	Т
Analysis Desc: Total	Prep	aration I	Method: C	opper Sulfate Digestion				
Phosphorus,E365.4,Analysis	Anal	ytical Me	ethod: EPA	365.4				
Total Phosphorus (as P)	0.063	I	mg/L	1	0.10	0.046	3/27/2017 16:11	Т
Analysis Desc: TSS,SM2540D,Water	Anal	ytical Me	ethod: SM	2540D				
Total Suspended Solids	3.0		mg/L	1	1.0	1.0	3/28/2017 09:52	Т
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	ethod: SM	4500NO3-F				
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	3/28/2017 15:07	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM	5210B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	3/23/2017 19:35	Т

Report ID: 477847 - 403528 Page 7 of 16

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1705067 UTC SW

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- B Results based upon colony counts outside the acceptable range.
- [1] False Positive
- [2] Positive for E. coli

LAB QUALIFIERS

- M DOH Certification #E82535(AEL-M)(FL NELAC Certification)
- T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 477847 - 403528 Page 8 of 16

QUALITY CONTROL DATA

Workorder: T1705067 UTC SW

QC Batch: WCAt/7708 Analysis Method: EPA 365.1

QC Batch Method: EPA 365.1 Prepared:

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2307147

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Orthophosphate mg/L 0.0090 0.0090 U

QC Batch: WCAt/7717 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Prepared:

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2307448

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Biochemical Oxygen Demand mg/L 2.0 2.0 U

 QC Batch:
 DGMt/2727
 Analysis Method:
 SW-846 6010

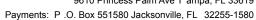
 QC Batch Method:
 SW-846 3010A
 Prepared:
 03/27/2017 10:20

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2307568

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Arsenic	mg/L	0.0016	0.0016 U	
Cadmium	mg/L	0.00024	0.00024 U	
Chromium	mg/L	0.0020	0.0020 U	
Copper	mg/L	0.00084	0.00084 U	
Nickel	mg/L	0.0044	0.0044 U	
Lead	mg/L	0.0032	0.0032 U	
Zinc	mg/L	0.0020	0.0020 U	

QC Batch: MICt/2643 Analysis Method: SM 9222D


QC Batch Method: SM 9222D Prepared:

Associated Lab Samples: T1705067001, T1705067002

Report ID: 477847 - 403528 Page 9 of 16

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1705067 UTC SW

METHOD BLANK: 2307656

Blank Reporting

Parameter Units Result Limit Qualifiers

Microbiology

Coliform Fecal #/100 mL 1 1 U

QC Batch: WCAt/7720 Analysis Method: EPA 351.2

03/27/2017 11:32 QC Batch Method: Copper Sulfate Digestion Prepared:

T1705067001, T1705067002 Associated Lab Samples:

METHOD BLANK: 2307682

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Kjeldahl Nitrogen 0.075 0.075 U mg/L

METHOD BLANK: 2307683

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Phosphorus (as P) 0.046 0.046 U mg/L

QC Batch: WCAt/7720 Analysis Method: EPA 365.4

QC Batch Method: Copper Sulfate Digestion 03/27/2017 11:32 Prepared:

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2307682

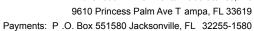
Blank Reporting Parameter Units Limit Qualifiers Result

WET CHEMISTRY

Total Kjeldahl Nitrogen 0.075 0.075 U mg/L

METHOD BLANK: 2307683

Blank Reporting


Parameter Units Limit Qualifiers Result

WET CHEMISTRY

Report ID: 477847 - 403528 Page 10 of 16

CERTIFICATE OF ANALYSIS

Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1705067 UTC SW

METHOD BLANK: 2307683

Blank Reporting

Parameter Units Limit Qualifiers Result

Total Phosphorus (as P) 0.046 mg/L 0.046 U

QC Batch: WCAt/7740 Analysis Method: SM 2540D

QC Batch Method: SM 2540D Prepared:

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2308559

Blank Reporting

Parameter Units Limit Qualifiers Result

WET CHEMISTRY

Total Suspended Solids mg/L 1.0 1.0 U

QC Batch: DGMt/2735 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 03/28/2017 10:36

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2308978

Blank Reporting

Parameter Units Limit Qualifiers Result

METALS

0.000050 0.000050 U Mercury mg/L

QC Batch: WCAt/7764 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:

T1705067001, T1705067002 Associated Lab Samples:

METHOD BLANK: 2309918

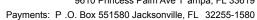
Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

0.2 U Nitrate + Nitrite mg/L 0.2

QC Batch: WCAm/3942 Analysis Method: EPA 1664 A


QC Batch Method: EPA 1664 A Prepared:

Report ID: 477847 - 403528 Page 11 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA

Workorder: T1705067 UTC SW

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2310213

Reporting Blank Parameter Units Result

Limit Qualifiers

WET CHEMISTRY

Oil & Grease (HEM) mg/L 1.3 1.3 U

QC Batch: WCAt/7777 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2310298

Blank Reporting

Parameter Units Limit Qualifiers Result

WET CHEMISTRY

0.02 0.02 U Ammonia (N) mg/L

QC Batch: EXTm/2160 Analysis Method: EPA 608/608.2 QC Batch Method: EPA 608/608.2 Prepared: 03/28/2017 12:00

Associated Lab Samples: T1705067001, T1705067002

METHOD BLANK: 2311287


Parameter	Units	Blank Result	Reporting Limit Qualifiers
SEMIVOLATILES			
alpha-BHC	ug/L	0.0041	0.0041 U
gamma-BHC (Lindane)	ug/L	0.0046	0.0046 U
beta-BHC	ug/L	0.0071	0.0071 U
delta-BHC	ug/L	0.0056	0.0056 U
Heptachlor	ug/L	0.0013	0.0013 U
Aldrin	ug/L	0.0020	0.0020 U
Heptachlor Epoxide	ug/L	0.00080	0.00080 U
Endosulfan I	ug/L	0.0016	0.0016 U
4,4`-DDE	ug/L	0.0016	0.0016 U
Dieldrin	ug/L	0.0016	0.0016 U
Endrin	ug/L	0.0025	0.0025 U
4,4`-DDD	ug/L	0.0024	0.0024 U
Endosulfan II	ug/L	0.0013	0.0013 U
Endrin Aldehyde	ug/L	0.0048	0.0048 U
4,4`-DDT	ug/L	0.0030	0.0030 U
Endosulfan Sulfate	ug/L	0.0017	0.0017 U

Report ID: 477847 - 403528 Page 12 of 16

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA

Workorder: T1705067 UTC SW

METHOD BLANK: 2311287

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Methoxychlor	ug/L	0.0053	0.0053 U	
Chlordane (technical)	ug/L	0.059	0.059 U	
Toxaphene	ug/L	0.064	0.064 U	
Aroclor 1016 (PCB-1016)	ug/L	0.15	0.15 U	
Aroclor 1221 (PCB-1221)	ug/L	0.13	0.13 U	
Aroclor 1232 (PCB-1232)	ug/L	0.19	0.19 U	
Aroclor 1242 (PCB-1242)	ug/L	0.17	0.17 U	
Aroclor 1248 (PCB-1248)	ug/L	0.15	0.15 U	
Aroclor 1254 (PCB-1254)	ug/L	0.040	0.040 U	
Aroclor 1260 (PCB-1260)	ug/L	0.020	0.020 U	
Tetrachloro-m-xylene (S)	%	94	44-124	
Decachlorobiphenyl (S)	%	101	48-137	

QC Batch: MICt/2671 Analysis Method: SM 9222 B (MF)

QC Batch Method: SM 9222 B (MF) Prepared:

T1705067001, T1705067002 Associated Lab Samples:

METHOD BLANK: 2315761

Coliform Total #/100 mL 1 1 U

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1705067 UTC SW

QUALITY CONTROL PARAMETER QUALIFIERS

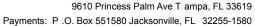
- U The compound was analyzed for but not detected.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. I
- **Estimated Result** J4

Report ID: 477847 - 403528 Page 13 of 16

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1705067 UTC SW


Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1705067001	SW-2			EPA 365.1	WCAt/7708
Г1705067002	SW-1			EPA 365.1	WCAt/7708
T1705067001	SW-2			SM 5210B	WCAt/7717
T1705067002	SW-1			SM 5210B	WCAt/7717
T1705067001	SW-2	SW-846 3010A	DGMt/2727	SW-846 6010	ICPt/2074
T1705067002	SW-1	SW-846 3010A	DGMt/2727	SW-846 6010	ICPt/2074
T1705067001	SW-2			SM 9222D	MICt/2643
T1705067002	SW-1			SM 9222D	MICt/2643
T1705067001	SW-2	Copper Sulfate Digestion	WCAt/7720	EPA 351.2	WCAt/7737
T1705067002	SW-1	Copper Sulfate Digestion	WCAt/7720	EPA 351.2	WCAt/7737
T1705067001	SW-2	Copper Sulfate Digestion	WCAt/7720	EPA 365.4	WCAt/7738
T1705067002	SW-1	Copper Sulfate Digestion	WCAt/7720	EPA 365.4	WCAt/7738
T1705067001	SW-2			SM 2540D	WCAt/7740
T1705067002	SW-1			SM 2540D	WCAt/7740
T1705067001	SW-2	SW-846 7470A	DGMt/2735	SW-846 7470A	CVAt/1444
T1705067002	SW-1	SW-846 7470A	DGMt/2735	SW-846 7470A	CVAt/1444
T1705067001	SW-2			SM 4500NO3-F	WCAt/7764
T1705067002	SW-1			SM 4500NO3-F	WCAt/7764
T1705067001	SW-2			EPA 1664 A	WCAm/394
T1705067002	SW-1			EPA 1664 A	WCAm/394
T1705067001	SW-2			EPA 350.1	WCAt/7777
T1705067002	SW-1			EPA 350.1	WCAt/7777

Report ID: 477847 - 403528 Page 14 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1705067 UTC SW

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1705067001	SW-2	EPA 608/608.2	EXTm/2160	EPA 608/608.2	GCSm/1662
T1705067002	SW-1	EPA 608/608.2	EXTm/2160	EPA 608/608.2	GCSm/1662
T1705067001	SW-2			SM 9222 B (MF)	MICt/2671
T1705067002	SW-1			SM 9222 B (MF)	MICt/2671

Report ID: 477847 - 403528 Page 15 of 16

Calmerulle, necessarian comment of the contract of the contrac	Mitamatr. 10200 USA Today Way, Mramar, Fl. 33025 - 954.889,2288 - Fax 954,889,2281 Impat. 954.889,2288 - Fax 954,889,2281 Tampat. 9510 Princess Pain Ave Tampa. Fl. 33019 - 813,830,9616 - Fax 813,630,4327			а: В		NI IN	u u	YAC	λΤΑς	108	IAJ	8	(7)	3							S = (H2SO4) N = (HNO3) T = (Sodium Thiosurfate					
	4389.2288 • F 630.9616 • F	L				-	5º	my	səj	7	1	×	بد) T = (So	LT-2 T: 10A A: 3A M: 3A				
Page	FL 33025 - 95 L 33619 - 813	L			- /		ツラ	3	DV	3	-	\times	又	_							= (HNO3	104 A: 3A		Phone:		
9	ay, Mramar, e. Tampa, F	L		_		200		- 0	<u> </u>	3	52	×	2	_			\perp	\perp	L		12SO4) N	emp. whe				
E 000 2101 B	JSA Today W cess Palm Av			L					73	Nothe		2	×	_				_	L			G:LT-1 LT-2	шi			
eville.	081: 10200 1	_		-				-7	<u>رور</u>	C Dietes		X	2		_	_			_		1= ice H=(HC!)	۲ 🛪	TER U	anddra pom		
7 9 7		H		-			_	- G		t Tre	_	X	٧	_	_			L	\vdash		= l	9 531	NG WA			
1105011		\vdash		107	WC	¥ 90	10)	ים כל		3		\times	X	_				_			Preservation Code:	emp. when received (observed) entifier (circle IR temp gun used)	FOR DRINKING WATER USE:	Person:	of Water: ress:	
 	575			\vdash	200201 0			vaal	۸۷	W. CAMP!			×	_	\vdash	\vdash					Prese	r (circle IR	FOR D	Contact Person:	Supplier of Water: Site-Address:	
07 937 1594	1363.9054 Fax 850.219.6	3411	¥ 3ZIS	+		-	•	x0 ^/		13	2	<i>></i>	×		I had						= sludge	e identifie				
FI 307011-4	6881 Southpoint Plwy Jackson/ile, FL 32216 - 904.363.3930 - Fax 904.383.9054 2039 North Momoe SL, Suite D, Tallahassee, FL 32303 - 850.219.6274 - Fax 850.219.6275		108		D38	lub:	BB S	SYJA	NA	Preservation	Field- Filtered		# #2				T	T	T T		당	Device used for measuring Temp by unique identifier (circle IR temp gun used)	Time	13.33		
nonte Sarines	16 • 904.363.9 FL 32303 • 85										COUNT	6	6	_							ler 0 = oil A = air SO = soil	ring Tem	-	7 12		
n 1048 • Alba	rwile, FL 322 Talahassee, I	l									MATRIX	3	50								A = air	for measu	Date	1000		
S Pole Blvd S	Nwy Jackso 5 St., Suite D.	3							5	FING	TIME	545	10,33								O = Oil	vice used		$\ \ $		
18: 380 Nort	1 Southpoint F North Monro	SN							2	SAMPLING	DATE	n/ee/e	3/33/17 10:30								dank cing water		od by:			
nte Spring	Wille:	7	er:		/ No:	Address:		octions:	5	۵	Comp	3	2								GW = ground water DW = drinking water		Receiv	3/1		
Altamo	Jacksonville:	Project Name	Project Number:	PO Number:	FDEP Facility No:	FDEP Facility Addre		Special Instructions:	Tacak		\exists										d water]	1	N	\	
	S, IIIC.	<u>a. </u>	a.	a.	<u> </u>	ш	-2750	<u></u>			2										W = groun		Time	17.2		
	ITACOTTE										ב ב															
3	Florida's Largust Laboratory Notwark	\$			\$			0			SAMPLE DESCRIPTION										W = surface water GW = gro		Date	3/23/K		
Advanced	ronmen 's Laryw	vmer			862-699		7005		- Rust		SAMP										SW Jee	1111111		Mc		
ē.	EllM Fitograda	MRos			199		DAWA GAYDOS	TIM CLENCIAND	TANDARD												/ = wastewater S	astrevise	Relinquished by:		3	
		2			737		ANA A	1	E S	1	2	2	_							\exists	ee ww	1 Form I	Reling	M		
F	7	GHS ENVIRONMENTAL	Address:		Phone:	FAX:		Sampled By:	Turn Around Time: 4 STANDARD AEL Profile #:	100	SAMPLE ID	SW 7	SW-								Matrix Code: WW = wastewater SW = surface water Received on Ice	DCN: AD-051 Form last revised 11/17/16		- 7	8 4	
		<u> </u>	I₹		<u>آمَّ</u>	it.	Įŏ	ő	- 1¥							_						8	Τ,	Τ.,.	لات	

Phone: (813)630-9616 Fax: (813)630-4327

July 5, 2017

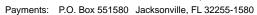
Dana Gaydos Gaydos Hydro Services PO Box 55802 Saint Petersburg, FL 33732

RE: Workorder: T1710540 UTC SW

Dear Dana Gaydos:

Enclosed are the analytical results for sample(s) received by the laboratory on Monday, June 19, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Michael Cammarata MCammarata@AELLab.com

Enclosures

Report ID: 493438 - 828329 Page 1 of 11

SAMPLE SUMMARY

Workorder: T1710540 UTC SW

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1710540001	SW-1	Water	6/19/2017 10:15	6/19/2017 13:20
T1710540002	SW-2	Water	6/19/2017 11:30	6/19/2017 13:20

Report ID: 493438 - 828329 Page 2 of 11

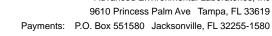
ANALYTICAL RESULTS

Workorder: T1710540 UTC SW

Lab ID: T1710540001 Date Received: 06/19/17 13:20 Matrix: Water

Sample ID: SW-1 Date Collected: 06/19/17 10:15

Sample Description: Location:


Sample Description:				ocation:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Microbiology								
Analysis Desc: Total Coliform,SM9222B,Water	Anal	ytical Me	ethod: SM 922	22 B (MF)				
Coliform Total	2400	1	#/100 mL	100	100	100	6/19/2017 15:14	Т
Analysis Desc: Fecal Coliform MF,SM9222D,Water	Anal	ytical Me	ethod: SM 922	22D				
Coliform Fecal	1	U	#/100 mL	1	1	1	6/19/2017 16:16	Т
WET CHEMISTRY								
Analysis Desc: Total Nitrogen,Calculated,Water	Anal	ytical Me	ethod: Calcula	tion				
Total Nitrogen	0.64		mg/L	1	0.10	0.10	6/30/2017 14:10	Т
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA 35	0.1				
Ammonia (N)	0.02	U	mg/L	1	0.10	0.02	6/21/2017 13:58	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: Copp	er Sulfate Digest	ion			
	Anal	ytical Me	ethod: EPA 35	1.2				
Total Kjeldahl Nitrogen	0.64		mg/L	1	0.20	0.075	6/22/2017 11:12	Т
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	ethod: EPA 36	5.1				
Orthophosphate	0.018		mg/L	1	0.010	0.0090	6/19/2017 15:10	Т
Analysis Desc: Total	Prep	aration I	Method: Copp	er Sulfate Digest	ion			
Phosphorus,E365.4,Analysis	Anal	ytical Me	ethod: EPA 36	5.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	6/22/2017 11:12	Т
Analysis Desc: TSS,SM2540D,Water	Anal	ytical Me	ethod: SM 254	10D				
Total Suspended Solids	4.7		mg/L	0.5	0.50	0.50	6/23/2017 10:28	Т
Analysis Desc: Nitrate, Nitrite SM4500NO3F, Water	Anal	ytical Me	ethod: SM 450	00NO3-F				
Nitrate	0.18	U	mg/L	1	0.20	0.18	6/20/2017 13:46	Т
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	6/28/2017 11:43	T
Nitrite	0.18	U	mg/L	1	0.20	0.18	6/20/2017 13:46	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM 521	0B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	6/19/2017 16:51	Т

Report ID: 493438 - 828329 Page 3 of 11

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1710540 UTC SW

Date Received: 06/19/17 13:20 Matrix: Lab ID: T1710540002 Water

SW-2 Date Collected: 06/19/17 11:30 Sample ID:

Sample Description: Location:

Sample Description:			L	.ocation:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Microbiology								
Analysis Desc: Total Coliform,SM9222B,Water	Ana	lytical Me	ethod: SM 922	22 B (MF)				
Coliform Total	2000	1	#/100 mL	100	100	100	6/19/2017 15:14	Т
Analysis Desc: Fecal Coliform MF,SM9222D,Water	Ana	lytical Me	ethod: SM 922	22D				
Coliform Fecal	1	U	#/100 mL	1	1	1	6/19/2017 16:16	Т
WET CHEMISTRY								
Analysis Desc: Total Nitrogen,Calculated,Water	Ana	lytical Me	ethod: Calcula	tion				
Total Nitrogen	0.57		mg/L	1	0.10	0.10	6/30/2017 14:11	Т
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA 35	0.1				
Ammonia (N)	0.02	U	mg/L	1	0.10	0.02	6/21/2017 13:58	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: Copp	er Sulfate Digestion				
	Ana	lytical Me	ethod: EPA 35	1.2				
Total Kjeldahl Nitrogen	0.57		mg/L	1	0.20	0.075	6/22/2017 11:12	Т
Analysis Desc: Orthophosphate,E365.1,Water	Ana	lytical Me	ethod: EPA 36	5.1				
Orthophosphate	0.021		mg/L	1	0.010	0.0090	6/19/2017 15:12	Т
Analysis Desc: Total	Prep	aration I	Method: Copp	er Sulfate Digestion				
Phosphorus,E365.4,Analysis	Ana	lytical Me	ethod: EPA 36	5.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	6/22/2017 11:12	Т
Analysis Desc: TSS,SM2540D,Water	Ana	lytical Me	ethod: SM 254	10D				
Total Suspended Solids	5.0		mg/L	0.5	0.50	0.50	6/23/2017 10:28	Т
Analysis Desc: Nitrate,Nitrite SM4500NO3F,Water	Ana	lytical Me	ethod: SM 450	00NO3-F				
Nitrate	0.18	U	mg/L	1	0.20	0.18	6/20/2017 13:47	Т
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	6/28/2017 11:44	T T
Nitrite	0.18	U	mg/L	1	0.20	0.18	6/20/2017 13:47	- 1
Analysis Desc: BOD,SM5210B,Water	Ana	lytical Me	ethod: SM 521	0B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	6/19/2017 16:56	Т

Report ID: 493438 - 828329 Page 4 of 11

CERTIFICATE OF ANALYSIS

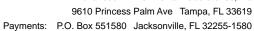
This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1710540 UTC SW

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- [1] Present for Total

LAB QUALIFIERS

T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 493438 - 828329 Page 5 of 11

QUALITY CONTROL DATA

Workorder: T1710540 UTC SW

QC Batch: WCAt/9309 Analysis Method: EPA 365.1

QC Batch Method: EPA 365.1 Prepared:

Associated Lab Samples: T1710540001, T1710540002

METHOD BLANK: 2385031

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

Orthophosphate 0.0090 0.0090 U mg/L

QC Batch: WCAt/9329 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Prepared:

Associated Lab Samples: T1710540001, T1710540002

METHOD BLANK: 2385766

Reporting Blank

Units Limit Qualifiers Parameter Result

WET CHEMISTRY

2.0 U Biochemical Oxygen Demand 2.0 mg/L

QC Batch: WCAt/9333 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:

Associated Lab Samples: T1710540001, T1710540002

METHOD BLANK: 2385797

Nitrate

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY

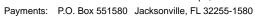
Nitrite mg/L 0.18 0.18 U

QC Batch: WCAt/9340 Analysis Method: EPA 350.1

0.18

QC Batch Method: EPA 350.1 Prepared:

mg/L


T1710540001 Associated Lab Samples:

Report ID: 493438 - 828329 Page 6 of 11

0.18 U

QUALITY CONTROL DATA

Workorder: T1710540 UTC SW

METHOD BLANK: 2386241

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) 0.02 0.02 U mg/L

QC Batch: WCAt/9341 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: T1710540002

METHOD BLANK: 2386249

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

0.02 0.02 U Ammonia (N) mg/L

QC Batch: WCAt/9356 Analysis Method: EPA 351.2

QC Batch Method: Copper Sulfate Digestion Prepared: 06/21/2017 17:23

T1710540001, T1710540002 Associated Lab Samples:

METHOD BLANK: 2387251

Blank Reporting Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Kjeldahl Nitrogen mg/L 0.075 0.075 U

METHOD BLANK: 2387252

Blank Reporting Parameter Units Result Limit Qualifiers

WET CHEMISTRY

0.046 Total Phosphorus (as P) mg/L 0.046 U

QC Batch: WCAt/9356 Analysis Method: EPA 365.4 QC Batch Method: Copper Sulfate Digestion Prepared: 06/21/2017 17:23

T1710540001, T1710540002 Associated Lab Samples:

Report ID: 493438 - 828329 Page 7 of 11

QUALITY CONTROL DATA

Workorder: T1710540 UTC SW

METHOD BLANK: 2387251

Blank Reporting

Parameter Units Limit Qualifiers Result

WET CHEMISTRY

Total Kjeldahl Nitrogen mg/L 0.075 0.075 U

METHOD BLANK: 2387252

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Phosphorus (as P) 0.046 0.046 U mg/L

QC Batch: WCAt/9385 Analysis Method: SM 2540D

QC Batch Method: SM 2540D Prepared:

Associated Lab Samples: T1710540001, T1710540002

METHOD BLANK: 2388844

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

1.0 U **Total Suspended Solids** mg/L 1.0

QC Batch: MICt/3036 SM 9222D Analysis Method:

QC Batch Method: SM 9222D Prepared:

Associated Lab Samples: T1710540001, T1710540002

METHOD BLANK: 2391170

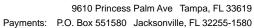
Blank Reporting

Parameter Units Result Limit Qualifiers

Microbiology

Coliform Fecal #/100 mL 1 1 U

QC Batch: WCAt/9460 SM 4500NO3-F Analysis Method:


QC Batch Method: SM 4500NO3-F Prepared:

Associated Lab Samples: T1710540001, T1710540002

Report ID: 493438 - 828329 Page 8 of 11

QUALITY CONTROL DATA

Workorder: T1710540 UTC SW

METHOD BLANK: 2392653

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Nitrate + Nitrite 0.2 0.2 U mg/L

QC Batch: MICt/3063 Analysis Method: SM 9222 B (MF)

QC Batch Method: SM 9222 B (MF) Prepared:

Associated Lab Samples: T1710540001, T1710540002

METHOD BLANK: 2397213

Blank Reporting

Units Limit Qualifiers Parameter Result

Microbiology

1 U Coliform Total #/100 mL 1

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1710540 UTC SW

QUALITY CONTROL PARAMETER QUALIFIERS

The compound was analyzed for but not detected.

ı The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

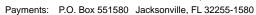
Q Missed Hold Time

Report ID: 493438 - 828329 Page 9 of 11

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1710540 UTC SW

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1710540001	SW-1			EPA 365.1	WCAt/9309
T1710540002	SW-2			EPA 365.1	WCAt/9309
T1710540001	SW-1			SM 5210B	WCAt/9329
Г1710540002	SW-2			SM 5210B	WCAt/9329
T1710540001	SW-1			SM 4500NO3-F	WCAt/9333
T1710540002	SW-2			SM 4500NO3-F	WCAt/9333
T1710540001	SW-1			EPA 350.1	WCAt/9340
T1710540002	SW-2			EPA 350.1	WCAt/9341
T1710540001	SW-1	Copper Sulfate Digestion	WCAt/9356	EPA 351.2	WCAt/9374
Γ1710540002	SW-2	Copper Sulfate Digestion	WCAt/9356	EPA 351.2	WCAt/9374
Γ1710540001	SW-1	Copper Sulfate Digestion	WCAt/9356	EPA 365.4	WCAt/9375
Г1710540002	SW-2	Copper Sulfate Digestion	WCAt/9356	EPA 365.4	WCAt/9375
T1710540001	SW-1			SM 2540D	WCAt/9385
T1710540002	SW-2			SM 2540D	WCAt/9385
T1710540001	SW-1			SM 9222D	MICt/3036
Г1710540002	SW-2			SM 9222D	MICt/3036
T1710540001	SW-1			SM 4500NO3-F	WCAt/9460
Г1710540002	SW-2			SM 4500NO3-F	WCAt/9460
Г1710540001	SW-1			SM 9222 B (MF)	MICt/3063
Г1710540002	SW-2			SM 9222 B (MF)	MICt/3063
T1710540001	SW-1	Calculation	CLCt/	Calculation	CLCt/
Γ1710540002	SW-2	Calculation	CLCt/	Calculation	CLCt/


Report ID: 493438 - 828329 Page 10 of 11

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

					ater:	Supplier of Water	dh. dns	_		1	1			T	-				1
	- inches							_	-		1			1					0
	Dhone .	PWSID	supplied)	(When PWS Information not otherwise supplied) Contact Person:	rmation no	then PWS Informa	(Whe	JC	1320	6/19113	6		M	7	5130	P-18HD	3	Min	12 -1
			WATER USE	WATE	KING	FOR DRINKING	FO		Time	Date		d by:	Réceived by:		Time	Date	hed by:	Relinquished by:	-
M: 3A S: 1V	(T: 10A) A: 3A			i	p gun us	cle IR ten	entifier (cir	unique id	Temp by	Device used for measuring Temp by unique identifier (circle IR temp gun used)	ce used for	I			2		revised 11/17/16	CN: AD-051 Form last revised 11/17/16	CN: A
orrected) °C	. C Temp, when received (corrected)	°C Temu	O Visco	C	d (observ	en receive	emp. wh		- 1	모	Where requ		Temp from blank	٥	rom sample	Temp taken from sample	ō	ecsived on los 🖺 Yes	eceive
T = (Coding Thiosulfet	OA) N = (HNO3)	S = /H2	H=/HCII	2	on Code	Preservation Code: =		SL = sludos	SO = spil	A = air so	0 = oi		DW = drinking water	GW = ground water	GW = gr	SW = surface water		Matrix Code: WW = wastewater	Matrix
3	×	×	X	X	<	×	X		٢	SW	11:30	11/19/10	0					3-2	E
<u>Š</u>	\times	\times	×	X	×	\times	\times		7	Sw		51.01 11/1919	6					Sw-1	3
LA		Sak						Field- Filtered?	COUNT	MAIRIX	TIME	DATE	Comp		FION	ONNIE DE DE OCNIE I TON	ONIVIE D	7	0,744
BC	Dathio	8	9	H2504	でのから	1100	8	Preservation	NO.	MATEUR		SAMPLING	Grab		NOITE	בחבפרם	SAMDI	SAMDI E ID	MAS
)RA	T		1	Ah	Ī			1		7	Other	□ EQuIS		DADaPT				file#:	EL Profile #:
TO	~O ²	(10	NY Tr	Fe	В	T	ANA									NDARD RUSH	JITA AROUND TIME: DSTANDARD	ım Aro
	ta	DP	2 /	21	· ((0	55	LYS					ructions:	Special Instructions:		100	150131	ampled By: TIM CLEUS; AND	ampled
I D	I F	>	N	1a	2)	D -	5	IS RI								Ø	S00, 549	DANA	ontact:
NII	ec		02	171	-			EQU					FDEP Facility Address:	FDEP Faci					8
MBE	al	KIRY S	>	LIP!				IRED					ily No:	FDEP Facility No:		186	667-67	727-6	hone:
=R	-			-										PO Number:					
													nber:	Project Number:					ddress:
								TTLE 3 TYPE			2	15.7	e T	Project Name:		NTA	SNUIRONING NIAL	1	Quant Nam
Tampa: 9510 Princess Path Ave Tampa, FL 33619 - 813.630.9516 - Fax 813.630.4327	ampa, FL 33619 • 813.630	Palm Ave. • To	610 Princess	Tampa: 9			0.219.6275	.6274 • Fax 85	303 - 850.219	hassee, FL 32	, Suite D, Talla	Varth Monroe St	Tallahassee: 2639 North Monroe St., Suite D, Tallahassee, FL 32303 • 850.219.6274 • Fax 850.219.6275		Network.	Laboratory	Florida's Largest Laboratory Network		
\(\text{Valines Ville}\); 4955 SW 41st Blvd. \(\text{-Gaineswile}\), FL 3008 \(\text{-352.377.2346}\) \(\text{-Fax.352.395.6639}\) \(\text{Miramar}\); 10200 USA Today Way, Miramar, FL 33025 \(\text{-954.859.2288}\) \(\text{-Fax.954.859.2281}\)	sainesville, FL 32608 • 35 iramar, FL 33025 • 954,88	oday Way, M	10200 USA 1	Miramar:		07.937.1597	354	Fax 904.363.5	04.363.9350 -	e, FL 32216 • 9	y Jacksonvill	Southpoint Pkw	Jacksonville: 684 Southport Phay: - Jacksonville, FL 32216 - 904 363,3394 FEX 407 937,3394 FEX 407 937,3395 FEX 407 937		ories, Inc	I Laborat	Environmental Laboratories, Inc.		M
of \	Page_		Las mee en	Calanavil]	4507 to 1007	ABNA , Bou J	20 July - 102.0	Coringe El d	discussify " ay	and she to	fektavry usta	onto Spring				Hovanced		M

October 18, 2017

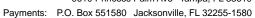
Dana Gaydos Gaydos Hydro Services PO Box 55802 Saint Petersburg, FL 33732

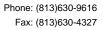
RE: Workorder: T1716521 UTC SW

Dear Dana Gaydos:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, September 28, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,


Michael Cammarata MCammarata@AELLab.com

Enclosures

Report ID: 511784 - 1356813 Page 1 of 16

SAMPLE SUMMARY

Workorder: T1716521 UTC SW

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1716521001	SW-2	Water	9/28/2017 12:10	9/28/2017 14:38
T1716521002	SW-1	Water	9/28/2017 13:05	9/28/2017 14:38

Report ID: 511784 - 1356813 Page 2 of 16

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

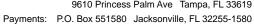
Workorder: T1716521 UTC SW

Report ID: 511784 - 1356813

Date Received: 09/28/17 14:38 Lab ID: T1716521001 Matrix: Water

SW-2 Date Collected: 09/28/17 12:10 Sample ID:

Sample Description: Location:


_	-				Adjusted	Adjusted	A b d	1 -1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: E200.7 Analysis, Waters	Prep	paration I	Method: EP	A 200.7				
	Anal	lytical Me	thod: EPA	200.7				
Calcium	45		mg/L	1	0.30	0.072	10/5/2017 17:14	Т
Magnesium	6.2		mg/L	1	0.40	0.021	10/5/2017 17:14	T
Total Hardness (as CaCO3)	140		mg/L	1	0.70	0.12	10/5/2017 17:14	Т
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Water	Anal	lytical Me	ethod: SW-8	346 6010				
Arsenic	0.0035	ı	mg/L	1	0.010	0.0016	9/29/2017 22:21	Т
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	9/29/2017 22:21	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	9/29/2017 22:21	Т
Copper	0.0022	ı	mg/L	1	0.0080	0.0014		Т
Lead	0.0032	U	mg/L	1	0.010		9/29/2017 22:21	Т
Nickel 	0.0044	U	mg/L	1	0.0090	0.0044		T
Zinc	0.0074	U	mg/L	1	0.010	0.0074	9/29/2017 22:21	Т
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	lytical Me	thod: SW-8	346 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	9/29/2017 09:28	Т
SEMIVOLATILES								
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: Co	pper Sulfate Digestion	1			
	Anal	lytical Me	thod: EPA	351.2				
Total Kjeldahl Nitrogen	0.78		mg/L	1	0.20	0.075	10/10/2017 14:05	Т
Analysis Desc: Orthophosphate,E365.1,Water	Anal	lytical Me	thod: EPA	365.1				
Orthophosphate	0.035		mg/L	1	0.010	0.0090	9/29/2017 09:16	Т
Analysis Desc: Total	Prep	aration I	Method: Co	pper Sulfate Digestion	1			
Phosphorus,E365.4,Analysis	Anal	lytical Me	thod: EPA	365.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	10/10/2017 14:05	Т
Analysis Desc: E608 Analysis, Water	Prep	aration I	Method: EP	A 608/608.2				
	Anal	lytical Me	thod: EPA	608/608.2				
4,4`-DDD	0.0024	U	ug/L	1	0.020	0.0024	10/12/2017 14:35	М
4,4`-DDE	0.0016	U	ug/L	1	0.020	0.0016	10/12/2017 14:35	М
,			Ŭ					

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Page 3 of 16

ANALYTICAL RESULTS

Workorder: T1716521 UTC SW

Date Received: 09/28/17 14:38 Matrix: Lab ID: T1716521001 Water

SW-2 Date Collected: 09/28/17 12:10 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
4,4`-DDT	0.0030	U	ug/L	1	0.020	0.0030	10/12/2017 14:35	М
Aldrin	0.0020	U	ug/L	1	0.020	0.0020	10/12/2017 14:35	M
Aroclor 1016 (PCB-1016)	0.15	U	ug/L	1	0.20	0.15	10/12/2017 14:35	M
Aroclor 1221 (PCB-1221)	0.13	U	ug/L	1	0.20	0.13	10/12/2017 14:35	M
Aroclor 1232 (PCB-1232)	0.19	U	ug/L	1	0.20	0.19	10/12/2017 14:35	M
Aroclor 1242 (PCB-1242)	0.17	U	ug/L	1	0.20	0.17	10/12/2017 14:35	M
Aroclor 1248 (PCB-1248)	0.15	U	ug/L	1	0.20	0.15	10/12/2017 14:35	M
Aroclor 1254 (PCB-1254)	0.040	U	ug/L	1	0.20	0.040	10/12/2017 14:35	M
Aroclor 1260 (PCB-1260)	0.020	U	ug/L	1	0.20	0.020	10/12/2017 14:35	M
Chlordane (technical)	0.059	U	ug/L	1	0.20	0.059	10/12/2017 14:35	M
Dieldrin	0.0016	U	ug/L	1	0.020	0.0016	10/12/2017 14:35	M
Endosulfan I	0.0016	U	ug/L	1	0.020	0.0016	10/12/2017 14:35	M
Endosulfan II	0.0013	U	ug/L	1	0.020	0.0013	10/12/2017 14:35	M
Endosulfan Sulfate	0.0017	U	ug/L	1	0.020	0.0017	10/12/2017 14:35	M
Endrin	0.0025	U	ug/L	1	0.020	0.0025	10/12/2017 14:35	M
Endrin Aldehyde	0.0048	U	ug/L	1	0.020	0.0048	10/12/2017 14:35	M
Heptachlor	0.0013	U	ug/L	1	0.020	0.0013	10/12/2017 14:35	M
Heptachlor Epoxide	0.00080	U	ug/L	1	0.020	0.00080	10/12/2017 14:35	M
Methoxychlor	0.0053	U	ug/L	1	0.020	0.0053	10/12/2017 14:35	M
Toxaphene	0.064	U	ug/L	1	0.20	0.064	10/12/2017 14:35	M
alpha-BHC	0.0041	U	ug/L	1	0.020	0.0041	10/12/2017 14:35	M
beta-BHC	0.0071	U	ug/L	1	0.020	0.0071	10/12/2017 14:35	M
delta-BHC	0.0056	U	ug/L	1	0.020	0.0056	10/12/2017 14:35	M
gamma-BHC (Lindane)	0.0046	U	ug/L	1	0.020	0.0046	10/12/2017 14:35	M
Tetrachloro-m-xylene (S)	117		%	1	44-124		10/12/2017 14:35	
Decachlorobiphenyl (S)	92		%	1	48-137		10/12/2017 14:35	
WET CHEMICTOY								

WET CHEMISTRY

WEI CHEWISIKI						
Analysis Desc: Total Nitrogen,Calculated,Water	Analyt	ical Method: C	alculation			
Total Nitrogen	0.78	mg/L	1	0.10	0.10 10/17/201	7 16:31 T
Analysis Desc: Oil & Grease,EPA1664A (HEM),Water	Analyt	ical Method: E	PA 1664 A			
Oil & Grease (HEM)	2.0	I mg/L	1	4.0	1.3 10/12/201	7 12:00 M
Analysis Desc: Ammonia,E350.1,Water	Analyt	ical Method: E	PA 350.1			
Ammonia (N)	0.13	mg/L	1	0.10	0.02 10/5/2017	7 14:21 T
Analysis Desc: TSS,SM2540D,Water	Analyt	ical Method: S	M 2540D			

Report ID: 511784 - 1356813 Page 4 of 16

9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1716521 UTC SW

Date Received: 09/28/17 14:38 Lab ID: T1716521001 Matrix: Water

SW-2 Date Collected: 09/28/17 12:10 Sample ID:

Sample Description: Location:

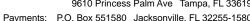
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Total Suspended Solids	3.5		mg/L	0.5	0.50	0.50	10/4/2017 18:41	Т
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	ethod: SM	4500NO3-F				
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	9/29/2017 10:39	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM	5210B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	9/29/2017 13:28	Т

Lab ID: T1716521002 Date Received: 09/28/17 14:38 Matrix: Water

Date Collected: 09/28/17 13:05 Sample ID: **SW-1**

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: E200.7 Analysis, Waters	Prep	aration I	Method: EF	PA 200.7				
	Ana	ytical Me	ethod: EPA	200.7				
Calcium	43		mg/L	1	0.30	0.072	10/5/2017 17:18	Т
Magnesium	6.0		mg/L	1	0.40	0.021	10/5/2017 17:18	Т
Total Hardness (as CaCO3)	130		mg/L	1	0.70	0.12	10/5/2017 17:18	Т
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	ytical Me	ethod: SW-	846 6010				
Arsenic	0.0022	- 1	mg/L	1	0.010	0.0016	9/29/2017 22:24	Т
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	9/29/2017 22:24	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	9/29/2017 22:24	Т
Copper	0.0018	ı	mg/L	1	0.0080	0.0014	9/29/2017 22:24	Т
Lead	0.0032	U	mg/L	1	0.010	0.0032	9/29/2017 22:24	Т
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	9/29/2017 22:24	Т
Zinc	0.010	I	mg/L	1	0.010	0.0074	9/29/2017 22:24	Т
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	ytical Me	ethod: SW-	846 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	9/29/2017 09:28	Т


Report ID: 511784 - 1356813 Page 5 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Fax: (813)630-4327

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813)630-9616

ANALYTICAL RESULTS

Workorder: T1716521 UTC SW

Date Received: 09/28/17 14:38 Lab ID: T1716521002 Matrix: Water

SW-1 Date Collected: 09/28/17 13:05 Sample ID:

Sample Description: Location:

Sample Description.				Lucation.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: E608 Analysis, Water	Prep	aration I	Method: EP	A 608/608.2				
	Ana	lytical Me	thod: EPA	608/608.2				
4,4`-DDD	0.0024	U	ug/L	1	0.020	0.0024	10/12/2017 14:57	М
4,4`-DDE	0.0016	U	ug/L	1	0.020	0.0016	10/12/2017 14:57	M
4,4`-DDT	0.0030	U	ug/L	1	0.020	0.0030	10/12/2017 14:57	M
Aldrin	0.0020	U	ug/L	1	0.020	0.0020	10/12/2017 14:57	M
Aroclor 1016 (PCB-1016)	0.15	U	ug/L	1	0.20	0.15	10/12/2017 14:57	M
Aroclor 1221 (PCB-1221)	0.13	U	ug/L	1	0.20	0.13	10/12/2017 14:57	M
Aroclor 1232 (PCB-1232)	0.19	U	ug/L	1	0.20	0.19	10/12/2017 14:57	M
Aroclor 1242 (PCB-1242)	0.17	U	ug/L	1	0.20	0.17	10/12/2017 14:57	M
Aroclor 1248 (PCB-1248)	0.15	U	ug/L	1	0.20	0.15	10/12/2017 14:57	M
Aroclor 1254 (PCB-1254)	0.040	U	ug/L	1	0.20	0.040	10/12/2017 14:57	M
Aroclor 1260 (PCB-1260)	0.020	U	ug/L	1	0.20	0.020	10/12/2017 14:57	M
Chlordane (technical)	0.059	U	ug/L	1	0.20	0.059	10/12/2017 14:57	М
Dieldrin	0.0016	U	ug/L	1	0.020	0.0016	10/12/2017 14:57	M
Endosulfan I	0.0016	U	ug/L	1	0.020	0.0016	10/12/2017 14:57	M
Endosulfan II	0.0013	U	ug/L	1	0.020	0.0013	10/12/2017 14:57	M
Endosulfan Sulfate	0.0017	U	ug/L	1	0.020	0.0017	10/12/2017 14:57	M
Endrin	0.0025	U	ug/L	1	0.020	0.0025	10/12/2017 14:57	M
Endrin Aldehyde	0.0048	U	ug/L	1	0.020	0.0048	10/12/2017 14:57	M
Heptachlor	0.0013	U	ug/L	1	0.020	0.0013	10/12/2017 14:57	M
Heptachlor Epoxide	0.00080	U	ug/L	1	0.020	0.00080	10/12/2017 14:57	M
Methoxychlor	0.0053	U	ug/L	1	0.020	0.0053	10/12/2017 14:57	M
Toxaphene	0.064	U	ug/L	1	0.20	0.064	10/12/2017 14:57	M
alpha-BHC	0.0041	U	ug/L	1	0.020	0.0041	10/12/2017 14:57	M
beta-BHC	0.0071	U	ug/L	1	0.020	0.0071	10/12/2017 14:57	M
delta-BHC	0.0056	U	ug/L	1	0.020	0.0056	10/12/2017 14:57	М
gamma-BHC (Lindane)	0.0046	U	ug/L	1	0.020	0.0046	10/12/2017 14:57	M
Tetrachloro-m-xylene (S)	82		%	1	44-124		10/12/2017 14:57	
Decachlorobiphenyl (S)	66		%	1	48-137		10/12/2017 14:57	
WET CHEMISTRY								
Analysis Desc: Total Nitrogen,Calculated,Water	Ana	lytical Me	thod: Calc	ulation				
Total Nitrogen	1.3		mg/L	1	0.10	0.10	10/17/2017 16:31	Т
Analysis Desc: Oil & Grease,EPA1664A (HEM),Water	Ana	lytical Me	thod: EPA	1664 A				

Report ID: 511784 - 1356813 Page 6 of 16

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1716521 UTC SW

Date Received: 09/28/17 14:38 Lab ID: T1716521002 Matrix: Water

SW-1 Date Collected: 09/28/17 13:05 Sample ID:


Sample Description: Location:

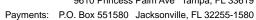
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Oil & Grease (HEM)	1.3	U	mg/L	1	4.0	1.3	10/12/2017 12:00	М
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	350.1				
Ammonia (N)	0.02	U	mg/L	1	0.10	0.02	10/5/2017 14:21	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration N	Method: Co	opper Sulfate Digestion				
	Anal	ytical Me	thod: EPA	351.2				
Total Kjeldahl Nitrogen	0.75		mg/L	1	0.20	0.075	10/10/2017 14:05	Т
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	thod: EPA	365.1				
Orthophosphate	0.021		mg/L	1	0.010	0.0090	9/29/2017 09:18	Т
Analysis Desc: Total	Prep	aration N	Method: Co	pper Sulfate Digestion				
Phosphorus,E365.4,Analysis	Anal	ytical Me	thod: EPA	365.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	10/10/2017 14:05	Т
Analysis Desc: TSS,SM2540D,Water	Anal	ytical Me	ethod: SM	2540D				
Total Suspended Solids	4.7		mg/L	0.5	0.50	0.50	10/4/2017 18:41	Т
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	thod: SM	4500NO3-F				
Nitrate + Nitrite	0.51	I	mg/L	2	0.8	0.4	9/29/2017 10:40	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	thod: SM	5210B				
Biochemical Oxygen Demand	2.6		mg/L	1	2.0	2.0	9/29/2017 13:39	Т

Report ID: 511784 - 1356813 Page 7 of 16

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1716521 UTC SW

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

LAB QUALIFIERS

- M DOH Certification #E82535(AEL-M)(FL NELAC Certification)
- T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 511784 - 1356813 Page 8 of 16

QUALITY CONTROL DATA

Workorder: T1716521 UTC SW

QC Batch: WCAt/11134 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:

T1716521001, T1716521002 Associated Lab Samples:

METHOD BLANK: 2481508

Blank Reporting Limit Qualifiers Parameter Units Result

WET CHEMISTRY

Nitrate + Nitrite mg/L 0.2 0.2 U

QC Batch: WCAt/11140 Analysis Method: EPA 365.1

QC Batch Method: EPA 365.1 Prepared:

Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2481744

Reporting Blank Units Parameter Result

Limit Qualifiers

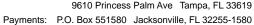
WET CHEMISTRY

0.0090 0.0090 U Orthophosphate mg/L

QC Batch: DGMt/3717 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 09/29/2017 10:30

Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2482202


Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS			
Arsenic	mg/L	0.0016	0.0016 U
Cadmium	mg/L	0.00024	0.00024 U
Chromium	mg/L	0.0020	0.0020 U
Copper	mg/L	0.0014	0.0014 U
Nickel	mg/L	0.0044	0.0044 U
Lead	mg/L	0.0032	0.0032 U
Zinc	mg/L	0.0074	0.0074 U

QC Batch: DGMt/3720 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 09/29/2017 09:50

Associated Lab Samples: T1716521001, T1716521002

Report ID: 511784 - 1356813 Page 9 of 16

QUALITY CONTROL DATA

Workorder: T1716521 UTC SW

METHOD BLANK: 2482404

Reporting Blank

Units Result Limit Qualifiers Parameter

METALS

mg/L 0.000050 0.000050 U Mercury

SM 5210B QC Batch: WCAt/11155 Analysis Method:

QC Batch Method: SM 5210B Prepared:

Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2483445

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Biochemical Oxygen Demand 2.0 2.0 U mg/L

QC Batch: WCAt/11177 Analysis Method: SM 2540D

QC Batch Method: SM 2540D Prepared:

Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2485251

Blank Reporting

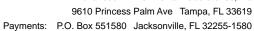
Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Suspended Solids 0.50 0.50 U mg/L

QC Batch: DGMt/3750 Analysis Method: EPA 200.7

10/05/2017 10:15 QC Batch Method: EPA 200.7 Prepared:


Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2489628

Blank Reporting Parameter Units Result Limit Qualifiers **METALS** 0.072 U Calcium mg/L 0.072 mg/L 0.021 U Magnesium 0.021

Report ID: 511784 - 1356813 Page 10 of 16

QUALITY CONTROL DATA

Workorder: T1716521 UTC SW

QC Batch: WCAt/11258 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

T1716521001, T1716521002 Associated Lab Samples:

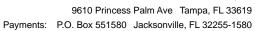
METHOD BLANK: 2490096

Blank Reporting Units Result Limit Qualifiers Parameter

WET CHEMISTRY

Ammonia (N) mg/L 0.02 0.02 U

QC Batch: EXTm/2696 Analysis Method: EPA 608/608.2 QC Batch Method: EPA 608/608.2 Prepared: 10/05/2017 10:00


Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2492090

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
SEMIVOLATILES				
alpha-BHC	ug/L	0.0041	0.0041 U	
gamma-BHC (Lindane)	ug/L	0.0046	0.0046 U	
beta-BHC	ug/L	0.0071	0.0071 U	
delta-BHC	ug/L	0.0056	0.0056 U	
Heptachlor	ug/L	0.0013	0.0013 U	
Aldrin	ug/L	0.0020	0.0020 U	
Heptachlor Epoxide	ug/L	0.00080	0.00080 U	
Endosulfan I	ug/L	0.0016	0.0016 U	
4,4`-DDE	ug/L	0.0016	0.0016 U	
Dieldrin	ug/L	0.0016	0.0016 U	
Endrin	ug/L	0.0025	0.0025 U	
4,4`-DDD	ug/L	0.0024	0.0024 U	
Endosulfan II	ug/L	0.0013	0.0013 U	
Endrin Aldehyde	ug/L	0.0048	0.0048 U	
4,4`-DDT	ug/L	0.0030	0.0030 U	
Endosulfan Sulfate	ug/L	0.0017	0.0017 U	
Methoxychlor	ug/L	0.0053	0.0053 U	
Chlordane (technical)	ug/L	0.059	0.059 U	
Toxaphene	ug/L	0.064	0.064 U	
Aroclor 1016 (PCB-1016)	ug/L	0.15	0.15 U	
Aroclor 1221 (PCB-1221)	ug/L	0.13	0.13 U	
Aroclor 1232 (PCB-1232)	ug/L	0.19	0.19 U	
Aroclor 1242 (PCB-1242)	ug/L	0.17	0.17 U	
Aroclor 1248 (PCB-1248)	ug/L	0.15	0.15 U	
Aroclor 1254 (PCB-1254)	ug/L	0.040	0.040 U	
Aroclor 1260 (PCB-1260)	ug/L	0.020	0.020 U	

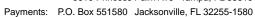
Report ID: 511784 - 1356813 Page 11 of 16

Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: 11716521 UTC SW	/
----------------------------	---


METHOD BLANK: 2	492090					
Parameter		Units	Blank Result	Reporting Limit Qualifiers		
Tetrachloro-m-xylene Decachlorobiphenyl		% %	99 91	44-124 48-137		
QC Batch:	WCAt/	11323		Analysis Method:	EPA 351.2	
QC Batch Method:	Coppe	r Sulfate Digestic	n	Prepared:	10/09/2017 17:10	
Associated Lab Sam	nples:	T1716521001, T	1716521002			
METHOD BLANK: 2	493626					
Parameter		Units	Blank Result	Reporting Limit Qualifiers		
WET CHEMISTRY Total Kjeldahl Nitrog	en	mg/L	0.075	0.075 U		
METHOD BLANK: 2	2493627					
Parameter		Units	Blank Result	Reporting Limit Qualifiers		
WET CHEMISTRY Total Phosphorus (a:	s P)	mg/L	0.046	0.046 U		
QC Batch:	WCAt/	11323		Analysis Method:	EPA 365.4	
QC Batch Method:	Coppe	r Sulfate Digestic	n	Prepared:	10/09/2017 17:10	
Associated Lab Sam	ples:	T1716521001, T	1716521002			
METHOD BLANK: 2	493626					
Parameter		Units	Blank Result	Reporting Limit Qualifiers		
WET CHEMISTRY Total Kjeldahl Nitrog	en	mg/L	0.075	0.075 U		
METHOD BLANK: 2	2493627					
Parameter		Units	Blank Result	Reporting Limit Qualifiers		
WET CHEMISTRY Total Phosphorus (a	s P)	mg/L	0.046	0.046 U		

Report ID: 511784 - 1356813 Page 12 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA

Workorder: T1716521 UTC SW

QC Batch: WCAm/5646 Analysis Method: EPA 1664 A

QC Batch Method: EPA 1664 A Prepared:

Associated Lab Samples: T1716521001, T1716521002

METHOD BLANK: 2499244

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

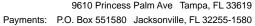
Oil & Grease (HEM) mg/L 1.3 1.3 U

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1716521 UTC SW

QUALITY CONTROL PARAMETER QUALIFIERS

U The compound was analyzed for but not detected.


I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

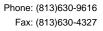
J3 Lab QC Failure

Report ID: 511784 - 1356813 Page 13 of 16

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1716521 UTC SW


Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1716521001	SW-2			SM 4500NO3-F	WCAt/11134
T1716521002	SW-1			SM 4500NO3-F	WCAt/11134
T1716521001	SW-2			EPA 365.1	WCAt/11140
T1716521002	SW-1			EPA 365.1	WCAt/11140
T1716521001	SW-2	SW-846 3010A	DGMt/3717	SW-846 6010	ICPt/2661
T1716521002	SW-1	SW-846 3010A	DGMt/3717	SW-846 6010	ICPt/2661
T1716521001	SW-2	SW-846 7470A	DGMt/3720	SW-846 7470A	CVAt/1707
T1716521002	SW-1	SW-846 7470A	DGMt/3720	SW-846 7470A	CVAt/1707
T1716521001	SW-2			SM 5210B	WCAt/11155
T1716521002	SW-1			SM 5210B	WCAt/11155
T1716521001	SW-2			SM 2540D	WCAt/11177
T1716521002	SW-1			SM 2540D	WCAt/11177
T1716521001	SW-2	EPA 200.7	DGMt/3750	EPA 200.7	ICPt/2677
T1716521002	SW-1	EPA 200.7	DGMt/3750	EPA 200.7	ICPt/2677
T1716521001	SW-2			EPA 350.1	WCAt/11258
T1716521002	SW-1			EPA 350.1	WCAt/11258
T1716521001	SW-2	EPA 608/608.2	EXTm/2696	EPA 608/608.2	GCSm/1983
T1716521002	SW-1	EPA 608/608.2	EXTm/2696	EPA 608/608.2	GCSm/1983
T1716521001	SW-2	Copper Sulfate Digestion	WCAt/11323	EPA 351.2	WCAt/11354
T1716521002	SW-1	Copper Sulfate Digestion	WCAt/11323	EPA 351.2	WCAt/11354
T1716521001	SW-2	Copper Sulfate Digestion	WCAt/11323	EPA 365.4	WCAt/11355
T1716521002	SW-1	Copper Sulfate Digestion	WCAt/11323	EPA 365.4	WCAt/11355


Report ID: 511784 - 1356813 Page 14 of 16

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1716521 UTC SW

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1716521001	SW-2			EPA 1664 A	WCAm/5646
T1716521002	SW-1			EPA 1664 A	WCAm/5646
T1716521001	SW-2	Calculation	CLCt/	Calculation	CLCt/
T1716521002	SW-1	Calculation	CLCt/	Calculation	CLCt/

Report ID: 511784 - 1356813 Page 15 of 16

3 2 1 Xum	Relinqu	3N: AD-051 Form Is	11 -2			I- MS	3W-2	SAMPLE ID	I Fidne H	me:	implied By: S. P.	Indect DANA	*	177.		idress:	13 SHC)			
Falla 9/18/17/15/38	Relinquished by: Date Time	N: AD-051 Form last revised 06/19/2017	SW = surface water					SAMPLE DESCRIPTION		OSTANDARD RUSH	Folkman	CAYDOS		47-6786		The second secon	Environmenta 1	Florida's Largest Laboratory Naturnit	Environmental Laboratories, Inc.	Advanced
D-18/1-13	Representation Date Time	☐ Tem	und water DW = drinking water O = oil A = air SO = soil			6 9halm 13:05 Sw 7	@ 1/8/17 12:10 Sw 7	Comp DATE TIME MATRIX COUNT	□ADaPT □ EQuIS □ Other		Special Instructions:		FDEP Facility Address:	FDEP Facility No:	PO Number:	Project Number:	Project Name: UTC SW		Fort Myers: 13100 Westinks Terrace, Ste. 10 - Fort Myers, FL 33913 - 239.574.8130 - Fax 239.674.8128 - "Jacksonville: 8881 Sauthenie Péwy - Jacksonville Fl 39716 - 200 383 2656 - Fax 200 383 2656	Altamonte Springs; 380 Northiska Blvd., Ste. 1048 • Altamonte Springs, FL 32701 • 407,937,1594 • Fax 407,937,1597
Contact Person: Supplier of Water: Site-Address:		Temp. when received (observed), que identifier (circle IR temp gun used) J:	SL = sludge Preservation Code:			4	4 4	Preservation Q Q 11-	5	30! TS	D D					BOT SIZE &	TLE TYPE	9.6274 • Fax 850.219.8275	.B130 • Fax 239.674,8128	32701 • 407.937.1594 • Fax 407.937.1597
on not otherwise supplied) PWS ID:	FOR DRINKING WATER USE:	J: 9A G: LT-1 LT-2				4 4 4 4	C A B A K	This of Marie To San	A H	9/4 9/1 0	dic P	ex/j	Mar Mar	Pbi	110			Initiamat: 10200 USA Today Yey, Miramar, FL 33025 • 954.889.2280 • Fax 954.889.2281 ☐ Tampa: 9510 Princess Palm Ave, • Tampe, FL 33519 • 813.630.9516 • Fax 913.630.4327	Gainesville: 4985 SW 41st Blvd. · Gaine	1176521
Phane :		Temp, when received (corrected) 7.6 °C (T: 104) A: 3A M: 3A S: 1V F: 1A	I = Ice H=(HCI) S = (H2SO4) N = (HNO3) T = (Sodium Thiosulfate)			w.	(4)	LAB							R			v, FL 33025 • 954.889.2280 • Fax 954.889.2281 v, FL 33619 • 813.630.9816 • Fax 813.630.4327	Gainesville: 4965 SW 41st Blvd. • Gainesvile, FL 32808 • 352,377,2248 • Fax 352,396,6839	Page of

Phone: (813)630-9616 Fax: (813)630-4327

December 26, 2017

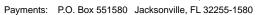
Dana Gaydos Gaydos Hydro Services PO Box 55802 Saint Petersburg, FL 33732

RE: Workorder: T1720930 UTC SW

Dear Dana Gaydos:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, December 06, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Michael Cammarata MCammarata@AELLab.com

Enclosures

Report ID: 524966 - 1699265 Page 1 of 17

SAMPLE SUMMARY

Workorder: T1720930 UTC SW

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1720930001	SW-1	Water	12/6/2017 11:00	12/6/2017 12:56
T1720930002	SW-2	Water	12/6/2017 11:40	12/6/2017 12:56

Report ID: 524966 - 1699265 Page 2 of 17

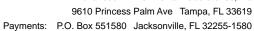
ANALYTICAL RESULTS

Workorder: T1720930 UTC SW

Date Received: 12/06/17 12:56 Lab ID: T1720930001 Matrix: Water

SW-1 Date Collected: 12/06/17 11:00 Sample ID:

Sample Description: Location:


Campio Bocomption.				2000110111				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: E200.7 Analysis, Waters	Prep	paration I	Method: EPA	200.7				
	Ana	lytical Me	ethod: EPA 20	00.7				
Calcium	54		mg/L	1	0.30	0.072	12/8/2017 21:46	Т
Magnesium	6.9		mg/L	1	0.40	0.021	12/8/2017 21:46	Т
Total Hardness (as CaCO3)	160		mg/L	1	0.70	0.12	12/8/2017 21:46	Т
Analysis Desc: SW846 6010B	Prep	paration I	Method: SW-8	346 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-84	6 6010				
Arsenic	0.0032	ı	mg/L	1	0.010	0.0016	12/8/2017 20:05	Т
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	12/8/2017 20:05	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	12/8/2017 20:05	T
Copper	0.0038	 	mg/L	1	0.0080	0.0014	12/8/2017 20:05	T
Lead	0.0032	U	mg/L	1	0.010		12/8/2017 20:05	T
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	12/8/2017 20:05	T
Zinc	0.0074	U	mg/L	1	0.010	0.0074	12/8/2017 20:05	Т
Analysis Desc: SW846 7470A	Prep	paration I	Method: SW-8	346 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-84	6 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	12/8/2017 10:42	Т
Microbiology								
Analysis Desc: Total	Ana	lytical Me	ethod: SM 92	22 B (MF)				
Coliform,SM9222B,Water				` ,				
Coliform Total	80	1,B	#/100 mL	10	10	10	12/6/2017 18:15	Т
Analysis Desc: Fecal Coliform	Ana	lytical Me	ethod: SM 92	22D				
MF,SM9222D,Water								
Coliform Fecal	10	U	#/100 mL	10	10	10	12/6/2017 14:30	Т
SEMIVOLATILES								
Analysis Desc: E608 Analysis, Water	Prer	paration I	Method: EPA	608/608.2				
	· ·		ethod: EPA 60					
4,4`-DDD	0.012	U	ug/L	5	0.10	0.012	12/18/2017 20:55	М
4,4`-DDE	0.0080	Ü	ug/L ug/L	5	0.10		12/18/2017 20:55	M
4,4`-DDT	0.015	Ü	ug/L	5	0.10		12/18/2017 20:55	M
Aldrin	0.010	Ü	ug/L ug/L	5	0.10		12/18/2017 20:55	M
Aroclor 1016 (PCB-1016)	0.75	Ü	ug/L	5	1.0		12/18/2017 20:55	M
Arocior 1016 (PCB-1016)	0.75	U	ug/L	5	1.0	0.75	12/18/2017 20:55	

Report ID: 524966 - 1699265 Page 3 of 17

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1720930 UTC SW

Date Received: 12/06/17 12:56 Lab ID: T1720930001 Matrix: Water

SW-1 Date Collected: 12/06/17 11:00 Sample ID:

Sample Description: Location:

Campio Bocomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Aroclor 1221 (PCB-1221)	0.65	U	ug/L	5	1.0	0.65	12/18/2017 20:55	М
Aroclor 1232 (PCB-1232)	0.95	U	ug/L	5	1.0	0.95	12/18/2017 20:55	M
Aroclor 1242 (PCB-1242)	0.85	U	ug/L	5	1.0	0.85	12/18/2017 20:55	M
Aroclor 1248 (PCB-1248)	0.75	U	ug/L	5	1.0	0.75	12/18/2017 20:55	M
Aroclor 1254 (PCB-1254)	0.20	U	ug/L	5	1.0	0.20	12/18/2017 20:55	M
Aroclor 1260 (PCB-1260)	0.10	U	ug/L	5	1.0	0.10	12/18/2017 20:55	M
Chlordane (technical)	0.30	U	ug/L	5	1.0	0.30	12/18/2017 20:55	M
Dieldrin	0.0080	U	ug/L	5	0.10	0.0080	12/18/2017 20:55	M
Endosulfan I	0.0080	U	ug/L	5	0.10	0.0080	12/18/2017 20:55	M
Endosulfan II	0.0065	U	ug/L	5	0.10	0.0065	12/18/2017 20:55	M
Endosulfan Sulfate	0.0085	U	ug/L	5	0.10	0.0085	12/18/2017 20:55	M
Endrin	0.012	U	ug/L	5	0.10	0.012	12/18/2017 20:55	M
Endrin Aldehyde	0.024	U	ug/L	5	0.10	0.024	12/18/2017 20:55	M
Heptachlor	0.0065	U	ug/L	5	0.10	0.0065	12/18/2017 20:55	M
Heptachlor Epoxide	0.0040	U	ug/L	5	0.10	0.0040	12/18/2017 20:55	M
Methoxychlor	0.026	U	ug/L	5	0.10	0.026	12/18/2017 20:55	M
Toxaphene	0.32	U	ug/L	5	1.0	0.32	12/18/2017 20:55	M
alpha-BHC	0.020	U	ug/L	5	0.10	0.020	12/18/2017 20:55	M
beta-BHC	0.036	U	ug/L	5	0.10	0.036	12/18/2017 20:55	M
delta-BHC	0.028	U	ug/L	5	0.10	0.028	12/18/2017 20:55	M
gamma-BHC (Lindane)	0.023	U	ug/L	5	0.10	0.023	12/18/2017 20:55	M
Tetrachloro-m-xylene (S)	0	2	%	5	44-124		12/18/2017 20:55	
Decachlorobiphenyl (S)	0	2	%	5	48-137		12/18/2017 20:55	
WET CHEMISTRY								
Analysis Desc: Total Nitrogen, Calculated, Water	Ana	lytical Me	ethod: Calc	ulation				
•				_				
Total Nitrogen	1.0		mg/L	1	0.10	0.10	12/15/2017 14:23	Т
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.025	U	mg/L	1	0.10	0.025	12/7/2017 12:30	Т
Analysis Desc: TKN,E351.2,Water	Pre	paration I	Method: Co	pper Sulfate Digestion	า			
	Ana	lytical Me	ethod: EPA	351.2				
Total Kjeldahl Nitrogen	0.57		mg/L	1	0.20	0.075	12/12/2017 14:56	Т
Analysis Desc: Orthophosphate,E365.1,Water	Ana	lytical Me	ethod: EPA	365.1				
Orthophosphate	0.015		mg/L	1	0.010	0.0090	12/6/2017 17:56	Т

Report ID: 524966 - 1699265 Page 4 of 17

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1720930 UTC SW

Date Received: 12/06/17 12:56 Lab ID: T1720930001 Matrix: Water

SW-1 Date Collected: 12/06/17 11:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: Total	Prep	aration I	Method: 0	Copper Sulfate Diges	tion			
Phosphorus,E365.4,Analysis	Anal	ytical Me	ethod: EP	A 365.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	12/12/2017 14:56	Т
Analysis Desc: TSS,SM2540D,Water	Anal	ytical Me	ethod: SM	1 2540D				
Total Suspended Solids	6.2		mg/L	1	1.0	1.0	12/11/2017 09:43	Т
Analysis Desc: Nitrate,Nitrite SM4500NO3F,Water	Anal	ytical Me	ethod: SM	1 4500NO3-F				
Nitrate	0.18	U	mg/L	1	0.20	0.18	12/7/2017 10:23	Т
Nitrate + Nitrite	0.45	ı	mg/L	2	8.0	0.4	12/7/2017 11:46	Т
Nitrite	0.18	U	mg/L	1	0.20	0.18	12/7/2017 10:23	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM	l 5210B				
Biochemical Oxygen Demand	2.6		mg/L	1	2.0	2.0	12/7/2017 13:43	Т

Lab ID: T1720930002 Date Received: 12/06/17 12:56 Matrix: Water

Date Collected: 12/06/17 11:40 Sample ID: SW-2

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: E200.7 Analysis, Waters	Prep	aration I	Method: EF	PA 200.7				
	Anal	ytical Me	ethod: EPA	200.7				
Calcium	55		mg/L	1	0.30	0.072	12/8/2017 22:28	Т
Magnesium	7.0		mg/L	1	0.40	0.021	12/8/2017 22:28	Т
Total Hardness (as CaCO3)	170		mg/L	1	0.70	0.12	12/8/2017 22:28	T
Analysis Desc: SW846 6010B Preparation Method: SW-846 3010A								
Analysis,Water	Anal							
Arsenic	0.0041	ı	mg/L	1	0.010	0.0016	12/8/2017 20:26	Т
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	12/8/2017 20:26	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	12/8/2017 20:26	Т
Copper	0.0042	- 1	mg/L	1	0.0080	0.0014	12/8/2017 20:26	Т
Lead	0.0032	U	mg/L	1	0.010	0.0032	12/8/2017 20:26	Т

Report ID: 524966 - 1699265 Page 5 of 17

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Adjusted

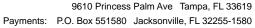
Adjusted

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1720930 UTC SW

Date Received: 12/06/17 12:56 Lab ID: T1720930002 Matrix: Water


SW-2 Date Collected: 12/06/17 11:40 Sample ID:

Sample Description: Location:

					Aujusieu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	12/8/2017 20:26	T
Zinc	0.0076	I	mg/L	1	0.010	0.0074	12/8/2017 20:26	Τ
Analysis Desc: SW846 7470A	Pres	paration I	Method: SW-8	46 7470A				
Analysis, Water								
		•	ethod: SW-846					
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	12/8/2017 10:42	Т
Microbiology								
Analysis Desc: Total	Ana	lytical Me	ethod: SM 922	2 B (MF)				
Coliform,SM9222B,Water								
Coliform Total	100	1,B	#/100 mL	10	10	10	12/6/2017 18:15	Т
Analysis Desc: Fecal Coliform	Ana	lytical Me	ethod: SM 922	2D				
MF,SM9222D,Water	7.1.0	.,	,oa. o ozz					
Coliform Fecal	10	В	#/100 mL	10	10	10	12/6/2017 14:30	Т
SEMIVOLATILES								
Analysis Desc: E608 Analysis, Water	Prep	paration I	Method: EPA 6	608/608.2				
	Ana	lytical Me	ethod: EPA 608	8/608.2				
4,4`-DDD	0.012	U	ug/L	5	0.10	0.012	12/18/2017 21:37	М
4,4`-DDE	0.0080	U	ug/L	5	0.10	0.0080	12/18/2017 21:37	М
4,4`-DDT	0.015	U	ug/L	5	0.10	0.015	12/18/2017 21:37	M
Aldrin	0.010	U	ug/L	5	0.10	0.010	12/18/2017 21:37	М
Aroclor 1016 (PCB-1016)	0.75	U	ug/L	5	1.0	0.75	12/18/2017 21:37	М
Aroclor 1221 (PCB-1221)	0.65	U	ug/L	5	1.0	0.65	12/18/2017 21:37	М
Aroclor 1232 (PCB-1232)	0.95	U	ug/L	5	1.0	0.95	12/18/2017 21:37	М
Aroclor 1242 (PCB-1242)	0.85	U	ug/L	5	1.0	0.85	12/18/2017 21:37	M
Aroclor 1248 (PCB-1248)	0.75	U	ug/L	5	1.0	0.75	12/18/2017 21:37	M
Aroclor 1254 (PCB-1254)	0.20	U	ug/L	5	1.0	0.20	12/18/2017 21:37	M
Aroclor 1260 (PCB-1260)	0.10	U	ug/L	5	1.0	0.10	12/18/2017 21:37	M
Chlordane (technical)	0.30	U	ug/L	5	1.0	0.30	12/18/2017 21:37	M
Dieldrin	0.0080	U	ug/L	5	0.10	0.0080	12/18/2017 21:37	М
Endosulfan I	0.0080	U	ug/L	5	0.10	0.0080	12/18/2017 21:37	М
Endosulfan II	0.0065	U	ug/L	5	0.10	0.0065	12/18/2017 21:37	М
Endosulfan Sulfate	0.0085	U	ug/L	5	0.10	0.0085	12/18/2017 21:37	М
Endrin	0.012	U	ug/L	5	0.10	0.012	12/18/2017 21:37	М
Endrin Aldehyde	0.024	U	ug/L	5	0.10	0.024	12/18/2017 21:37	М
Heptachlor	0.0065	U	ug/L	5	0.10	0.0065	12/18/2017 21:37	М
Heptachlor Epoxide	0.0040	U	ug/L	5	0.10	0.0040	12/18/2017 21:37	М

Report ID: 524966 - 1699265 Page 6 of 17

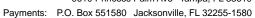
ANALYTICAL RESULTS

Workorder: T1720930 UTC SW

Date Received: 12/06/17 12:56 Lab ID: T1720930002 Matrix: Water

Date Collected: 12/06/17 11:40 Sample ID: SW-2

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Methoxychlor	0.026	U	ug/L	5	0.10	0.026	12/18/2017 21:37	М
Toxaphene	0.32	U	ug/L	5	1.0	0.32	12/18/2017 21:37	M
alpha-BHC	0.020	U	ug/L	5	0.10	0.020	12/18/2017 21:37	М
beta-BHC	0.036	U	ug/L	5	0.10	0.036	12/18/2017 21:37	М
delta-BHC	0.028	U	ug/L	5	0.10	0.028	12/18/2017 21:37	М
gamma-BHC (Lindane)	0.023	U	ug/L	5	0.10	0.023	12/18/2017 21:37	М
Tetrachloro-m-xylene (S)	0	2	%	5	44-124		12/18/2017 21:37	
Decachlorobiphenyl (S)	0	2	%	5	48-137		12/18/2017 21:37	
WET CHEMISTRY								
Analysis Desc: Total Nitrogen,Calculated,Water	Ana	lytical Me	ethod: Calc	ulation				
Total Nitrogen	0.80		mg/L	1	0.10	0.10	12/21/2017 16:34	Т
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.025	U	mg/L	1	0.10	0.025	12/7/2017 12:30	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: Co	pper Sulfate Digesti	ion			
	Ana	lytical Me	ethod: EPA	351.2				
Total Kjeldahl Nitrogen	0.45		mg/L	1	0.20	0.075	12/12/2017 14:56	Т
Analysis Desc: Orthophosphate,E365.1,Water	Ana	lytical Me	ethod: EPA	365.1				
Orthophosphate	0.018		mg/L	1	0.010	0.0090	12/6/2017 17:58	Т
Analysis Desc: Total	Prep	aration I	Method: Co	pper Sulfate Digesti	ion			
Phosphorus,E365.4,Analysis	Ana	lytical Me	ethod: EPA	365.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	12/12/2017 14:56	Т
Analysis Desc: TSS,SM2540D,Water	Ana	lytical Me	ethod: SM 2	2540D				
Total Suspended Solids	3.0		mg/L	1	1.0	1.0	12/11/2017 09:43	Т
Analysis Desc: Nitrate,Nitrite SM4500NO3F,Water	Ana	lytical Me	ethod: SM 4	1500NO3-F				
Nitrate	0.18	U	mg/L	1	0.20	0.18	12/7/2017 10:24	Т
Nitrate + Nitrite	0.35	I	mg/L	2	0.8	0.4	12/7/2017 11:47	Т
Nitrite	0.18	U	mg/L	1	0.20	0.18	12/7/2017 10:24	Т
Analysis Desc: BOD,SM5210B,Water	Ana	lytical Me	ethod: SM 5	5210B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	12/7/2017 13:40	Т
			-					

Report ID: 524966 - 1699265 Page 7 of 17

CERTIFICATE OF ANALYSIS

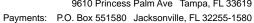
This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1720930 UTC SW

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- [2] Surrogate diluted out.
- В Results based upon colony counts outside the acceptable range.
- Positive for Total [1]


LAB QUALIFIERS

- DOH Certification #E82535(AEL-M)(FL NELAC Certification) M
- Т DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 524966 - 1699265 Page 8 of 17

QUALITY CONTROL DATA

Workorder: T1720930 UTC SW

QC Batch: MICt/3883 Analysis Method: SM 9222D

QC Batch Method: SM 9222D Prepared:

T1720930001, T1720930002 Associated Lab Samples:

METHOD BLANK: 2552477

Blank Reporting Limit Qualifiers Parameter Units Result

Microbiology

Coliform Fecal #/100 mL 1 1 U

METHOD BLANK: 2552485

Blank Reporting Limit Qualifiers Parameter Units Result Microbiology 1 U #/100 mL 1

Coliform Fecal

QC Batch: WCAt/12456 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:

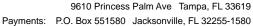
Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2553618

Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY Nitrate mg/L 0.18 0.18 U Nitrite mg/L 0.18 0.18 U

QC Batch: WCAt/12466 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:


T1720930001, T1720930002 Associated Lab Samples:

METHOD BLANK: 2553904

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY Nitrate + Nitrite 0.2 0.2 U mg/L

Report ID: 524966 - 1699265 Page 9 of 17

QUALITY CONTROL DATA

Workorder: T1720930 UTC SW

QC Batch: WCAt/12471 Analysis Method: EPA 365.1

QC Batch Method: EPA 365.1 Prepared:

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2554001

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

Orthophosphate 0.0090 0.0090 U mg/L

QC Batch: WCAt/12475 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2554238

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

0.025 U Ammonia (N) 0.025 mg/L

QC Batch: WCAt/12481 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Prepared:

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2555358

Reporting Blank

Parameter Units Result Limit Qualifiers

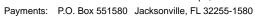
WET CHEMISTRY

2.0 U Biochemical Oxygen Demand mg/L 2.0

QC Batch: DGMt/4042 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 12/08/2017 12:00

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2555999


Blank Reporting

Units Result Limit Qualifiers Parameter

METALS

Report ID: 524966 - 1699265 Page 10 of 17

QUALITY CONTROL DATA

Workorder: T1720930 UTC SW

N	1FTL	4OD	RI	ANK.	2555999
Iν	11 - 11	טטר	DL	AINN.	2000999

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Arsenic	mg/L	0.0016	0.0016 U	
Cadmium	mg/L	0.00024	0.00024 U	
Chromium	mg/L	0.0020	0.0020 U	
Copper	mg/L	0.0014	0.0014 U	
Nickel	mg/L	0.0044	0.0044 U	
Lead	mg/L	0.0032	0.0032 U	
Zinc	mg/L	0.0074	0.0074 U	

QC Batch: DGMt/4043 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Prepared: 12/08/2017 12:00

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2556010

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Calcium	mg/L	0.072	0.072 U	
Magnesium	mg/L	0.021	0.021 U	

QC Batch: Analysis Method: DGMt/4045 SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 12/08/2017 09:10

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2556159

Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS Mercury	mg/L	0.000050	0.000050 U

QC Batch: WCAt/12515 Analysis Method: SM 2540D

QC Batch Method: SM 2540D Prepared:

Associated Lab Samples: T1720930001, T1720930002

Report ID: 524966 - 1699265 Page 11 of 17

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1720930 UTC SW

METHOD BLANK: 2556822

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Suspended Solids mg/L 1.0 1.0 U

QC Batch: MICt/3902 Analysis Method: SM 9222 B (MF)

QC Batch Method: SM 9222 B (MF) Prepared:

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2557334

Blank Reporting

Parameter Units Result Limit Qualifiers

Microbiology

#/100 mL 1 U Coliform Total 1

METHOD BLANK: 2557335

Blank Reporting Units Result Parameter

Limit Qualifiers

Microbiology

Coliform Total #/100 mL 1 1 U

QC Batch: WCAt/12544 Analysis Method: EPA 351.2

QC Batch Method: Copper Sulfate Digestion Prepared: 12/11/2017 16:49

Associated Lab Samples: T1720930001, T1720930002

METHOD BLANK: 2558076

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Kjeldahl Nitrogen mg/L 0.075 0.075 U

METHOD BLANK: 2558077

Blank Reporting Parameter Units Limit Qualifiers Result WET CHEMISTRY

Total Phosphorus (as P)

0.046 0.046 U mg/L

Report ID: 524966 - 1699265 Page 12 of 17

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1720930 UTC SW

QC Batch: WCAt/12544 Analysis Method: EPA 365.4

QC Batch Method: Copper Sulfate Digestion Prepared: 12/11/2017 16:49

T1720930001, T1720930002 Associated Lab Samples:

METHOD BLANK: 2558076

Blank Reporting Units Limit Qualifiers Parameter Result

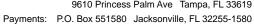
WET CHEMISTRY

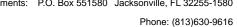
Total Kjeldahl Nitrogen mg/L 0.075 0.075 U

METHOD BLANK: 2558077

Blank Reporting Parameter Units Limit Qualifiers Result WET CHEMISTRY 0.046 Total Phosphorus (as P) 0.046 U mg/L

QC Batch: EXTm/2923 Analysis Method: EPA 608/608.2 QC Batch Method: EPA 608/608.2 12/13/2017 12:00 Prepared:


Associated Lab Samples: T1720930001, T1720930002


METHOD BLANK: 2561316

Parameter	Units	Blank Result	Reporting Limit Qualifiers
	UTILS	Result	Limit Qualifiers
SEMIVOLATILES			
alpha-BHC	ug/L	0.0041	0.0041 U
gamma-BHC (Lindane)	ug/L	0.0046	0.0046 U
beta-BHC	ug/L	0.0071	0.0071 U
delta-BHC	ug/L	0.0056	0.0056 U
Heptachlor	ug/L	0.0013	0.0013 U
Aldrin	ug/L	0.0020	0.0020 U
Heptachlor Epoxide	ug/L	0.00080	0.00080 U
Endosulfan I	ug/L	0.0016	0.0016 U
4,4`-DDE	ug/L	0.0016	0.0016 U
Dieldrin	ug/L	0.0016	0.0016 U
Endrin	ug/L	0.0025	0.0025 U
4,4`-DDD	ug/L	0.0024	0.0024 U
Endosulfan II	ug/L	0.0013	0.0013 U
Endrin Aldehyde	ug/L	0.0048	0.0048 U
4,4`-DDT	ug/L	0.0030	0.0030 U
Endosulfan Sulfate	ug/L	0.0017	0.0017 U
Methoxychlor	ug/L	0.0053	0.0053 U
Chlordane (technical)	ug/L	0.059	0.059 U

Report ID: 524966 - 1699265 Page 13 of 17

Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1720930 UTC SW

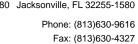
METHOD BLANK: 2561316

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Toxaphene	ug/L	0.064	0.064 U
Aroclor 1016 (PCB-1016)	ug/L	0.15	0.15 U
Aroclor 1221 (PCB-1221)	ug/L	0.13	0.13 U
Aroclor 1232 (PCB-1232)	ug/L	0.19	0.19 U
Aroclor 1242 (PCB-1242)	ug/L	0.17	0.17 U
Aroclor 1248 (PCB-1248)	ug/L	0.15	0.15 U
Aroclor 1254 (PCB-1254)	ug/L	0.040	0.040 U
Aroclor 1260 (PCB-1260)	ug/L	0.020	0.020 U
Tetrachloro-m-xylene (S)	%	67	44-124
Decachlorobiphenyl (S)	%	63	48-137

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1720930 UTC SW

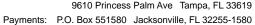
QUALITY CONTROL PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. ı
- J4 **Estimated Result**
- L Off-scale high. Actual value could be more than the value given.

Report ID: 524966 - 1699265 Page 14 of 17

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1720930 UTC SW


Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1720930001	SW-1			SM 9222D	MICt/3883
T1720930002	SW-2			SM 9222D	MICt/3883
T1720930001	SW-1			SM 4500NO3-F	WCAt/12456
T1720930002	SW-2			SM 4500NO3-F	WCAt/12456
T1720930001	SW-1			SM 4500NO3-F	WCAt/12466
T1720930002	SW-2			SM 4500NO3-F	WCAt/12466
T1720930001	SW-1			EPA 365.1	WCAt/12471
T1720930002	SW-2			EPA 365.1	WCAt/12471
T1720930001	SW-1			EPA 350.1	WCAt/12475
Г1720930002	SW-2			EPA 350.1	WCAt/12475
T1720930001	SW-1			SM 5210B	WCAt/12481
T1720930002	SW-2			SM 5210B	WCAt/12481
T1720930001	SW-1	SW-846 3010A	DGMt/4042	SW-846 6010	ICPt/2894
T1720930002	SW-2	SW-846 3010A	DGMt/4042	SW-846 6010	ICPt/2894
Г1720930001	SW-1	EPA 200.7	DGMt/4043	EPA 200.7	ICPt/2895
T1720930002	SW-2	EPA 200.7	DGMt/4043	EPA 200.7	ICPt/2895
Г1720930001	SW-1	SW-846 7470A	DGMt/4045	SW-846 7470A	CVAt/1764
T1720930002	SW-2	SW-846 7470A	DGMt/4045	SW-846 7470A	CVAt/1764
T1720930001	SW-1			SM 2540D	WCAt/12515
T1720930002	SW-2			SM 2540D	WCAt/12515
T1720930001	SW-1			SM 9222 B (MF)	MICt/3902
Г1720930002	SW-2			SM 9222 B (MF)	MICt/3902

Report ID: 524966 - 1699265 Page 15 of 17

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1720930 UTC SW

Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
SW-1	Copper Sulfate Digestion	WCAt/12544	EPA 351.2	WCAt/12560
SW-2	Copper Sulfate Digestion	WCAt/12544	EPA 351.2	WCAt/12560
SW-1	Copper Sulfate Digestion	WCAt/12544	EPA 365.4	WCAt/12561
SW-2	Copper Sulfate Digestion	WCAt/12544	EPA 365.4	WCAt/12561
SW-1	EPA 608/608.2	EXTm/2923	EPA 608/608.2	GCSm/2114
SW-2	EPA 608/608.2	EXTm/2923	EPA 608/608.2	GCSm/2114
SW-1	Calculation	CI Ct/	Calculation	CLCt/
				CLCt/
	SW-1 SW-2 SW-1 SW-2 SW-1 SW-2	SW-1 Copper Sulfate Digestion SW-2 Copper Sulfate Digestion SW-1 Copper Sulfate Digestion SW-2 Copper Sulfate Digestion SW-2 EPA 608/608.2 SW-2 EPA 608/608.2	SW-1 Copper Sulfate Digestion WCAt/12544 SW-2 Copper Sulfate Digestion WCAt/12544 SW-1 Copper Sulfate Digestion WCAt/12544 SW-2 Copper Sulfate Digestion WCAt/12544 SW-2 EPA 608/608.2 EXTm/2923 SW-2 EPA 608/608.2 EXTm/2923 SW-1 Calculation CLCt/	SW-1 Copper Sulfate Digestion WCAt/12544 EPA 351.2 SW-2 Copper Sulfate Digestion WCAt/12544 EPA 351.2 SW-1 Copper Sulfate Digestion WCAt/12544 EPA 365.4 SW-2 Copper Sulfate Digestion WCAt/12544 EPA 365.4 SW-1 EPA 608/608.2 EXTm/2923 EPA 608/608.2 SW-2 EPA 608/608.2 EXTm/2923 EPA 608/608.2 SW-1 Calculation CLCt/ Calculation

Report ID: 524966 - 1699265 Page 16 of 17

4	ام	2 XIII	Relin	CN: AD-051 Form	eceived on Ica	Matrix Code: WW = wastewater						SW-Z	J. B.		SAMPLE ID	or Frome 3	Jm Around Time: STANDARD	ampled By: S. Tall Linvoln T.	HNAID TOBING	-XX	" H		ddress:	(SHE)				
		The same	Relinquished by: D	sed 06/19/	6	= wastewater SW = surface water									SAMPLE DE		STANDARD RUSH	Gran T. Cleu	7 GAYDOS		7-667-6786			(-) HS ENVIRONMENTA	Florida's Largest Laboratory Notwork	🌒 Environmental Laboratories, Inc.	Advanced	
	1	SC-71 119	Date Time												DESCRIPTION			Cheveland						7	ry Noowask	boratories, Inc.		
	0	Sarah Alle	Received by:		Temp from blank	GW = ground water DW = drinking water						0		o Comp	Gomn	□ADaPT [Special Instructions:		FDEP Facility Address:	FDEP Facility No:	PO Number:	Project Number:	Project Name:	Tallahassee: 26%	Fort Myers: 13100	Altamonte Sprin	
		1 1 Mindles	ed by:	Device used for n	blank Where re	0 = 0			+	+		Oh:11 49th	12/6/17 11:00	DATE TIME	- 12	□ EQuIS □ Other								CSW	Tallahassee: 2639 North Monroe St., Suite D, Tallahassee, FL 32303 - 850,219.6274 - Fax 850,219.6275	Fort Myers: 13100 Wesfirks Terrado, Ste. 10 • Fort Myers, FL 33913 • 239,574,8130 • Fax 239,574,8120 Jacksonville: 6681 Southcolar Plays • Jacksonville FL 32916 • 904,363 9650 • Fax 904,363 9654	Aftarmonte Springs: 390 Northalio Bivd., Sk. 1048 • Allamonia Springs, FL 32701 • 407:597.1594 • Fax 407:597.1597	
		D/6/17 18 50	Date Time	Device used for measuring Temp by unique identifier (circle IR temp gun used)	× 11	A = air SO = soil						Sm d	SW	000111	MATRIX NO.	ier									allahassee, FL 32303 • 850.2	-ort Myers, FL 33913 • 239.67 -dia 61 37916 • qru 369 936	. 1046 • Altamente Springs, F	
	_	36		nique identi		SL = sludge			•			'		1	Preservation		ANA	LYS	IS RI	EQU	IRED	,		TTLE A TYPE	119.6274 • Fax 8	74.8130 · Fax 23	L 32701 + 407.9	
Sile	2	(Whe	FO	fier (circle IR temp gun used) J:	Temp who							×	· >	12	Nowhio		Fe	ca)				e		50.219.6275	19.674.8128	37,1594 • Fax 4	
Site-Address:	The state of the s	(When PWS Information not otherwise supplied) Contact Person:	FOR DRINKING WATER USE:	R temp gu	an received	Preservation Code:						X	X	2	7		(OF	>				`				07.937.1597	
ier.		mation not o	KING	1 2	(ohean/a	on Code:		1	1		_	X	X	2	H	1			ide	5			e.					
		otherwise su	WATER	9A	\$	l≡iœ H		-	\downarrow	_	+	X	~	12	H	_	{	30	0						iramar: 10	ainesville:	//	Acres
			mil	G: LT-1 LT-2	1	(HCI) S	_	+	+	+	+	X	X	Z	17		AS	S	<u>S</u>	<u>- 1</u>	()	v/			200 USA Toda Princess Pair	4965 SW 41s	1/7/ 0930	
		PWS ID:		2 T: 18A	Tomn w	= (H2SO4)		+	+	+	+	X	X	2	0	P	12/1 13	19	1/C /N) /N/	/Er	2/1	iare	wes	2	y Way, Mirama n Awe. • Tampa	t Blvd. • Gaine	330	
	Tiolia.	Dhone -		T: 196 A: 3A M: 3A S: 1	The second	N = (HNC		+	+	+	+	X	X	7	Punghano							+	9		II, FL 33625 • 8	sville, FL 3260	Page	
				M: 3A	od foorman)3) T = (S		\dagger	1	+	\dagger	X	X	7	- H		N	h	C at	e 5	`	1	4		13.630.9616	8 • 352.377.23	0	
				< +		I = ice H=(HCI) S = (H2SO4) N = (HNO3) T = (Sodium Thiosulfate)			1		\dagger	T,					•	***	-01	~ 4		1			Millamar: 10000 USA Today Way, Mramar, FL 33026 • 964,889,2288 • Fax 954,889,2281 1ampa: 9610 Princess Palm Ave. • Tampa, FL 33819 • 813,630,9616 • Fax 813,630,4327	Gainesville: 4865 5// 41st Brot Gainesville, FL 32508 - 352.377 2349 - Fax 352.365.8839	으. 	
				E1A	3	osulfate)						8	13	L	ABO	OR/	ATC	RY	I.D.	NU	MBE	ER			2281	96,6839		

Phone: (813)630-9616 Fax: (813)630-4327

April 10, 2017

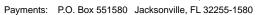
Dana Gaydos Gaydos Hydro Services PO Box 55802 Saint Petersburg, FL 33732

RE: Workorder: T1705104 UTC-GW

Dear Dana Gaydos:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, March 23, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Michael Cammarata MCammarata@AELLab.com

Enclosures

Report ID: 477924 - 417480 Page 1 of 15

SAMPLE SUMMARY

Workorder: T1705104 UTC-GW

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1705104001	GW-2	Water	3/23/2017 13:00	3/23/2017 15:10
T1705104002	GW-1	Water	3/23/2017 14:05	3/23/2017 15:10

Report ID: 477924 - 417480 Page 2 of 15

Phone: (813)630-9616

Fax: (813)630-4327

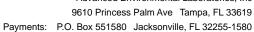
ANALYTICAL RESULTS

Workorder: T1705104 UTC-GW

Lab ID: T1705104001 Date Received: 03/23/17 15:10 Matrix: Water

Sample ID: GW-2 Date Collected: 03/23/17 13:00

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SW-8	46 3010A				
Analysis, Water	Anal	lytical Me	ethod: SW-846	6010				
Arsenic	0.0053	ı	mg/L	1	0.010	0.0016	3/28/2017 18:12	Т
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	3/28/2017 18:12	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	3/28/2017 18:12	Т
Copper	0.0033	I	mg/L	1	0.0080	0.00084	3/28/2017 18:12	Т
Lead	0.0032	U	mg/L	1	0.010	0.0032	3/28/2017 18:12	Т
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	3/28/2017 18:12	Т
Zinc	0.013		mg/L	1	0.010	0.0020	3/28/2017 18:12	Т
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW-8	46 7470A				
Analysis, Water	Anal	lytical Me	ethod: SW-846	6 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	3/28/2017 13:05	Т
Microbiology								
Microbiology	Anal	hatiaal Ma	sthad: CM 020	O D (ME)				
Analysis Desc: Total Coliform,SM9222B,Water	Anai	iyilcai ivie	ethod: SM 922	Z B (IVIF)				
Coliform Total	1	U	#/100 mL	1	1	1	3/23/2017 18:12	Т
Analysis Desc: Fecal Coliform MF,SM9222D,Water	Anal	lytical Me	ethod: SM 922	2D				
Coliform Fecal	1	U	#/100 mL	1	1	1	3/23/2017 17:17	Т
WET CHEMISTRY								
Analysis Desc: Total	Anal	lvtical Me	ethod: Calcula	tion				
Nitrogen, Calculated, Water								
Total Nitrogen	1.2		mg/L	1	0.10	0.10	4/6/2017 20:35	Т
Analysis Desc: Oil & Grease,EPA1664A (HEM),Water	Anal	lytical Me	ethod: EPA 16	64 A				
Oil & Grease (HEM)	24		mg/L	1	4.0	1.3	3/28/2017 12:30	М
Analysis Desc: Ammonia,E350.1,Water	Anal	lytical Me	ethod: EPA 35	0.1				
Ammonia (N)	0.55		mg/L	1	0.10	0.02	3/29/2017 10:48	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: Copp	er Sulfate Digestion				
	Anal	lytical Me	ethod: EPA 35	1.2				
Total Kjeldahl Nitrogen	1.2	J4	mg/L	1	0.20	0.075	3/28/2017 15:06	Т
,			· 3· =			2.2.0		

Report ID: 477924 - 417480 Page 3 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1705104 UTC-GW

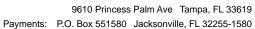
Date Received: 03/23/17 15:10 Lab ID: T1705104001 Matrix: Water

GW-2 Date Collected: 03/23/17 13:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	ethod: EP	A 365.1				
Orthophosphate	0.061		mg/L	1	0.010	0.0090	3/24/2017 12:00	Т
Analysis Desc: Total Phosphorus,E365.4,Analysis	Prep	aration I	Method: C	Copper Sulfate Digestion				
Thosphoras,2000.4,7 thatyon	Anal	ytical Me	thod: EP	A 365.4				
Total Phosphorus (as P)	0.073	I,J4	mg/L	1	0.10	0.046	3/28/2017 15:06	Т
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	960		mg/L	1.25	12	12	3/28/2017 07:31	Т
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	ethod: SM	4500NO3-F				
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	4/4/2017 15:07	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM	5210B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	3/24/2017 15:22	Т

Date Received: 03/23/17 15:10 Lab ID: T1705104002 Matrix: Water


Date Collected: 03/23/17 14:05 Sample ID: GW-1

Sample Description: Location:

					Adjusted	Adjusted					
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab			
METALS											
Analysis Desc: SW846 6010B	Prep	aration I	Method: S	N-846 3010A							
Analysis,Water	Analytical Method: SW-846 6010										
Arsenic	0.0020	- 1	mg/L	1	0.010	0.0016	3/28/2017 18:16	Т			
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	3/28/2017 18:16	Т			
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	3/28/2017 18:16	Т			
Copper	0.00084	U	mg/L	1	0.0080	0.00084	3/28/2017 18:16	Т			
Lead	0.0032	U	mg/L	1	0.010	0.0032	3/28/2017 18:16	Т			
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	3/28/2017 18:16	Т			
Zinc	0.0020	U	mg/L	1	0.010	0.0020	3/28/2017 18:16	Т			

Report ID: 477924 - 417480 Page 4 of 15

ANALYTICAL RESULTS

Workorder: T1705104 UTC-GW

Date Received: 03/23/17 15:10 Lab ID: T1705104002 Matrix: Water

GW-1 Date Collected: 03/23/17 14:05 Sample ID:

Sample Description: Location:

Campio Bocomption.				oodiioii.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW-8	46 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-846	6 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	3/31/2017 12:56	Т
Microbiology								
Analysis Desc: Total Coliform,SM9222B,Water	Anal	ytical Me	ethod: SM 922	22 B (MF)				
Coliform Total	1	U	#/100 mL	1	1	1	3/23/2017 18:12	Т
Analysis Desc: Fecal Coliform MF,SM9222D,Water	Anal	ytical Me	ethod: SM 922	2D				
Coliform Fecal	1	U	#/100 mL	1	1	1	3/23/2017 17:17	Т
WET CHEMISTRY								
Analysis Desc: Total Nitrogen,Calculated,Water	Anal	ytical Me	ethod: Calcula	tion				
Total Nitrogen	0.18		mg/L	1	0.10	0.10	4/6/2017 20:35	Т
Analysis Desc: Oil & Grease,EPA1664A (HEM),Water	Anal	ytical Me	ethod: EPA 16	64 A				
Oil & Grease (HEM)	1.3	U	mg/L	1	4.0	1.3	3/28/2017 12:30	М
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA 35	0.1				
Ammonia (N)	0.06	ı	mg/L	1	0.10	0.02	3/29/2017 10:48	Т
Analysis Desc: TKN,E351.2,Water	Prep	aration I	Method: Copp	er Sulfate Digestion	1			
	Anal	ytical Me	ethod: EPA 35	1.2				
Total Kjeldahl Nitrogen	0.18	ı	mg/L	1	0.20	0.075	3/28/2017 15:06	Т
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	ethod: EPA 36	5.1				
Orthophosphate	0.021		mg/L	1	0.010	0.0090	3/24/2017 12:01	Т
Analysis Desc: Total	Prep	aration I	Method: Copp	er Sulfate Digestion	1			
Phosphorus, E365.4, Analysis	Anal	ytical Me	ethod: EPA 36	5.4				
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	3/28/2017 15:06	Т
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM 254	-0 C				
Total Dissolved Solids	240		mg/L	1.25	12	12	3/28/2017 07:31	Т

Report ID: 477924 - 417480 Page 5 of 15

CERTIFICATE OF ANALYSIS

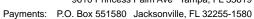
This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1705104 UTC-GW

Date Received: 03/23/17 15:10 Lab ID: T1705104002 Matrix: Water

GW-1 Date Collected: 03/23/17 14:05 Sample ID:


Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab		
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	ethod: SM	4500NO3-F						
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	4/4/2017 15:08	Т		
Analysis Desc: BOD,SM5210B,Water Analytical Method: SM 5210B										
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	3/24/2017 15:17	Т		

Report ID: 477924 - 417480 Page 6 of 15

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1705104 UTC-GW

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 Estimated Result

LAB QUALIFIERS

- M DOH Certification #E82535(AEL-M)(FL NELAC Certification)
- T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 477924 - 417480 Page 7 of 15

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1705104 UTC-GW

QC Batch: WCAt/7708 Analysis Method: EPA 365.1

QC Batch Method: EPA 365.1 Prepared:

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2307147

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Orthophosphate mg/L 0.0090 0.0090 U

QC Batch: MICt/2644 Analysis Method: SM 9222D

QC Batch Method: SM 9222D Prepared:

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2307658

Blank Reporting

Parameter Units Result Limit Qualifiers

Microbiology

Coliform Fecal #/100 mL 1 U

QC Batch: WCAt/7733 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2308501

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Dissolved Solids mg/L 10 10 U

QC Batch: WCAt/7743 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Prepared:

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2308627

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Report ID: 477924 - 417480 Page 8 of 15

Phone: (813)630-9616

Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1705104 UTC-GW

METHOD BLANK: 2308627

Blank Reporting

Limit Qualifiers Parameter Units Result

Biochemical Oxygen Demand 2.0 U mg/L 2.0

QC Batch: WCAt/7751 Analysis Method: EPA 351.2

QC Batch Method: Copper Sulfate Digestion Prepared: 03/28/2017 11:36

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2308793

Blank Reporting Parameter Result Units Limit Qualifiers

WET CHEMISTRY

Total Kjeldahl Nitrogen mg/L 0.075 0.075 U

METHOD BLANK: 2308794

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Phosphorus (as P) mg/L 0.046 0.046 U

QC Batch: WCAt/7751 Analysis Method: EPA 365.4

QC Batch Method: Copper Sulfate Digestion Prepared: 03/28/2017 11:36

T1705104001, T1705104002 Associated Lab Samples:

METHOD BLANK: 2308793

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

0.075 U Total Kjeldahl Nitrogen mg/L 0.075

METHOD BLANK: 2308794

Report ID: 477924 - 417480

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY 0.046 0.046 U Total Phosphorus (as P) mg/L

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Page 9 of 15

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1705104 UTC-GW

 QC Batch:
 DGMt/2733
 Analysis Method:
 SW-846 6010

 QC Batch Method:
 SW-846 3010A
 Prepared:
 03/28/2017 11:25

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2308832

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Arsenic	mg/L	0.0016	0.0016 U	
Cadmium	mg/L	0.00024	0.00024 U	
Chromium	mg/L	0.0020	0.0020 U	
Copper	mg/L	0.00084	0.00084 U	
Nickel	mg/L	0.0044	0.0044 U	
Lead	mg/L	0.0032	0.0032 U	
Zinc	mg/L	0.0020	0.0020 U	

 QC Batch:
 DGMt/2735
 Analysis Method:
 SW-846 7470A

 QC Batch Method:
 SW-846 7470A
 Prepared:
 03/28/2017 10:36

Associated Lab Samples: T1705104001

METHOD BLANK: 2308978

Parameter Units Result Limit Qualifiers

METALS

Mercury mg/L 0.000050 0.000050 U

QC Batch: WCAm/3942 Analysis Method: EPA 1664 A

QC Batch Method: EPA 1664 A Prepared:

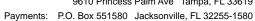
Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2310213

Blank Reporting
Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Oil & Grease (HEM) mg/L 1.3 1.3 U


QC Batch: WCAt/7777 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: T1705104001, T1705104002

Report ID: 477924 - 417480 Page 10 of 15

QUALITY CONTROL DATA

Workorder: T1705104 UTC-GW

METHOD BLANK: 2310298

Blank Reporting

Units Result Limit Qualifiers Parameter

WET CHEMISTRY

Ammonia (N) mg/L 0.02 0.02 U

QC Batch: DGMt/2760 Analysis Method: SW-846 7470A SW-846 7470A 03/31/2017 10:21 QC Batch Method: Prepared:

Associated Lab Samples: T1705104002

METHOD BLANK: 2313109

Blank Reporting

Parameter Units Result Limit Qualifiers

METALS

0.000050 0.000050 U Mercury mg/L

QC Batch: WCAt/7881 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2315497

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

Nitrate + Nitrite 0.2 0.2 U mg/L

QC Batch: MICt/2671 Analysis Method: SM 9222 B (MF)

QC Batch Method: SM 9222 B (MF) Prepared:

Associated Lab Samples: T1705104001, T1705104002

METHOD BLANK: 2315761

Blank Reporting Parameter Units Result Limit Qualifiers Microbiology

Coliform Total #/100 mL 1 U 1

Report ID: 477924 - 417480 Page 11 of 15

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1705104 UTC-GW

QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Estimated Result J4

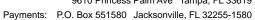
Report ID: 477924 - 417480 Page 12 of 15

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1705104 UTC-GW

Advanced Environmental Laboratories, Inc.

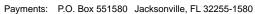

- Trosto4	-010-0W				
Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1705104001	GW-2			EPA 365.1	WCAt/7708
T1705104002	GW-1			EPA 365.1	WCAt/7708
T1705104001	GW-2			SM 9222D	MICt/2644
T1705104002	GW-1			SM 9222D	MICt/2644
T1705104001	GW-2			SM 2540 C	WCAt/7733
T1705104002	GW-1			SM 2540 C	WCAt/7733
T1705104001	GW-2			SM 5210B	WCAt/7743
T1705104002	GW-1			SM 5210B	WCAt/7743
T1705104001	GW-2	Copper Sulfate Digestion	WCAt/7751	EPA 351.2	WCAt/7781
T1705104002	GW-1	Copper Sulfate Digestion	WCAt/7751	EPA 351.2	WCAt/7781
T1705104001	GW-2	Copper Sulfate Digestion	WCAt/7751	EPA 365.4	WCAt/7782
T1705104002	GW-1	Copper Sulfate Digestion	WCAt/7751	EPA 365.4	WCAt/7782
T1705104001	GW-2	SW-846 3010A	DGMt/2733	SW-846 6010	ICPt/2078
T1705104002	GW-1	SW-846 3010A	DGMt/2733	SW-846 6010	ICPt/2078
T1705104001	GW-2	SW-846 7470A	DGMt/2735	SW-846 7470A	CVAt/1444
T1705104001	GW-2			EPA 1664 A	WCAm/3942
T1705104002	GW-1			EPA 1664 A	WCAm/3942
T1705104001	GW-2			EPA 350.1	WCAt/7777
T1705104002	GW-1			EPA 350.1	WCAt/7777
T1705104002	GW-1	SW-846 7470A	DGMt/2760	SW-846 7470A	CVAt/1451
T1705104001	GW-2			SM 4500NO3-F	WCAt/7881
T1705104002	GW-1			SM 4500NO3-F	WCAt/7881

Report ID: 477924 - 417480 Page 13 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: T1705104 UTC-GW

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1705104001	GW-2			SM 9222 B (MF)	MICt/2671
T1705104002	GW-1			SM 9222 B (MF)	MICt/2671
T1705104001	GW-2	Calculation	CLCt/	Calculation	CLCt/
T1705104002	GW-1	Calculation	CLCt/	Calculation	CLCt/

Report ID: 477924 - 417480 Page 14 of 15

Page Of Of 1	07,	- -	BWI 25,	าก เลา	(a)	አ ዝ ር	11Q		13 H2SN AB	[C] X	X					N = (HNO3) T = (Sodium Thiosulfate)	eceived (corrected)	T: 104 A: 34 M: 34 S: 1V		. sured		
1.1594 - Fax 407 507.1597		42.	I Iry		kar	7-7-3	A IN		Sic Tile Tile Nation Nothing 12554 HMJ3	<u> </u>	X X X X X X X X X					Preservation Code: = ice H=(HCI)	200	J: 9A G: LT-1 LT-2	шi	(When PWS information hot otherwise supplied) PWS ID:	Supplier of Water:	Site-Address:
FOVECOMMENTAL LAborates Inc. Attamonte Springs: 380 Northsive Brut, Se. 1045 - Atamonte Springs, Fl. 32701 - Environmental Laborates Inc. Jacksonville; essi Southpoint Pany - Jacksonville; Fl. 3216 - 904, 383, 3350 - Fax 80 Fixed Springs Fixed	Address. Address.			FDEP Facility Address:	DANA (SAYDOS	Sampled By: TIM CVENEUMO Special Instructions:		□ADaPT □EQuIS □Other	SAMPLE ID SAMPLE DESCRIPTION Grab DATE TIME MATRIX COUNT Fisher-alton	8 w2 0,213/11/3,00 6w 8	1/88/19			14 Table 1 Tab		Matrix Code: WW = wastewater SW = supface water GW = ground water DW = drinking water O = oil A = air SO = soil SL = sludge	Temp taken from sample	DCN: AD-051 Form last revised 11/17/16	hed by: Date Time Received by: Date	1 Julyan 3/23/17 15:10 / Med 3/23/17 15:10	3	7

October 6, 2017

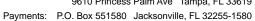
Dana Gaydos Gaydos Hydro Services PO Box 55802 Saint Petersburg, FL 33732

RE: Workorder: T1715927 UTC GW

Dear Dana Gaydos:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, September 19, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Michael Cammarata MCammarata@AELLab.com

Enclosures

Report ID: 509675 - 1293797 Page 1 of 15

SAMPLE SUMMARY

Workorder: T1715927 UTC GW

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1715927001	GW-2	Water	9/19/2017 14:45	9/19/2017 16:48
T1715927002	GW-1	Water	9/19/2017 15:35	9/19/2017 16:48

Report ID: 509675 - 1293797 Page 2 of 15

ANALYTICAL RESULTS

Workorder: T1715927 UTC GW

Lab ID: T1715927001 Date Received: 09/19/17 16:48 Matrix: Water

Sample ID: GW-2 Date Collected: 09/19/17 14:45

Sample Description: Location:

Sample Description:			L	_ocation:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SW-8	346 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-84	6 6010				
Arsenic	0.0079	ı	mg/L	1	0.010	0.0016	9/27/2017 13:28	Т
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	9/27/2017 13:28	Т
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	9/27/2017 13:28	Т
Copper	0.0037	ı	mg/L	1	0.0080	0.0014		Т
Lead	0.0032	U	mg/L	1	0.010		9/27/2017 13:28	Т
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	9/27/2017 13:28	T
Zinc	0.018		mg/L	1	0.010	0.0074	9/27/2017 13:28	Т
Analysis Desc: SW846 7470A	Prep	paration I	Method: SW-8	346 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-84	6 7470A				
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	9/26/2017 12:20	Т
Microbiology								
Analysis Desc: TKN,E351.2,Water	Prep	paration I	Method: Copp	er Sulfate Digesti	on			
	Anal	lytical Me	ethod: EPA 35	51.2				
Total Kjeldahl Nitrogen	1.6		mg/L	1	0.20	0.075	9/21/2017 11:29	Т
Analysis Desc: Total	Ana	lytical Me	ethod: SM 922	22 B (MF)				
Coliform,SM9222B,Water	7 11 10	iy liodi ivic	711100. OW 021	D (IIII)				
Coliform Total	600	1	#/100 mL	10	10	10	9/19/2017 16:30	Т
Analysis Desc: Fecal Coliform	Ana	lytical Me	ethod: SM 922	22D				
MF,SM9222D,Water								
Coliform Fecal	1	U	#/100 mL	1	1	1	9/19/2017 17:40	Т
Microbiology								
Analysis Desc: Total	Ana	lytical Me	ethod: Calcula	ation				
Nitrogen, Calculated, Water		•						
Total Nitrogen	1.6		mg/L	1	0.10	0.10	10/5/2017 15:00	Т
Analysis Desc: Oil & Grease, EPA1664A	Ana	lvtical Me	ethod: EPA 16	64 A				
(HEM),Water		,						
Oil & Grease (HEM)	1.3	U	mg/L	1	4.0	1.3	9/28/2017 11:12	М
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA 35	0.1				
Ammonia (N)	0.57		mg/L	1	0.10	0.02	9/25/2017 11:46	Т
, annother (14)	0.57		g/ =	•	0.10	0.02	5,20,2011 11.40	'

Report ID: 509675 - 1293797 Page 3 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1715927 UTC GW

Date Received: 09/19/17 16:48 Lab ID: T1715927001 Matrix: Water

GW-2 Date Collected: 09/19/17 14:45 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	ethod: EP	A 365.1				
Orthophosphate	0.068		mg/L	1	0.010	0.0090	9/20/2017 12:44	Т
Analysis Desc: Total	Prep	aration I	Method: C	Copper Sulfate Digestion				
Phosphorus,E365.4,Analysis	Anal	ytical Me	ethod: EP	A 365.4				
Total Phosphorus (as P)	0.067	I	mg/L	1	0.10	0.046	9/21/2017 11:29	Т
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	850		mg/L	1.25	12	12	9/22/2017 09:30	Т
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	ethod: SM	4500NO3-F				
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	9/21/2017 11:55	Т
Analysis Desc: BOD,SM5210B,Water	Anal	ytical Me	ethod: SM	5210B				
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	9/20/2017 15:19	Т

Lab ID: T1715927002 Date Received: 09/19/17 16:48 Matrix: Water

Date Collected: 09/19/17 15:35 Sample ID: GW-1

Sample Description: Location:

					Adjusted	Adjusted					
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab			
METALS											
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A							
Analysis, Water	Analytical Method: SW-846 6010										
Arsenic	0.0057	- 1	mg/L	1	0.010	0.0016	9/27/2017 13:32	Т			
Cadmium	0.00024	U	mg/L	1	0.00090	0.00024	9/27/2017 13:32	Т			
Chromium	0.0020	U	mg/L	1	0.0020	0.0020	9/27/2017 13:32	Т			
Copper	0.0014	U	mg/L	1	0.0080	0.0014	9/27/2017 13:32	Т			
Lead	0.0032	U	mg/L	1	0.010	0.0032	9/27/2017 13:32	Т			
Nickel	0.0044	U	mg/L	1	0.0090	0.0044	9/27/2017 13:32	Т			
Zinc	0.015		mg/L	1	0.010	0.0074	9/27/2017 13:32	Т			

Report ID: 509675 - 1293797 Page 4 of 15

9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1715927 UTC GW

Date Received: 09/19/17 16:48 Lab ID: T1715927002 Matrix: Water

GW-1 Date Collected: 09/19/17 15:35 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted				
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW-8	46 7470A						
Analysis, Water	Anal	ytical Me	ethod: SW-846	6 7470A						
Mercury	0.000050	U	mg/L	1	0.00010	0.000050	9/26/2017 12:20	Т		
Microbiology										
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM 254	10 C						
Total Dissolved Solids	410		mg/L	1.25	12	12	9/22/2017 09:30	Т		
Analysis Desc: Total Coliform,SM9222B,Water	Anal	ytical Me	ethod: SM 922	22 B (MF)						
Coliform Total	1	U	#/100 mL	1	1	1	9/19/2017 16:30	Т		
Analysis Desc: Fecal Coliform MF,SM9222D,Water	Anal	ytical Me	ethod: SM 922	22D						
Coliform Fecal	1	U	#/100 mL	1	1	1	9/19/2017 17:40	Т		
WET CHEMISTRY										
Analysis Desc: Total Nitrogen,Calculated,Water	Anal	ytical Me	ethod: Calcula	tion						
Total Nitrogen	0.49		mg/L	1	0.10	0.10	10/5/2017 17:00	Т		
Analysis Desc: Oil & Grease, EPA1664A (HEM), Water	Anal	ytical Me	ethod: EPA 16	64 A						
Oil & Grease (HEM)	6.6		mg/L	1	4.0	1.3	9/28/2017 11:12	М		
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA 35	0.1						
Ammonia (N)	0.23		mg/L	1	0.10	0.02	9/25/2017 11:46	Т		
Analysis Desc: TKN,E351.2,Water	Preparation Method: Copper Sulfate Digestion									
	Anal	ytical Me	ethod: EPA 35	1.2						
Total Kjeldahl Nitrogen	0.49		mg/L	1	0.20	0.075	9/21/2017 11:29	Т		
Analysis Desc: Orthophosphate,E365.1,Water	Anal	ytical Me	ethod: EPA 36	5.1						
Orthophosphate	0.029		mg/L	1	0.010	0.0090	9/20/2017 12:47	Т		
Analysis Desc: Total	Prep	aration I	Method: Copp	er Sulfate Digestion						
Phosphorus,E365.4,Analysis	Anal	ytical Me	ethod: EPA 36	5.4						
Total Phosphorus (as P)	0.046	U	mg/L	1	0.10	0.046	9/21/2017 11:29	Т		

Report ID: 509675 - 1293797 Page 5 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: T1715927 UTC GW

Date Received: 09/19/17 16:48 Lab ID: T1715927002 Matrix: Water

Sample ID: **GW-1** Date Collected: 09/19/17 15:35

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Nitrate+Nitrite,SM4500NO3F,W	Anal	ytical Me	thod: SM	I 4500NO3-F				
Nitrate + Nitrite	0.4	U	mg/L	2	0.8	0.4	9/21/2017 11:58	Т
Analysis Desc: BOD,SM5210B,Water								
Biochemical Oxygen Demand	2.0	U	mg/L	1	2.0	2.0	9/20/2017 15:13	Т

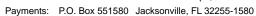
Report ID: 509675 - 1293797 Page 6 of 15

Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1715927 UTC GW

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- [1] Positive for Total

LAB QUALIFIERS

- M DOH Certification #E82535(AEL-M)(FL NELAC Certification)
- T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 509675 - 1293797 Page 7 of 15

QUALITY CONTROL DATA

Workorder: T1715927 UTC GW

QC Batch: MICt/3467 Analysis Method: SM 9222D

QC Batch Method: SM 9222D Prepared:

T1715927001, T1715927002 Associated Lab Samples:

METHOD BLANK: 2469345

Blank Reporting Limit Qualifiers Parameter Units Result

Microbiology

Coliform Fecal #/100 mL 1 1 U

METHOD BLANK: 2469349

Blank Reporting Limit Qualifiers Parameter Units Result Microbiology

1 U Coliform Fecal #/100 mL 1

QC Batch: WCAt/10948 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Prepared:

Associated Lab Samples: T1715927001, T1715927002

METHOD BLANK: 2470979

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY

Biochemical Oxygen Demand mg/L 2.0 2.0 U

Analysis Method: SM 4500NO3-F QC Batch: WCAt/10955

QC Batch Method: SM 4500NO3-F Prepared:


T1715927001, T1715927002 Associated Lab Samples:

METHOD BLANK: 2471234

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY 0.2 U Nitrate + Nitrite mg/L 0.2

Report ID: 509675 - 1293797 Page 8 of 15

QUALITY CONTROL DATA

Workorder: T1715927 UTC GW

QC Batch: WCAt/10960 Analysis Method: EPA 365.1

QC Batch Method: EPA 365.1 Prepared:

Associated Lab Samples: T1715927001, T1715927002

METHOD BLANK: 2471442

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

Orthophosphate mg/L 0.0090 0.0090 U

QC Batch: WCAt/10967 Analysis Method: EPA 351.2

QC Batch Method: 09/20/2017 16:21 Copper Sulfate Digestion Prepared:

Associated Lab Samples: T1715927001, T1715927002

METHOD BLANK: 2471606

Blank Reporting Units Limit Qualifiers Parameter Result

WET CHEMISTRY

0.075 U Total Kjeldahl Nitrogen 0.075 mg/L

METHOD BLANK: 2471607

Blank Reporting Parameter Units Result Limit Qualifiers

WET CHEMISTRY

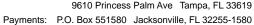
Total Phosphorus (as P) mg/L 0.046 0.046 U

Analysis Method: QC Batch: WCAt/10967 EPA 365.4

QC Batch Method: Copper Sulfate Digestion Prepared: 09/20/2017 16:21

T1715927001, T1715927002 Associated Lab Samples:

METHOD BLANK: 2471606


Total Kjeldahl Nitrogen

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY 0.075 0.075 U

mg/L

Report ID: 509675 - 1293797 Page 9 of 15

QUALITY CONTROL DATA

Workorder: T1715927 UTC GW

METHOD BLANK: 2471607

Blank Reporting

Parameter Units Limit Qualifiers Result

WET CHEMISTRY

Total Phosphorus (as P) 0.046 0.046 U mg/L

QC Batch: WCAt/10986 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

Associated Lab Samples: T1715927001, T1715927002

METHOD BLANK: 2472900

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

10 10 U **Total Dissolved Solids** mg/L

QC Batch: MICt/3503 Analysis Method: SM 9222 B (MF)

QC Batch Method: SM 9222 B (MF) Prepared:

Associated Lab Samples: T1715927001, T1715927002

METHOD BLANK: 2475123

Blank Reporting Limit Qualifiers Parameter Units Result

Microbiology

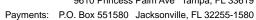
Coliform Total #/100 mL 1 1 U

METHOD BLANK: 2475124

Blank Reporting Parameter Units Result Limit Qualifiers

Microbiology

Coliform Total #/100 mL 1 1 U


QC Batch: WCAt/11015 EPA 350.1 Analysis Method:

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: T1715927001, T1715927002

Report ID: 509675 - 1293797 Page 10 of 15

QUALITY CONTROL DATA

Workorder: T1715927 UTC GW

METHOD BLANK: 2475245

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) 0.02 0.02 U mg/L

QC Batch: DGMt/3687 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 09/26/2017 08:00

Associated Lab Samples: T1715927001, T1715927002

METHOD BLANK: 2476627

Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS			
Arsenic	mg/L	0.0016	0.0016 U
Cadmium	mg/L	0.00024	0.00024 U
Chromium	mg/L	0.0020	0.0020 U
Copper	mg/L	0.0014	0.0014 U
Nickel	mg/L	0.0044	0.0044 U
Lead	mg/L	0.0032	0.0032 U
Zinc	mg/L	0.0074	0.0074 U

QC Batch: DGMt/3693 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 09/26/2017 08:25

Associated Lab Samples: T1715927001, T1715927002

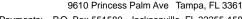
METHOD BLANK: 2477318

Blank Reporting Limit Qualifiers Parameter Units Result

METALS

0.000050 0.000050 U Mercury mg/L

QC Batch: WCAm/5493 Analysis Method: EPA 1664 A


QC Batch Method: EPA 1664 A Prepared:

Associated Lab Samples: T1715927001, T1715927002

Report ID: 509675 - 1293797 Page 11 of 15

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1715927 UTC GW

METHOD BI ANK: 2481289

WETHOD BLANK. 24012	.09		
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
WET CHEMISTRY			
Oil & Grease (HEM)	mg/L	1.3	1.3 U

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1715927 UTC GW

QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- **Estimated Result** J4

Report ID: 509675 - 1293797 Page 12 of 15

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1715927 UTC GW

Advanced Environmental Laboratories, Inc.

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1715927001	GW-2			SM 9222D	MICt/3467
T1715927002	GW-1			SM 9222D	MICt/3467
T1715927001	GW-2			SM 5210B	WCAt/10948
T1715927002	GW-1			SM 5210B	WCAt/10948
T1715927001	GW-2			SM 4500NO3-F	WCAt/10955
T1715927002	GW-1			SM 4500NO3-F	WCAt/10955
T1715927001	GW-2			EPA 365.1	WCAt/10960
T1715927002	GW-1			EPA 365.1	WCAt/10960
T1715927001	GW-2	Copper Sulfate Digestion	WCAt/10967	EPA 351.2	WCAt/10975
T1715927002	GW-1	Copper Sulfate Digestion	WCAt/10967	EPA 351.2	WCAt/10975
T1715927001	GW-2	Copper Sulfate Digestion	WCAt/10967	EPA 365.4	WCAt/10976
T1715927002	GW-1	Copper Sulfate Digestion	WCAt/10967	EPA 365.4	WCAt/10976
T1715927001	GW-2			SM 2540 C	WCAt/10986
T1715927002	GW-1			SM 2540 C	WCAt/10986
T1715927001	GW-2			SM 9222 B (MF)	MICt/3503
T1715927002	GW-1			SM 9222 B (MF)	MICt/3503
T1715927001	GW-2			EPA 350.1	WCAt/11015
T1715927002	GW-1			EPA 350.1	WCAt/11015
T1715927001	GW-2	SW-846 3010A	DGMt/3687	SW-846 6010	ICPt/2643
T1715927002	GW-1	SW-846 3010A	DGMt/3687	SW-846 6010	ICPt/2643
T1715927001	GW-2	SW-846 7470A	DGMt/3693	SW-846 7470A	CVAt/1701
T1715927002	GW-1	SW-846 7470A	DGMt/3693	SW-846 7470A	CVAt/1701

Report ID: 509675 - 1293797 Page 13 of 15

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1715927 UTC GW

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1715927001	GW-2			EPA 1664 A	WCAm/5493
T1715927002	GW-1			EPA 1664 A	WCAm/5493
T1715927001	GW-2	Calculation	CLCt/	Calculation	CLCt/
T1715927002	GW-1	Calculation	CLCt/	Calculation	CLCt/

Report ID: 509675 - 1293797 Page 14 of 15

4	ω	2 16	1 N/2 N/2 1	Relinquished by: Date	ON: AD-051 Form last revised 06/19/2017	aceived on Ice Yes UNo Temp taken from sample	WW = wastewater SW = surface water					C-m9	6W-2		SAMPLE ID SAMPLE DESCRIPTION	PTONe 用	m Around Time: CLSTANDARD LI RUSH	1	March David Gaydos	· *	887-6-31-6786		uress.	PHOLINAMONIANS SHOWING	Florida 8 Largest Laboratory Natmork	EINTO LINE ICOLOR LABORACOTRES, INC.	HUVAINCEU	Odymand
		6.46		Time Repeived by:) Devio	☐ Temp from blank	GW = ground water DW = drinking water					C 9/19/19	C thall	╫	Grab Comp DA	□ADaPT □ EQuIS		Special instructions:		FDEP Facility Address:	FDEP Facility No:	PO Number:	Project Number:	Project Name:		. 34		Altamonte Springs: 350 No.
			109-14 16:48	Date Time	Device used for measuring Temp by unique identifier (circle IR temp gun used)	Where required, pH checked	O=oil A=air SO=soil					8 mg 55:58 MM	11917 4.72 Cm 8	1	SAMPLING MATRIX COUNT Field.	Other	AN	Δ1 VS	SIS RI	FOLL	IDEC			(MC)	Tallahassee: 2639 North Morroe St., Suite D, Tallahassee, FL 32303 • 850.219.6274 • Fax 850.219.6275	Jacksonville: 6681 Southpoint Plawy - Jacksonville, FL 32216 - 904.383.3350 - Fax 904.383.3354	Fort Mvers: 13100 Washinks Terrace Ste 10 - Fort Means F1 33013 - 230 674 0130 - Ear 230 674 0130	Altamonte Springs: 350 Nadhiska Bwd., Sp., 1048 - Altamonte Springs, FL 32761 - 407 937, 1594 - Few 407 937, 1597
Site-Address:	e identifier (circle IR temp gun used) J: 9A G: LT-1 FOR DRINKING WATER USI (When PWS information not otherwise supplied) Contact Person: Supplier of Water:				Temp. when received (observed)_	SL = sludge Preservation Code:						1 -		Preservation (ACSOL) (CC) (AC)		H3)	0p	V 17		teh.		SIZE	& TYPE			2001	407 937 1594 • Fave 407 937 1597	
		Phone :	otherwise supplied) PWS ID:	WATER USE:	J:9A G:LT-1 LT-2 (T:10) A:3A	0000	: I = ios H=(HCl) S = (H2SO4) N = (HNO3) T = (Sodium Thiosulfate)						-	7 7 7	H CONIN ON MANNEY H	A S	Tologia	COO	2 - 2	/(U 2n	IP'	0/0			Tampa: 9510 Princess Palm Ave. • Tampa, FL 33619 • 813.630.9816 • Fax 813.630,4327		Sainaeuilla: 1065 SW At t Blod - Commille El S	1/2/5927
					3A M:3A S:1V F:1A	Temp, when received (corrected) 4.3 °C	1NO3) T = (Sodium Thiosulfate)					002	(0)		LABO	DRA	-		7.00 I.D.		MBI	ĒR			9 • 813.630.9616 • Fax 813.630,4327	5 • 954,889,2288 • Fax 954,889,2281	F dye	